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Joint Design of Transmit Weight Sequence and

Receive Filter for Improved Target Information

Acquisition in High-Resolution Radar

Jiawei Zhang , Graduate Student Member, IEEE, Huaping Xu , Member, IEEE,

Wei Liu , Senior Member, IEEE, Chunsheng Li, and Yifan Chen , Senior Member, IEEE

Abstract— A joint design of the transmit weight sequence
and receive filter is proposed to improve target information
acquisition in high-resolution radar. First, using the criterion for
target information acquisition maximization, the design is cast
as a nonconvex fractional quadratically constrained quadratic
problem (QCQP). Then, by employing a bivariate auxiliary
function introduced in Dinkelbach’s algorithm to decouple the
fractional objective function, an algorithm with polynomial
computational complexity is developed to solve the QCQP using
a cyclic maximization procedure alternating between two semi-
definite relaxation (SDR) problems. Through exploiting a suitable
rank-one decomposition, it is verified that the optimal solution
obtained from the alternative iterative process is also optimal to
the original QCQP. Finally, numerical examples are presented to
demonstrate the performance of the proposed design.

Index Terms— Constrained optimization, high-resolution
radar, information acquisition, receive filter, transmit weight.

I. INTRODUCTION

B
Y EMPLOYING a pulse-compression waveform to

achieve both sufficient energy for target probing and

the desired pulsewidth in time, high-resolution radar can

effectively overcome the range-resolution dilemma [1]. Due to

the ever-increasing resolution, even small and closely spaced

targets become visible and identifiable [2], which allows for

a large amount of target information to be extracted from the

recorded data. Thus, it opens up a gateway to a number of

advanced applications, including ship detection [3], aircraft

classification [4], and vehicle recognition [5], [6]. Based on

the Shannon information theory, the performance in these

applications depends on the amount of information acquired

about the observed target. As a result, improvement in the

target information acquisition is of great significance.
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Under the point target assumption, one emphasis in the

development of high-resolution radar is to increase the target

detection performance, which relies on the signal-to-noise ratio

(SNR) [7]. In order to achieve a sufficient SNR, the matched

filter is always applied to suppress noise and maintain the

useful signal. Moreover, the reflected waveform resulting from

a point scatterer is compressed to realize the correlation

function (CF) whose mainlobe resolution commensurates with

what a very short pulse would have provided, along with

the addition of range sidelobes [1]. As the CF shape deter-

mines the obtained SNR and the point-like target detection

performance, it is expected that the CF should have a narrow

mainlobe and much lower sidelobe levels [8], [9]. As a result,

the design of waveform combined with the matched filter has

been studied extensively to obtain the desirable shape of the

mainlobe in terms of range resolution and peak SNR while

suppressing the undesired sidelobes to avoid masking weak

targets in the sidelobe of a closely spaced target. These results

can be classified into two categories: frequency-modulated

waveforms and phase codes.

Of the first category, the most prevalent pulse compression

waveform employed in high-resolution radar is the linear

frequency modulation (LFM) signal. A filtered LFM signal

has the first sidelobe at a level of −13 dB to the peak of the

mainlobe [10], [11]. If the continuous frequency range of the

LFM signal is divided into a number of radio frequencies,

it results in another high-resolution waveform: the stepped

frequency waveform. It is a discrete frequency modulation

technique for obtaining a large bandwidth and, thus, fine

resolution [12]. To further reduce sidelobe levels, an amplitude

taper is introduced using the window functions to weigh the

LFM signal, such as the Taylor and Hamming windows [1].

Moreover, based on the LFM scheme, a variety of wave-

forms have been developed, which involves the nonlinear

frequency modulation with a spectrum weighting function,

leading to lower sidelobes compared to the classical LFM

signal [11].

Another class of waveforms for high-resolution radar is

phase codes, exemplified by the Frank, Barker, pseudorandom

shift register coders, and the Lewis-Kretschmer P4 polyphase

codes with a perfect periodic correlation [13]. In order to

obtain a higher peak power after pulse compression, an opti-

mization technique is employed in [14] to design phase codes

focusing on the maximization of the peak-to-sidelobe ratio
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of the CF. In [15], to synthesize phase sequences with good

CF in terms of peak sidelobe level and integrated sidelobe

level, a biobjective Pareto optimization is formulated, which

is tackled through an iterative procedure. By using the same

performance metric, binary sequences for multiple-input–

multiple-output (MIMO) radar are designed in [16]. In [17],

to improve target detection performance, a Pareto-optimal

waveform design problem is formulated as maximizing the

signal-to-interference-plus-noise ratio (SINR) subject to the

peak-to-average power ratio.

From the target-detection point of view, the abovemen-

tioned works are effective to obtain high SNRs based on

the point-like scattering model. However, the application of

high-resolution radar includes not just point target detection

but also classification, recognition, and tracking, where a

higher information acquisition capability is always desired.

The waveform design for maximizing SNR has been discussed

widely in the past, but it is not clear whether maximizing

SNR is equivalent to the maximization of target information

acquisition. As early as 1964, Woodward [18] pointed out

that pursuing SNR blindly can mislead radar design and data

processing because there is no theory, which implies that

maximizing SNR can ensure maximal information acquisition.

A similar issue was also addressed by Bell [19]. From the

practical applications of high-resolution radar, it is found that,

to achieve high-precision target perception is still a difficult

problem [20], [21]. Thus, the information acquisition capabil-

ity of existing designs with SNR maximization needs further

investigation and improvement, to meet the ever-increasing

demand in practical applications.

The information acquisition capability of an active sen-

sor can be improved by judiciously designing its transmit

waveform [22], [23]. Bell’s seminal work in [19] was the

first to carry out research on waveform design based on

the maximizing-target-information criterion (MTIC). With the

mutual information (MI) between radar echo and target scatter-

ing signal as the objective function, the amplitude of waveform

spectrum was obtained by the Lagrange multipliers method

under an energy constraint. Subsequently, Leshem et al. [24]

extended Bell’s research to the case of multiple targets. The

authors took the SNR and MI between echo and target scatter-

ing signals as the objective functions, respectively, to design

the transmit waveform for clutter and noise suppression [25].

Experimental results demonstrated that the MI-based wave-

form was able to acquire a higher amount of information and

achieve higher precision target recognition than the SNR-based

one.

Bell’s method has been extended to multiwaveform radar

systems, such as MIMO radar and cognitive radar. Yang and

Blum [26] considered the MI between echo and scattering sig-

nals as a criterion to design the MIMO radar waveform, which

leads to the same result with the mean-square error criterion.

The work in [27] followed the objective function in [26] to

design the MI-based waveform with colored noise for MIMO

radar and also presented a comparison between the MI crite-

rion and the relative entropy criterion. Goodman et al. [28]

introduced Bell’s method to cognitive radar, where, with

a feedback loop in the transceiver, the transmit waveform

is adjusted continuously so that target information can be

optimally acquired in real time. Other representative examples

can also be found in [29]–[31], and all of them formulate

the MI between the receive signal and target scattering as the

objective function for optimization.

The abovementioned works aim to guarantee that the radar

echo contains maximum information of the target, and sub-

sequent target-perception experiments are also based on the

echo. They consider the MI between radar echo and target

scattering signal as the performance metric, and the optimiza-

tion in the signal processing part of the radar receiver design

is normally ignored. Although there are various studies to

improve radar information acquisition by means of optimizing

the transmit waveform, an optimal receive filter design based

on the MI criterion has not been studied yet. The information

acquisition of a high-resolution radar relies on both the trans-

mit waveform and the receive filter, where the performance

metric is the MI between the filtered signal (instead of the raw

echo) and the target scattering characteristics. It is expected

that both the transmit waveform and the receive filter are

optimal in the MI sense to avoid performance degradation.

Without designing a “matched” filter, it is not always possi-

ble to achieve both high resolution and optimal information

acquisition at the same time.

In this article, a novel method is developed to improve infor-

mation acquisition of high-resolution radar, via a joint design

of the transmit weight sequence and receive filter under the

MTIC. This design methodology can be useful for any existing

high-resolution radar. The MI between the output signal of the

receive filter and the target scattering characteristic function

is considered as the objective function for the joint design.

In addition to an energy condition, a similarity requirement is

imposed on the weighted signal and receive filter to maintain

high resolution. The design is then reformulated as a non-

convex fractional quadratically constrained quadratic problem

(QCQP). An optimization procedure with a polynomial time

complexity is introduced to sequentially improve the metric,

by alternately solving two semidefinite relaxation (SDR) prob-

lems with a bivariate auxiliary function replacing the resultant

fractional function. Following a rank-one decomposition stage,

it is confirmed that the optimal solution obtained from the

alternative iterative process is also optimal to the original

QCQP. As demonstrated by computer simulations, with the

optimal pair of transmit weight and receive filter, the newly

designed high-resolution radar can achieve better performance

than the classic one, in terms of both information acquisition

and detection, with a similar resolution.

The rest of this article is organized as follows. Section II

establishes the signal model and formulates the joint design

of transmit weights and receive filters. In Section III, the opti-

mization procedure is derived to tackle the resultant nonconvex

fractional QCQP, followed by a discussion about the optimal

solution, the convergence analysis, and the decomposition

stage. Numerical results are provided in Section IV. Conclu-

sions are drawn in Section V.

Notations: Throughout this article, matrices are denoted by

bold uppercase letters and vectors by bold lowercase letters.

N, C, and CN represent the set of natural numbers, com-
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Fig. 1. Information acquisition model for the improved high-resolution radar.

plex numbers, and N-dimensional complex column vectors,

respectively. The symbol
S

denotes the union of two sets. The

notation <(A) denotes the range space of matrix A, and Re(·)
is used for the real part of a complex number. The space of

N × N complex Hermitian and nonzero semidefinite positive

matrices are denoted by HN and HN
+ . E and 1 are the identity

and all-one matrices. The superscripts (·)T , (·)∗, and (·)H

denote the vector/matrix transpose, the complex conjugate, and

the Hermitian transpose, respectively. ⊗ and � represent the

convolution operator and Hadamard (element-wide) product

of vectors/matrices. The notation λmin[A] is the minimum

eigenvalue of matrix A. |·| stands for the modulus of a complex

number. k · k and k · kF denote the Euclidean norm and the

Frobenius norm, respectively. The symbol tr[·] and rank[·]
represent the trace and rank of a matrix. E[·] represents the

expectation operation. The notation A � B means that A−B is

positive semidefinite. X ∼ CN (m, σ 2) indicates that random

variable X follows a circularly symmetric complex Gaussian

distribution with mean m and covariance σ 2. Finally, for any

optimization problem P , V(P) and S(P) represent its optimal

value and the set of optimal solutions, respectively.

II. PROBLEM FORMULATION

In order to acquire target information, the classical

high-resolution radar transmits a pulse signal periodically and

employs the matched filter to achieve high resolution and

SNR. Now, the signal is weighted by s(t) in the time domain

to form a new waveform, and the receive filter w(t) is not

the matched filter for SNR maximization as in the classical

high-resolution radar but an optimal filter based on the MTIC.

Following this working mechanism, the improved information

acquisition process can be modeled by a memoryless channel

with the information flow shown in Fig. 1.

The target scattering characteristic function G(t) embed-

ded in a uniform scene background B(t) determines the

information source and interacts with the new waveform

c(t)s(t) for spatial transmission. The modulated signal is then

corrupted by signal-independent interference V (t), includ-

ing system noise, and/or intentional interference (jammer),

and/or unintentional emissions from various telecommunica-

tion equipment [32]–[34]. After passing through the receive

filter w(t), direct estimation of target scattering characteristic

Ĝ(t) is obtained as

Ĝ(t) = {[G(t) + B(t)] ⊗ [c(t)s(t)] + V (t)} ⊗ w(t).

The existing waveform designs based on the MTIC involve

maximizing the MI between radar echo Y (t) and the target

response G(t) while ignoring the receive filter [19], [24]–[28].

Different from these works, here, the MI I (G; Ĝ) between

the filtered signal Ĝ(t) and G(t) is considered such that

the receive filter can be optimized together. The optimization

problem of joint design for waveform weights and receive filter

can be preliminarily expressed as

max
s(t),w(t)

I
(

G; Ĝ
)

. (1)

From the central limit theorem, it is often assumed that radar

signals follow a zero-mean complex Gaussian distribution

[35]–[37]. All signals in Fig. 1 are random processes, and

they follow the Gaussian distribution. Meanwhile, G(t), B(t),

and V (t) are statistically independent. At any given moment,

the random variables corresponding to G(t) and Ĝ(t) are

represented by G and Ĝ, respectively, so that G ∼ CN (0, σ 2
G)

and Ĝ ∼ CN (0, σ 2
Ĝ
). σ 2

G and σ 2
Ĝ

denote the variance of G(t)

and Ĝ(t), respectively. Combining the definition of MI and

the statistics of variables, I (G; Ĝ) can be simplified into [38]

I
(

G; Ĝ
)

= − ln
�

1 −
�

�ρ
(

G; Ĝ
)
�

�

2
�

where ρ(G; Ĝ) is the Pearson correlation coefficient. The

above formula shows that the MI is only related to ρ(G; Ĝ)

and is a monotonically increasing function of the modulus.

Thus, the performance measure of information acquisition

ability is equivalent to ρ(G; Ĝ), which is defined as

ρ
(

G; Ĝ
)

=
E
�

ĜG∗	

√
E[GG∗]

q

E
�

ĜĜ∗
	

. (2)

To further derive ρ(G; Ĝ), the discrete version of signals

is considered. With N ∈ N, use the notations s, c, v(`), y(`),

and w ∈ CN to represent the weight sequence, the classic

pulse-compression signal, interference, echo, and the optimal

filter at a given time index `. The convolution operator can

be implemented through a Toeplitz matrix [39], so the direct

estimation of target scattering characteristic can be written as

Ĝ(`) = wH y(`) = wH [G(`) + B(`)](s � c) + wH v(`)

where s = [s0 s1 · · · sN−1]T , c = [c0 c1 · · · cN−1]T ,

v(`) = [v(`) v(` + 1) · · · v(` + N − 1)]T , and w =
[w0 w1 · · · wN−1]T . G(`) is a Toeplitz matrix defined as

G(`) =













G(`) G(` − 1) · · · G(` − N + 1)

G(` + 1) G(`)
. . .

...
...

. . .
. . . G(` − 1)

G(` + N − 1) · · · G(` + 1) G(`)













.

B(`) is also a Toeplitz matrix, similar to G(`). According

to (2), with Q(`) = G(`) + B(`), |ρ(G; Ĝ)|2 between the

input and the output in Fig. 1 is derived as

�

�ρ
�

G; Ĝ
�
�

�

2 =
wH T(s)w

σ 2
G wH [Ŵ(s) + RV ]w

where
(

T(s) = RG(s � c)
(

cH � sH
)

RH
G

RG = E[G(`)G∗(`)]
(3)

and
�

Ŵ(s) = E
�

Q(`)(s � c)
�

cH � sH
�

QH (`)
�

RV = E
�

v(`)vH (`)
	

.
(4)
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Then, the optimization problem (1) is equivalent to

max
s,w

f (s, w) =
wH T(s)w

wH [Ŵ(s) + RV ]w

where σ 2
G is a constant and can be ignored. Because the

unconstrained optimization can lead to signals with poor reso-

lution, significant modulus variations, or even unrealizability,

imposing some reasonable constraints on the shape of s and w

is important and also beneficial to high-resolution radar [32].

In this context, in addition to the energy condition, a similarity

constraint [40], [41] is imposed on the weight sequence

ks � c − ck2 ≤ ε1 (5)

where ε1 is a parameter to determine the level of similarity

required between the weighted waveform s � c and the

original waveform c. With the similarity constraint in (5),

the bandwidth of s�c cannot decrease dramatically due to the

large bandwidth of pulse compression signal c, which helps

maintain the high-resolution requirement.

Similar to (5), a receive filter with a large bandwidth is also

needed to achieve a high resolution. To this end, a similarity

constraint is introduced to w, written as

kw − rk2 ≤ ε2

where r is a receive filter with a large bandwidth, such as

the matched filter of c. Finally, the problem of joint design

of transmit weight sequence s and receive filter w under the

energy, similarity, and spectrum constraints can be cast as the

following optimization problem:

Ps,w































max
s,w

f (s, w)

s.t.



















ks � ck2 = Es

ks � c − ck2 ≤ ε1

kwk2 = Ew

kw − rk2 ≤ ε2

(6)

where Es and Ew are energy of the weighted waveform and

the receive filter, respectively.

III. SOLVING THE OPTIMIZATION PROBLEM

A. Algorithmic Procedure

It can be seen that the resultant optimization (6) is a

nonconvex fractional QCQP with multiple constraints, which

is not easy to be tackled directly by existing methods [42],

[43]. To solve the problem, the following procedure is adopted

to find the desired solution from (6).

First, SDR can be introduced to deal with various con-

straints [44]. Let X = ssH and W = wwH . We first

transform the transmit weight vector optimization into the

SDR representation

PX,W



















































max
X,W

f̄ (X, W)

s.t.







































tr
�(

ccH � E
)

X
	

= Es

tr
�(

ccH �
(

ccH
)∗)

X
	

≥ ε̄1

X � 0

tr[W] = Ew

tr
�

rrH W
	

≥ ε̄2

W � 0

(7)

where

f̄ (X, W) =
tr
�

T̄(X)W
�

tr
��

Ŵ̄(X) + RV

�

W
	 (8)

with

T̄(X) = RG

�

X �
(

ccH
)	

RH
G

Ŵ̄(X) = [rG(n1 − n2) + rB(n1 − n2)]

·

 

N−1
X

n1=−N+1

Jn1

!

�

X �
(

ccH
)	

 

N−1
X

n2=−N+1

Jn2

!H

Jn(i, j) =

(

1, if i − j = n

0, if i − j 6= n
and RG =

N−1
X

n=−N+1

rG(n)Jn

where rG and rB denote the autocorrelation functions of G(t)

and B(t), respectively. The rank-one constraints of X and

W are dropped since they are nonconvex [45], [46]. The

associated proof is presented in Appendix A.

However, it is still not easy to solve PX,W as both numer-

ator and denominator are functions of two variables to be

optimized [47]. A bivariate auxiliary function introduced in

Dinkelbach’s algorithm is employed to decouple the numerator

and the denominator [48], which is

9
(

X, W; X̃, W̃
)

= µ(X, W) − η(X, W) f̄
(

X̃, W̃
)

with

⎧

⎪

⎨

⎪

⎩

f̄ (X, W) = µ(X, W)/η(X, W)

µ(X, W) = tr
�

T̄(X)W
	

η(X, W) = tr
��

Ŵ̄(X) + RV

�

W
	

.

(9)

9(X, W; X̃, W̃) is now considered as a new objective function

of PX,W.

Finally, based on a sequential optimization procedure,

the optimization problem with the auxiliary function is divided

into two problems corresponding to X and W, respectively.

They are alternately solved, which sequentially improves the

value of f̄ (X, W).

1) Receive Filter Optimization: At the mth step, given X =
X̃ = X(m−1), W(m) is expected to be solved first. Let W̃ =
W(m−1), and substituting it into the auxiliary function leads to

the following problem:

P1























max
W

9
(

X(m−1), W; X(m−1), W(m−1)
)

s.t.











tr[W] = Ew

tr[rrH W] ≥ ε̄2

W � 0.

(10)

Using the toolbox in [49], an optimal solution W(m) at the

mth step will be obtained. It can be concluded that

f̄
(

X(m−1), W(m)
)

≥ f̄
(

X(m−1), W(m−1)
)

. (11)

A detailed proof is given in Appendix B.
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2) Transmit Weight Sequence Optimization: Next, with a

fixed W substituted into the auxiliary function, the opti-

mization problem associated with X is established. Setting

W = W̃ = W(m) and X̃ = X(m−1), we have 9(X, W(m);
X(m−1), W(m)), which is not the standard form of SDR and, 
therefore, transformed into another equivalent version

9̂
(

X, W(m); X(m−1), W(m)
)

= µ̂
(

X, W(m)
)

−η̂
(

X, W(m)
)

f̄
(

X(m−1), W(m)
)

(12)

where

µ̂
(

X, W(m)
)

= tr
nn

(

ccH
)∗ �

�

RH
G W(m)RG

	

o

X
o

(13)

and

η̂
�

X, W(m)
�

= tr
��

�

ccH
�∗ � �

�

X
�

+ tr
�

RV W(m)
�

(14)

with

� = [rG(n1 − n2) + rB(n1 − n2)]

·

 

N−1
X

n2=−N+1

Jn2

!H

W(m)

 

N−1
X

n1=−N+1

Jn1

!

.

Through Appendix C, it can be confirmed that

9̂(X, W(m); X(m−1), W(m)) = 9(X, W(m); X(m−1), W(m)).

(15)

Combining the constraints of weight sequence, the optimiza-

tion with respect to X is formed as

P2























max
X

9̂
(

X, W(m); X(m−1), W(m)
)

s.t.











tr
�(

ccH � E
)

X
	

= Es

tr
�(

ccH �
(

ccH
)∗)

X
	

≥ ε̄1

X � 0.

(16)

Still employing the toolbox in [49], the optimal solution

of P2 at the mth step is obtained. Assuming that an optimal

solution of P2 at the mth step is obtained, then it can be proven

that

f̄
(

X(m), W(m)
)

≥ f̄
(

X(m−1), W(m)
)

. (17)

The proof is similar with Appendix B. With (11), we finally

obtain

f̄
(

X(m), W(m)
)

≥ f̄
(

X(m−1), W(m)
)

≥ f̄
(

X(m−1), W(m−1)
)

. (18)

Consequently, the proposed procedure with the auxiliary

function is effective in obtaining a good solution to the opti-

mization problem PX,W by alternately solving P1 and P2, as it

can be verified that f̄ (X, W) is a monotonically increasing

sequence during the iterative process. The implementation

steps are summarized in Fig. 2.

In Fig. 2, m demotes the iteration index. Starting from

m = 1, X = X̃ = X(m−1), and W̃ = W(m−1), the auxil-

iary function 9(X(m−1), W; X(m−1), W(m−1)) associated with

receive filter is generated. Then, W(m) is obtained by solving

Fig. 2. Implementation of alternative iteration, where κ is the maximum
variation of the objective function. | f̄ (X(m), W(m)) − f̄ (X(m-1), W(m-1))| ≤ κ
is considered as a stop condition.

the optimization problem P1 in (10). Using W(m) to replace

W(m−1), the auxiliary function 9̂(X, W(m); X(m−1), W(m)) cor-

responding to weight sequence is established. After solving P2

in (16), we have X(m). The iteration index is updated. After

the stop condition is satisfied, (X(m), W(m)) are then output as

the optimized pair (X†, W†).

B. Convergence Analysis

The convergence of the objective function sequence can

be demonstrated by showing that the objective function is

monotonically increasing and converges to a finite value [45],

[46]. By alternately solving P1 and P2, it has been verified that

the objective function f̄ (X, W) is a monotonically increasing

sequence, as shown in (18). Furthermore, it can be proved that

f̄ (X, W) is upper bounded as follows.

Since tr[Ŵ(s)W] ≥ 0, from (8), we have

f̄ (X, W) ≤
tr[T(s)W]

tr[RV W]
.

Considering tr[AB] ≤ tr[A]tr[B] [46] and tr[AB] ≥
λmin[A]tr[B] [45], given A, B � 0, there is

f̄ (X, W) ≤
tr[T(s)]tr[W]

λmin[RV ]tr[W]
.

With (3), it follows that

tr[T(s)]tr[W]

λmin[RV ]tr[W]
=

tr
�

RG(s � c)
(

cH � sH
)

RH
G

	

λmin[RV ]
.
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Finally, we have

f̄ (X, W) ≤
Es tr

�

RH
G RG

	

λmin[RV ]
=

EskRGk2
F

λmin[RV ]
.

Therefore, the above bounded objective function com-

bined with the monotonic increasing property can ensure

convergence.

C. Discussion of the Optimal Solution

With (18), it can be proved that the optimal pair (X†, W†)

resulting from P1 and P2 are also optimal to PX,W when the

alternate iteration is complete.

Suppose that, at the m∗th step, the optimal pair X† = X(m∗)

and W† = W(m∗) are obtained. Thus, even with one more

iteration, the value of f̄ (X, W) remains unchanged, as it is a

monotonically increasing function with iteration index shown

in (18). Thus, we have

f̄
(

X†, W†
)

= f̄
(

X(m∗), W(m∗)
)

= f̄
(

X(m∗), W(m∗+1)
)

= f̄
(

X(m∗+1), W(m∗+1)
)

.

(19)

Then, combing (12), it follows that the optimal value V(P2)

of the problem P2 is

9̂
(

X(m∗+1), W(m∗+1); X(m∗), W(m∗+1)
)

= µ̂
(

X(m∗+1), W(m∗+1)
)

− η̂
(

X(m∗+1), W(m∗+1)
)

· f̄
(

X(m∗), W(m∗+1)
)

.

With (19), we have

9̂
(

X(m∗+1), W(m∗+1); X(m∗), W(m∗+1)
)

= 9̂
(

X(m∗+1), W(m∗+1); X(m∗+1), W(m∗+1)
)

= 0. (20)

Similarly, we have V(P1) = 0 at the m∗th step. Next,

we introduce a lemma:

Lemma 1: If V(P1) = V(P2) = 0 with obtained W† ∈
S(P1) and X† ∈ S(P2), then

f̄ (X†, W†) = V(PX,W). (21)

Please refer to Appendix D for a detailed derivation.

By using the above lemma, it can be proved that the

waveform–filter pair (X†, W†) resulting from the alternative

iterations are also optimal to the problem PX,W.

D. Decomposition Stage

The optimization process sequentially converges to an opti-

mized pair (X†, W†), and then, a rank-one decomposition is

employed to derive the optimal transmit weight vector s† and

w† from the obtained X† and W†, respectively. An effective

method to construct a rank-one solution is given by a recent

rank-one matrix decomposition theorem [50, Th. 2.2], which

is cited as the following lemma.

Lemma 2: With N ≥ 3, suppose that A1, A2, A3 ∈ HN and

X ∈ HN
+ involving the rank-one decomposition. Let rank[X] =

r ; then, the following holds.

1) If r ≥ 3, one can find in polynomial time, a nonzero

vector in s ∈ <(X) such that

sH Ai s = tr[Ai X], i = 1, 2, 3

with X−(1/r)ssH � 0 and rank[X−(1/r)ssH ] ≤ r −1.

2) If r = 2, for any z ∈ CN not in the range space of X,

there exists a vector s belonging to the linear subspace

spanned by [z
S

<(X)] such that

sH Ai s = tr[Ai X], i = 1, 2, 3

with X + zzH − (1/r)ssH � 0 and rank[X + zzH −
(1/r)ssH ] ≤ 2.

3) If r = 1, it can be tackled by eigendecomposition

directly.

Through Lemma 2, X† and W† can be decomposed, which

results in s† and w†. Taking X† as an example, it is expected

that s†(s†)
H

can reach the optimal value of the objective

function and satisfy all constraints of P2 such that






























9̂
(

X†, W(m); X(m−1), W(m)
)

= 9̂
�

s†
(

s†
)H

, W(m); X(m−1), W(m)
�

tr
�

BX†
	

= tr
h

Bs†
(

s†
)H
i

=
(

s†
)H

Bs† = Es

tr
�

CX†
	

= tr
h

Cs†
(

s†
)H
i

=
(

s†
)H

Cs† ≥ ε̄1

where B = cc � E and C = ccH � (ccH )
∗
. According to

Lemma 2, A1, A2, and A3 for s† are given as A1 = B, A2 = C,

and A3 = P1 − f̄ (X†, W†)P2, where
�

P1 =
(

ccH
)∗ �

(

RH
G W†RG

)

P2 =
�

ccH
�∗ � �.

A more detailed implementation procedure of rank-one

decomposition is available in [50]. Suppose that s† is the

result of rank-one decomposition by applying Lemma 2; then,

we have

(s†)H A3s† = tr[A3X†].

With (20), it follows that

(s†)H P1s† − f̄ (X†, W†)
�

(s†)H P2s† + cw

	

= 0

where cw = tr[RV W†]. Considering the objective function

f (s, w) of the original problem Ps,w in (6), for any s = s†,

there always exists

(s†)H P1s† − f (s†, w†)
�

(s†)H P2s† + cw

	

= 0.

Since (s†)H P2s† + cw > 0, we finally obtain

f (s†, w†) = f̄ (X†, W†).

Thus, the optimal solution of PX,W is also optimal to Ps,w,

and the SDR in (16) is tight, by resorting to Lemma 2.

With (21), there will be

f̄ (X†, W†) = V(PX,W) = V(Ps,w)

when both the iteration process and rank-one decomposi-

tion are completed. Consequently, the solving method by

a cyclic maximization procedure alternating between the
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two SDR problems, followed by the rank-one decomposi-

tion stage, can find the optimal solution of the original

problem Ps,w.

The overall computational complexity of the algorithm

includes the computation of alternating iteration and rank-one

decomposition. The former mainly depends on solving the

two SDRs, which is of O(N3.5 log(1/ξ)), where ξ > 0

is the required solution accuracy parameter. The latter is

implemented with a complexity of O(N3) [50]. In summary,

the original QCQP can be tackled by the solving method

involving a polynomial computational complexity.

IV. NUMERICAL EXAMPLES

In this section, numerical examples are provided to verify

the effectiveness of the proposed method for joint optimization

of the weight sequence and receive filter. The proposed method

can enhance the target information acquisition ability of any

high-resolution radar. Without loss of generality, we perform

experiments based on two high-resolution radars: the LFM

radar with LFM signal and the P4 radar with P4 polyphase

codes.

A. Theoretical Analysis Verification

1) Convergence of the Solving Method: For both the LFM

radar and P4 radar, we set similar parameters,1 and perform

the same experiments subsequently. The minimum variation

of objective function is set to κ = 10−3. Suppose that V (t)

and B(t) hold a constant power spectrum density (PSD) over

the system frequency band, and their variance depends on the

value of the signal-to-interference ratio (SIR2) and the signal-

to-clutter ratio (SCR), which will be given in the following.

Referring to the target scattering PSD in [25], rG is then

obtained by the inverse Fourier transform of its PSD. Similarly,

rB and RV are generated according to their PSDs. Initializing

X(0) and W(0) with 1 and ccH , respectively, the obtained pair

(X†, W†) at the iteration stage is output for these two radars

when the stop criterion is satisfied.

In order to verify the convergence of the proposed method,

the change of objective function f̄ (X, W) of PX,W is presented

with respect to the iteration number, as shown in Fig. 3, for

different values of the similarity parameters ε1 and ε2.

It can be seen that f̄ (X, W) of both radars increases with

the number of iterations. As derived in (18), the objective

function of PX,W keeps increasing monotonically with the

alternate iterative process proceeding. Moreover, the algo-

rithm converges rapidly, which is demonstrated by f̄ (X, W)

reaching a relatively stable state only after three or four

iterations.

Compared to the red line in Fig. 3(a) corresponding to

ε1 = 1.0, increasing ε1 from 1.0 to ∞ leads to substantial

improvement of f̄ (X, W). As expected, other figures also

show a similar pattern. In summary, the algorithm is effective

and efficient in tackling the original SDR problem PX,W.

1Set system sampling frequency fs = 110 MHz for both radars and the
number of samples N = 40 and Es = Ew = Ec = N .

2SIR = E[|G(t)|2]/E[|V (t)|2] and SCR = E[|G(t)|2]/E[|B(t)|2].

Fig. 3. Objective functions for different feasible regions: (a) f̄ (X, W)
corresponding to the LFM radar for a different ε1 with ε2 = 1.5,
(b) f̄ (X, W) corresponding to the LFM radar for a different ε2 with ε1 = 1.0,
(c) f̄ (X, W) corresponding to the P4 radar for a different ε1 with ε2 = 1.5,
and (d) f̄ (X, W) corresponding to the P4 radar for a different ε2 with
ε1 = 1.0. Here, set SIR = −20 dB and SCR = 0 dB, and the symbol
∞ means that the associated constrains is relaxed.

2) High-Resolution Requirement: As mentioned above,

the similarity constraint is imposed on both the weight

sequence and receive filter, in order to maintain its resolution

by keeping a larger bandwidth. To investigate the effectiveness

of this scheme, the optimal weight sequence s† and the receive

filter w† are synthesized at the decomposition stage, based

on the results obtained in Fig. 3. Then, we plot the CFs of

s† �c and w† versus different similarity constraint parameters,

as shown in Figs. 4 and 5.

It is easy to notice that the resultant mainlobe width of

CFs depends on the value of similarity constraint parameters

ε1 and ε2, no matter which radar it is. More precisely, when

ε1 and ε2 both have relatively small values, for example, 1.0

and 1.5, the mainlobe of CF is obviously narrower than the

case of ε1 = ∞ and ε2 = ∞. Moreover, Figs. 4 and 5 have

shown that the similarity constraint is needed for both transmit

weight sequence and receive filter, as both ε1 = ∞ and

ε2 = ∞ result in a poor resolution. Therefore, the similarity

constraints imposed on the weights and receive filter are

effective for guaranteeing that the resolution cannot be reduced

too much compared to the original radar systems, and the

desired resolution can be obtained by adjusting ε1 and ε2.

B. Performance Assessment

1) Information Acquisition: Referring to Fig. 3, the optimal

weight sequence s† and the receive filter w† with different

ε1 and ε2 are then synthesized. We evaluate the informa-

tion acquisition capability of the proposed scheme, compared

with the classical LFM radar and P4 radar, by plotting

|ρ(G; Ĝ)|2 versus different SIRs and SCRs, as shown in Fig. 6.
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Fig. 4. CFs of the improved LFM radar for different feasible regions: (a) CF
of ε1 = 1.0 with ε2 = 1.5, (b) CF of ε1 = ∞ with ε2 = 1.5, (c) CF of
ε2 = 1.0 with ε1 = 1.0, and (d) CF of ε2 = ∞ with ε1 = 1.0.

Fig. 5. CFs of the improved P4 radar for different feasible regions: (a) CF
of ε1 = 1.0 with ε2 = 1.5, (b) CF of ε1 = ∞ with ε2 = 1.5, (c) CF of
ε2 = 1.0 with ε1 = 1.0, and (d) CF of ε2 = ∞ with ε1 = 1.0.

Meanwhile, we also consider a widely discussed MI-based

waveform design scheme, which is called the “water-filling”

method [19], [25], as a benchmark for comparison. Since the

associated receive part has always been ignored in such works,

the traditional matched filter is assumed to be the receive

filter.

It can be found that the improved radars with s† � c and

w† have achieved a better result than the classical systems

and the water-filling method, which is demonstrated by the

maximum |ρ(G; Ĝ)|2 over the most considered SIR or SCR

range. By contrast, the maximum gap of |ρ(G; Ĝ)|2 between

the improved LFM radar and the classical one is about 0.28,

Fig. 6. Information acquisition comparisons: (a) |ρ(G; Ĝ)|2 versus different

SIRs with fixed SCR = 5 dB and (b) |ρ(G; Ĝ)|2 versus different SCRs with
fixed SIR = −10 dB, where the legend “L-(a, b)” in each figure indicates
the improved LFM radar with ε1 = a and ε2 = b. Similarly, the symbol “P-”
demotes the improved P4 radar, and “LFM” and “P4” represent the classical
LFM radar and the P4 radar, respectively.

with a feasible region of ε1 = 1.5 and ε2 = 2.0 in Fig. 6(a).

The obvious gap can also be seen over different SCRs

in Fig. 6(b). Increasing ε1 and ε2 results in an improvement

of |ρ(G; Ĝ)|2 for both types of radar, which is consistent

with Fig. 3.

Moreover, compared with the recent water-filling method,

the proposed scheme also shows higher information acqui-

sition capability, except for the cases with extremely low

SIRs. The reason is that the water-filling method only focuses

on the MI between the echo and target scattering signal.

Although both the water-filling method and the proposed

scheme consider the MI as the performance metric, their

objective functions are totally different. As mentioned above,

the receive part in the water-filling case is ignored. Even using

the matched filter as the receive filter, it is still not an optimal

scheme for the joint waveform–filter design maximizing the

MI between the signal after being filtered and the target scat-

tering characteristics. Furthermore, Fig. 6(b) indicates that the

water-filling method has lower |ρ(G; Ĝ)|2 over all considered

SCR ranges, which presents a different pattern to Fig. 6(a).

It can be explained by the principle of the matched filter,

as the matched filter is mainly derived for signal-independent

interference (including noise) suppression based on the SIR

criterion but not for any signal-dependent interference. Thus,

when the white noise N(t) is really significant with extremely
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Fig. 7. SAR images with different waveforms: (a) SAR image of the weighted
LFM signal, (b) SAR image of the classical LFM signal, (c) SAR image of
the weighted P4 sequence, (d) SAR image of the classical P4 sequence, and
(e) SAR image of the water-filling waveform with its matched filter, where
ε1 = 1.5 and ε2 = 2.0 are fixed. SIR = −10 dB, and SCR = 5 dB.

low SIRs, the matched filter becomes a near-optimal filter.

Meanwhile, it should be noted that the water-filling scheme

only has an energy condition, which indicates a larger feasible

set of optimization problems than the proposed scheme. Thus,

the water-filling case can obtain relatively high |ρ(G; Ĝ)|2

over the extremely low SIR range.

2) Target Detection: The information acquisition perfor-

mance can be further measured in terms of target detection

capability [31], [51]. In this part, we evaluate the performance

of different radar systems with respect to their detection capa-

bilities. To this end, synthetic aperture radar (SAR) is intro-

duced to support the experiment. The range profile of SAR is

equivalent to a pulse compression waveform processed by its

matched filter, which is similar to the classical high-resolution

radar with the 1-D signal model. Therefore, the SAR echo can

be viewed as a set of receive signals with different time delays,

and performance comparisons can also be based on the SAR

with the abovementioned waveforms and range filters.

The radar scene is simulated by placing an aircraft at a fixed

location on grass, which is flat and uniform. It is assumed

that there is an SAR system with five waveforms, and they

are the weighted LFM signal and P4 sequence, the classical

versions, and the water-filling waveform. Meanwhile, suppose

Fig. 8. Probability histogram of SAR images: (a) result of the proposed
pair to the LFM signal, (b) result of the classical pair to the LFM signal,
(c) result of the proposed pair to the P4 sequence, (d) result of the classical
pair to the P4 sequence, and (e) result of the water-filling waveform and the
matched filter.

that all waveforms are independent of each other during the

observing process, and we use SAR with these five waveforms

to illuminate the scene and store the associated receive signals

for echo generation. Then, a tailor-made imaging algorithm

for these waveform–filter pairs is applied to provide SAR

images, as shown in Fig. 7. Based on the range-Doppler

algorithm, the SAR imaging process can be summarized as

three steps: range filtering, range migration correction, and

azimuth filtering. Here, we only change the first step by using

the considered waveform–filter pairs to achieve range filtering.

It can be seen that the SAR images corresponding to the

proposed method have the best result. Specifically, the one

with the pair of weighted LFM waveform and filter shows

more explicit aircraft contour and shape than the classical one.

The results of P4 also reveal a similar pattern. As for the

water-filling SAR image, the pixels of the background area

are relatively bright and messy, which has lower image quality

than the proposed scheme.

To further compare their ability in discriminating between

the useful part and background clutter, the probability his-

togram of each signal component of SAR images in Fig. 7 is

presented as follows.

Fig. 8 indicates that the proposed scheme associated

with these two weighted waveforms has achieved a better
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Fig. 9. Detection probability and false alarm probability for different
waveforms.

TABLE I

RESOLUTION INDEX

distinguishing result, as most proportions of the useful signal

are distributed in the amplitude range where both clutter and

noise barely exist. For the case of the water-filling method,

there is a significant aliasing effect for the interval from 0

to 2 in Fig. 8(e), resulting in relatively poor discrimination

performance.

Based on Figs. 7 and 8, the detection probability PD and

the false alarm probability PFA of these five waveforms are

presented in Fig. 9.

It is clear that the detection accuracy of the proposed

schemes is higher than that of the classical waveforms and the

water-filling method, which further demonstrates that the joint

design can help the classical waveforms acquire more target

information. The aircraft can be discriminated very well by

the proposed joint design with PFA = 0.1. By comparison,

the same level of PD can only be achieved in the case of

PFA higher than 0.5 for the two classical signals and the

water-filling method.

3) Resolution: In order to compare the resolution, CFs of

the five abovementioned waveforms are shown in Fig. 10, and

their 3-dB mainlobe widths of CF are also listed in Table I.

It can be observed that the proposed schemes for both the

LFM signal and P4 sequence have a slight loss in resolution

compared with the classical waveforms. It indicates that the

joint design can not only help the classical high-resolution

radar improve their information acquisition ability but also

maintain the high-resolution property well. With the matched

filter, the water-filling method has a high resolution. However,

it may be a coincidence, as the resolution requirement is not

considered there. The waveform designed by the water-filling

scheme relies on the PSD of target scattering, clutter, and

Fig. 10. CFs corresponding to different waveforms: (a) CF of the weighted
LFM signal, (b) CF of the classical LFM signal, (c) CF of the weighted
P4 sequence, (d) CF of the classical P4 sequence, and (e) CF of the
water-filling waveform.

noise [19] so that high resolution cannot always be guaranteed

with respect to any shapes of the PSD. Returning to the

proposed scheme, its resolution is mainly determined by ε1

and ε2, so that high resolution can always be maintained very

well.

V. CONCLUSION

Based on the MTIC, a joint design of transmit weight

sequence and optimal filter for high-resolution radar has been

presented, to improve target information acquisition and, at the

same time, maintain its high-resolution property. The main

results can be summarized as follows.

The transmit weight sequence and receive filter design prob-

lem for high-resolution radar was formulated as maximizing

information acquisition subject to energy and similarity

constraints, which resulted in a nonconvex fractional QCQP.

Combined with a bivariate auxiliary function based on

Dinkelbach’s algorithm, a solving method with a polynomial

computational complexity was developed by alternately solv-

ing two SDR problems, whose convergence was analytically

proved. Through a suitable rank-one decomposition, it was

confirmed that the optimal solution obtained from the iterative

process is also optimal to the original QCQP. Numerical

results have shown that the radar with improved design has
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achieved better information acquisition and detection perfor-

mance with a similar resolution compared with the classical

high-resolution radar and the widely discussed water-filling

method with the matched filter.

APPENDIX

A. Proof of the SDR Representation

In this appendix, the SDR formulation of objective function

and constraints in (7) are derived, respectively.

1) Objective Function:

max
s,w

wH T(s)w

wH [Ŵ(s) + RV ]w
→ max

X,W

tr
�

T̄(X)W
�

tr
��

Ŵ̄(X) + RV

�

W
	 .

The Toeplitz matrix G(`) can be reformulated as

G(`) =
N−1
X

n=−N+1

G(n + `)Jn

where Jn is defined as

Jn(i, j) =

(

1, if i − j = n

0, if i − j 6= n.

Assuming that rG(·) is the autocorrelation function of G(t),

Ŵ(s) in (4) can be recast as

Ŵ(s) = E
�

G(` + n1)G∗(` + n2)
	

·

 

N−1
X

n1=−N+1

Jn1

!

(s � c)
(

cH � sH
)

 

N−1
X

n2=−N+1

Jn2

!H

= rG(n1 − n2)

·

 

N−1
X

n1=−N+1

Jn1

!

(

ssH
)

�
(

ccH
)

 

N−1
X

n2=−N+1

Jn2

!H

.

(22)

Then, substituting X = ssH into the expression of T(s)

in (3) and Ŵ(s) in (22), respectively, T̄(X) and Ŵ̄(X) are then

obtained.

2) Constraints: The energy constraint is easy to prove,

so we only consider the similarity constraint. Since

ks � c − ck2 ≤ ε1, we obtain

ks � c − ck2 = 2kck2 − 2 Re
�

(s � c)H c
	

≤ ε1.

It implies that
�

�(s � c)H c
�

�

2 ≥
�

Re
�

(s � c)H c
	�2 ≥ [(2Ec − ε1)/2 ]2

where kck2 = Ec. Moreover, k(s � c)H ck2
can be reformu-

lated as
�

�(s � c)H c
�

�

2 = tr
h

sH
�

ccH �
(

ccH
)∗
�

s
i

= tr
h�

ccH �
(

ccH
)∗
�

X
i

.

Finally, if

ε̄1 = [(2Ec − ε1)/2 ]2

it is straightforward to verify that

ks � c − ck2 ≤ ε1 → tr
h�

ccH �
(

ccH
)∗
�

X
i

≥ ε̄1.

The case of the receive filter can be treated similarly.

B. Proof of Equation (11)

With Wm ∈ S(P1), it leads to

9
(

X(m−1), W(m); X(m−1), W(m−1)
)

≥ 9
(

X(m−1), W(m−1); X(m−1), W(m−1)
)

.

Since there must exist

9
(

X(m−1), W(m−1); X(m−1), W(m−1)
)

= µ
(

X(m−1), W(m−1)
)

− η
(

X(m−1), W(m−1)
)

· f̄
(

X(m−1), W(m−1)
)

= 0

it follows that

9
(

X(m−1), W(m); X(m−1), W(m−1)
)

= µ
(

X(m−1), W(m)
)

− η
(

X(m−1), W(m)
)

· f̄
(

X(m−1), W(m−1)
)

≥ 0.

Meanwhile,

9
(

X(m−1), W(m); X(m−1), W(m)
)

= µ
(

X(m−1), W(m)
)

−η
(

X(m−1), W(m)
)

· f̄
(

X(m−1), W(m)
)

= 0.

With µ(X(m−1), W(m)) ≥ 0 and η(X(m−1), W(m)) > 0, we have

f̄
(

X(m−1), W(m)
)

≥ f̄
(

X(m−1), W(m−1)
)

.

C. Proof of Equation (15)

The homogenized version of µ(X, W) in (9) can be written

as

µ
(

X, W(m)
)

=
(

w(m)
)H

T̄(X)w(m)

=
(

w(m)
)H

RG

�

(s � c)(s � c)H
	

RH
G w(m)

= (s � c)H RH
G W(m)RG(s � c)

= sH
h

(

ccH
)∗ �

(

RH
G W(m)RG

)

i

s

= tr
nh

(

ccH
)∗ �

(

RH
G W(m)RG

)

i

X
o

= µ̂
(

X, W(m)
)

.

In a similar way, we obtain

η
(

X, W(m)
)

= η̂
(

X, W(m)
)

.

As a result, (15) is confirmed.

D. Proof of Lemma 1

Because V(P1) = V(P2) = 0, there is at least one solution

pair (X0, W0), for example, (Xm∗
, Wm∗

) such that

µ
(

X0, W0)− η
(

X0, W0) f̄
(

X†, W†
)

= 0.

Then,

f̄
(

X†, W†
)

=
µ
(

X0, W0)

η(X0, W0)
.

Since (X0, W0) is a feasible solution of problem PX,W

f̄
(

X†, W†
)

≤ f̄ (X0, W0) =
µ(X0, W0)

η(X0, W0)
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where (X0, W0) ∈ S(PX,W) is an optimal solution to PX,W.

It follows that

µ(X0, W0) − η(X0, W0) f̄
(

X†, W†
)

≥ 0. (23)

Then, we define F†(X, W) for further derivation, i.e.,

F†(X, W) = µ(X, W) − η(X, W) f̄
(

X†, W†
)

.

Combined with all constraints of P1 and P2, we can formulate

another optimization problem P3

P3















max
X,W

F†(X, W)

s.t.

(

X ∈ DX

W ∈ DW

where DX and DW are the feasible regions corresponding to P2

and P1, respectively. As mentioned above, the iterative process

converges at the m∗th step. At this point, when X = X(m∗)

is substituted into P3, W(m∗+1) can be obtained by solving

P1 or P3 with respect to W because these two problems

have the same feasible region and objective function, with

the conclusion of (19). Similarly, we also obtain X(m∗+1) after

P2 or P3 is tackled with W = W(m∗+1). Thus, starting from

the m∗th step, the sequential optimization procedure of P3 is

equivalent to alternately iterating P2 and P1, which will form

a solution sequence of P3 by fixing one of the two variables

and varying the other. Thus, F†(X(m), W(m)) keeps increasing

monotonically [52]

F†
(

X(m∗), W(m∗)
)

≤ F†
(

X(m∗), W(m∗+1)
)

≤ F†
(

X(m∗+1), W(m∗+1)
)

. (24)

With (9), it always holds true that

µ
(

X(m∗), W(m∗)
)

− η
(

X(m∗), W(m∗)
)

· f̄
(

X(m∗), W(m∗)
)

= 0.

(25)

By the conclusion of (19), (25) is transformed into

µ
(

X(m∗), W(m∗)
)

− η
(

X(m∗), W(m∗)
)

· f̄
(

X†, W†
)

= 0.

Thus, we have F†(X(m∗), W(m∗)) = 0. Similarly, with

V(P1) = V(P2) = 0, it follows:

F†
(

X(m∗), W(m∗+1)
)

= F†
(

X(m∗+1), W(m∗+1)
)

= 0

which further leads to

F†
(

X(m∗), W(m∗)
)

= F†
(

X(m∗), W(m∗+1)
)

= F†
(

X(m∗+1), W(m∗+1)
)

= 0.

According to (24), F†(X(m), W(m)) is a monotonic increas-

ing sequence with respect to m. When it remains sta-

ble, F†(X, W) will reach the maximum value F†(X(m∗+1),

W(m∗+1)). Meanwhile, the objective function F†(X, W) of P3

is a biaffine function, so the optimal solution is obtained at

the boundary point. Because all of the constraints of P3 are

affine in both X and W, and they limit the feasible region

to the positive orthant, F†(X, W) is monotonic in one of the

decision variables when the other one is fixed. Thus, there

exists only one maximum, which is the global maximum, and

we have

F†(X0, W0) = µ(X0, W0) − η(X0, W0) f̄
(

X†, W†
)

≤ F†
(

X(m∗+1), W(m∗+1)
)

= 0.

Combing (23), then

µ(X0, W0) − η(X0, W0) f̄
(

X†, W†
)

= 0.

Hence,

f̄
(

X†, W†
)

=
µ(X0, W0)

η(X0, W0)

= f̄ (X0, W0).

The proof is complete.
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