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Abstract—Synchronization operations are commonly seen in
OpenMP programs where a parallel construct often works with
an explicit or implicit barrier operation. While OpenMP syn-
chronization has been extensively studied on the traditional x86
CPU architectures, there is little work on understanding OpenMP
barrier synchronization operations on ARMv8 high-performance
many-cores. This paper presents the first comprehensive perfor-
mance study on OpenMP barrier implementations on emerg-
ing ARMv8-based many-cores. We evaluate seven representa-
tive barrier algorithms on three distinct ARMv8 architectures:
Phytium 2000+, ThunderX2, and Kunpeng920. We empirically
show that the existing synchronization implementations exhibit
poor scalability on ARMv8 architectures compared to the x86
counterpart. We then propose various optimization strategies
for improving these widely used synchronization algorithms on
each platform. We showcase that our optimizations yield 12.6x
performance improvement over the GCC implementation and
4.7x improvement over the LLVM implementation, translating
to 1.6x improvement over the state-of-the-art best-performing
algorithm. We share our experience and practical insights on
optimizing OpenMP synchronization operations on emerging
ARMv8 multi-core CPU architectures.

Index Terms—Barrier synchronization, ARMv8 many-cores

I. INTRODUCTION

Synchronization is a fundamental operation for parallel

programs. Barriers are essential to ensure that no data races

occur among concurrently running threads during parallel

execution. Hence, a synchronization barrier is often explicitly

or implicitly inserted at the end of a parallel region of an

OpenMP program to synchronize parallel threads.

Depending on how often synchronizations are performed

and the amount of computation given to a parallel worker, the

achieved performance can be significantly limited due to the

barrier synchronization overhead [1], [2]. Executing a barrier

requires all threads to be idle while waiting for the slowest

peer. This waiting overhead grows quickly as the number of

parallel threads increases [3] - such an overhead could be

significant on modern many-core processors as partitioning

the computation across more processors means the interval

between barriers decreases.

There is extensive work in optimizing barrier synchroniza-

tions, with various algorithms proposed in the past [4]–[7].

Indeed, optimizing OpenMP barrier synchronization is heavily

studied on conventional shared memory architectures [6],

[8]–[10]. However, it is still unclear if existing barrier al-

gorithms remain effective on the new ARMv8 multi-cores.

As the ARMv8-based multi-cores are quickly emerging as a

promising high-performance computing hardware design, it is

essential to revisit the efficiency of barrier synchronization

algorithms on the ARMv8-based multi-core systems.

This paper presents the first comprehensive study on barrier

synchronization performance on ARMv8 multi-cores. We em-

pirically demonstrate that existing OpenMP barrier implemen-

tations are ineffective on ARMv8 architectures. We show that

the barrier overhead is several times larger on ARMv8 many-

cores compared to the x86 counterparts. Such inefficiency calls

for new optimization strategies for barrier synchronization

on ARMv8 many-cores. Our study evaluates seven main-

stream barrier synchronization implementations [11]–[15] on

three representative ARMv8 many-core processors: Phytium

2000+ [16], ThunderX2 [17] and Kunpeng920 [18].

We then analyze the root causes of the ineffectiveness

of these barrier implementations. We found that the inter-

core communication latency on ARMv8 has a significant im-

pact on the performance of barrier implementations. Existing

barrier algorithms typically use a hierarchical tree structure

to synchronize parallel threads. However, the tree topology

used by current implementations is ill-suited for the ARMv8

processor-core organization that typically groups processor

cores into clusters. Since the communication latency within

and across clusters can vary significantly, parallel OpenMP

threads running on different processor clusters can have

vastly different synchronization latency that cannot be ignored.

While some barrier implementations have considered the non-

uniform memory access (NUMA) pattern across CPUs, they

are not optimized for on-chip NUMA communications intro-

duced by ARMv8 many-cores. By ignoring the architecture

characteristics, existing barrier algorithms can unnecessarily

prolong the waiting time of synchronization and increase the

thread contention, leading to synchronization inefficiency.

In light of these observations, we propose new optimizations

to improve OpenMP barriers on ARMv8 many-cores. To this

end, we extend the granularity of the arrival flag (a variable

used by parallel threads to signal their arrival to a barrier)

to minimize the impact of OpenMP thread contention by

increasing the thread granularity. To match the processor-core

latency across core clusters, we revise the synchronization tree

to develop a new, better on-chip NUMA-aware synchroniza-



Figure 1. A high-level view of Phytium 2000+. Its 64 processor cores are
groups into eight panels (a), where each panel contains eight ARMv8 cores
(b)

tion structure for ARMv8. Our design goal is to reduce the

expensive remote accesses across processor core clusters.

We show that our new implementation, on average, im-

proves the OpenMP barrier implementation of GCC and

LLVM by 12.6x and 4.7x respectively on our evaluation

platforms. The results translate to a 1.6x improvement over

the best-performing state-of-the-art barrier algorithm. As such,

our new implementation represents the most efficient barrier

implementation on ARMv8 many-cores seen to date.

This paper makes the following contributions:

• It provides the first comprehensive study of OpenMP

barrier efficiency, identifying the limitations of the cur-

rent barrier implementations on ARMv8 many-cores, and

outlining optimization opportunities (Section IV);

• It shows how analytical methods can be developed to an-

alyze and optimize barrier implementations (Section III);

• It presents new barrier optimizations on ARMv8 proces-

sors, giving considerable performance improvement over

existing approaches (Section V).

II. BACKGROUND AND MOTIVATION

This section provides a description of three ARMv8 many-

core architectures, gives an overview of mainstream barrier

algorithms and introduces the motivation of our work.

A. ARMv8 Many-Core Architectures

Our work targets three representative ARMv8 many-core

architectures, described as follows.

1) Phytium 2000+: Figure 1 gives a high-level view of

Phytium 2000+. This processor has 64 ARMv8 compatible

processing cores at 2.2 GHz, organized into eight panels. Each

panel has eight cores connected through a memory control unit

(MCU). Every four cores within a panel form a core group and

share a 2MB L2 cache, and each core has a private L1 cache

of 32KB for data and instructions. Processor cores within a

core group have the same core-to-core communication latency.

Inter-core communications outside the core group are more

expensive compared to communications within the core group,

and the latency varies depending on the distance between the

core groups. Table I of Section III summarizes the core-to-core

communication latency.

Figure 2. The dual-socket ThunderX2 ARMv8 system.

Figure 3. A high-level overview of the KP920 architecture.

2) ThunderX2: Figure 2 shows a typical two-socket Thun-

derX2 system with 2x 32-core ARMv8 processors at 2.5 GHz.

The two processors are connected through a 2nd-generation

Cavium’s Coherent Processor Interconnect (CCPI2). Each

processor core has a 32KB data cache, a 32KB instruction

cache, and a 256KB L2 cache. All the cores within a socket

share a 32MB last level cache (LLC) arranged as 1MB slices

via a dual-ring on-chip bus. The LLC is exclusive, storing the

evicted L2 cachelines. Processor cores within the same socket

can communicate with each other with a uniform latency of

around 24ns. This latency increases to over 140ns for cross-

socket processor core communications.

3) Kunpeng 920: Figure 3 shows the 64-core Kunpeng 920

(KP) many-core processor at 2.6 Ghz. Processor cores on

KP are organized as two super CPU clusters (SCCL). The

processor cores are connected to a super IO cluster (SICL)

similar to the Intel uncore component. Each SCCL has its

own memory controllers, working as a NUMA node. Within

an SCCL, there are eight CPU clusters (CCLs), where each

CLL has four cores. Each processor core has 64KB private L1

instruction and data caches as well as 512KB of private L2

cache. All the 64 cores of the chip share a 64MB LLC that

is equally partitioned among two SCCLs. Furthermore, every

four cores within a CCL are associated with an L3 cache tag

partition. Because of the memory hierarchy and core affinity,

the inter-core communication latency varies across CCLs and

SCCls, as shown in Table III of Section III.



B. Overview of Barrier Algorithms

A barrier synchronization typically includes three phases.

The first is the Arrival-Phase, where all threads reach the

barrier. The threads signal their arrival by modifying one or

several shared variables (or semaphores). Then, the threads

enter into the Notification-Phase, where the last arrival thread

notify all other threads that the synchronization has been com-

pleted. This operation is typically realized by modifying a flag

variable shared among threads. In the final, Re-initialization-

Phase, all the flags will be reset for reusing.

Our work considers the following representative barrier

synchronization algorithms:

1) Sense: The sense-reversing centralized barrier is a cen-

tralized implementation. In the Arrival-Phase, each thread

atomically decrements a shared integer (i.e., counter) when

it enters the barrier. The initial value of the counter is the

number of threads P. When its value becomes 0, it means

that all threads have reached the barrier. The algorithm uses

a thread-local variable (i.e., sense) and a global variable (or

sense) to perform the wake-up process. The local senses are

initialized to the opposite value of the global sense (e.g., if

the global sense is initialized to 1, the local sense will be

initialized to 0 or vice versa). Each thread spins on its local

sense when its value differs from that of the global sense. The

last arrived thread then informs the other threads by reversing

the global sense. All the threads then reverse their local

senses before leaving the barrier for the next synchronization.

This global wake-up scheme is widely used to implement

the Notification-Phase. The GCC OpenMP library adopts this

barrier algorithm [19].

2) Tree-based algorithms: In a centralized barrier, all

threads write and read the same memory location of the

counter, leading to a hot-spot of memory accesses. This

causes memory contention in the interconnection network [20],

leading to poor scalability. To mitigate the contention issue,

researchers proposed several tree-based synchronization algo-

rithms.

Software combined tree barrier. The classical work pre-

sented in [12] constructs a tree of multiple hot spots. Parallel

threads are divided into several groups where threads within

a group share a counter like the centralized barrier. However,

counters across thread groups are stored at different memory

locations to avoid a single hot spot. The topology of arrival

tree with fan-in1 of 4 is shown in Figure 4(a).

MCS tree barrier. This algorithm, proposed by Mellor-

Crummey et al. [13], works by constructing a P-node tree

in the Arrival-Phase. Each thread is assigned as a tree node

instead of a leaf node as in the combined tree. The topology

of the arrival tree with a fan-in of 4 is shown in Figure 4(b).

1In a tree, the fan-in of a node is the number of children the node has. This
term is known as fanout in B+ Tree. In the context of a combined tree barrier,
the fan-in is the number of threads in a tree group. It is called fan-in in a
barrier tree as thread synchronization is performed bottom-up (i.e., growing
from the bottom to the top).

(a) The combined tree barrier

(b) The MCS tree

Figure 4. An arrival tree of the combined tree barrier (a) and the MCS tree
barrier (b) using 20 threads as an example. Different processor cores are in
different colors on the node. The solid line indicates an operation within a
processor core, and a dashed one means operations across core cluster(s). The
node marked by a question mark means that the parent node is the last node
reached in each group, determined at runtime.

Tournament barrier. The algorithm is similar to a tournament

game [14]. A pair of threads play in each round against each

other. The winner waits until the loser arrives. The winners

play against each other in the next round. The overall winner

(the champion) notifies all others about the end of the barrier.

In essence, the tournament barrier can be seen as a bottom-up

static combined tree with a fan-in of 2. The algorithm adopts

global wake-up in the Notification-Phase.

Static and dynamic f-way tournament barriers. Built upon

the tournament concept, an f-way tournament barrier [15]

converts pairwise synchronization to group synchronization

with f threads in each round. The grouping allows us to reduce

the critical path length of the tournament. This algorithm

is equivalent to a tree with a fan-in of f . The value of f

varies across different levels to keep the synchronization tree

as balanced as possible. In a static f-way tournament barrier,

the winner of each group is pre-determined. This is different

from a dynamic f-way tournament barrier, where the winner

is dynamically decided during runtime.
3) Dissemination barrier: The dissemination barrier [14]

has no Notification-Phase. This algorithm requires ⌈log
2
P ⌉

rounds of pairwise communication between P threads. In

round j, thread i informs thread (i+2j) mod P its arrival and

waits for the notification from (i−2j) mod P . Threads signal

each other by writing flags. A thread can collect the arrival

information of itself and its partners in all previous rounds in

each round. In the last round, each thread would know the

arrival of all threads.

C. Motivation

Our work is motivated by an observation that the OpenMP

barrier on ARMv8 multi-cores is much more expensive than

that of the x86 counterparts. As an example, consider Figure 5

that compares the barrier implementation of GCC 8.2.1 and

LLVM 10.0.1 on a 32-core Intel Xeon Golden processor at

2.1 GHz and the three ARMv8 processors targeting in this
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Figure 5. OpenMP barrier overhead (µs) for the GCC and LLVM implemen-
tations on various architectures using 32 parallel threads.

work - all have a similar CPU clock frequency (see Section

II-A). All the experiments were conducted using the EPCC

OpenMP micro-benchmark suite [21] with 32 parallel threads.

In the experiments, we run the micro-benchmarks 20 times and

report the average performance.

On the Intel platform, the barrier synchronization process

takes around 2µs to complete using 32 threads. By contrast,

this overhead can increase to 16µs using the GCC OpenMP

implementation on ThunderX2. This translates to an 8×
slowdown on the GCC OpenMP implementation compared

to the Intel platform. We also observe a similar trend in the

LLVM implementation, albeit the overhead is less significant

than GCC on ARMv8. Our work aims to improve the barrier

synchronization performance on the ARMv8 platform.

III. MODELING BARRIER CACHE PERFORMANCE

To understand the inefficiency of the current barrier imple-

mentation, we start by modeling the barrier implementation’s

performance characteristics. We achieve this by developing a

simple yet effective analytical method to model the memory

access overhead incurring during parallel synchronization.

As barrier implementations use a number of variables stored

in the memory, the barrier synchronization of a parallel

thread will generate a number of accesses to (1) the local

cache on the processor core where the thread runs (intra-

core communications) as well as (2) remote caches across

processor cores and cluster (i.e., inter-core communications).

As we have outlined in Section II-B, each thread notifies its

arrival and waits for the release notification through writing

and reading shared data hosted (or to be fetched into) the

cachelines. Therefore, our analytical model aims to use the

intra-core and inter-core communication latency to model the

synchronization overhead.

A. Characterizing Core-to-Core Communication Latency

Our micro-benchmark runs with two threads: one thread

places the data, and the other thread accesses the data. We pin

each thread to a processor core to ensure that the data is placed

in the cache local to the thread. We vary the thread to core

affinity to measure the intra- and inter-core communication

latency.

Grouping notations. Tables I to III list the measurement

on our targeting platforms. As the core-core communication

varies depending on the distance and locations between two

cores, we group the core-core communications latencies into

layers denoted as Li. Intuitively, as cores in L0 are in the

same core cluster (e.g., a core group in Phytium 2000+), they

have a low communication latency. We use Nc to represent the

number of threads in each logical core cluster found through

our measures. The number is 4, 32 and 4 on Phytium 2000+,

ThunderX2, and Kunpeng920, respectively. The tables also list

the communication latency of local cache access, denoted as ǫ.

We use the measurement to derive our performance analysis,

detailed in the following subsection.

B. Modeling Cache Load and Store Operations

We use the measured core-to-core latencies in Tables I

to III to model cache load and store operations involved in

barrier synchronization. To this end, we build analytic models

based on the assumption that barriers will incur multiple times

within the program execution (which is a typical scenario).

Under such scenarios, the variables used for synchronization

will reside in the cache as they are repeatedly accessed.

There are mainly four types of operations during a barrier

synchronization: RL (local read), RR (remote read), WL (local

write), and WR (remote write), described as follows.

Load operations. We use RL to denote reading a data copy

from the local cache. Such a load overhead is small, ORL
= ǫ.

We use RR to denote the operation for loading a data copy

from a remote cache. The overhead of this operation varies,

depending on the layer the core-core communication belongs

to, i.e., ORR
= Li; see Tables I to III.

Store operations. The ARMv8 architecture adopts the write-

invalidate coherence protocol for cache consistency. This

protocol incurs additional RFO (read-for-ownership) overhead

during a store operation. We model the cost of sending RFO

to each copy is αiLi, where αi is a layer-specific weight and

0 ≤ αi ≤ 1. The local (WL) and remote store (WR) overhead

can be modeled as OWL
= ORL

+ ORFO = nαiLi and

OWR
= ORR

+ ORFO = (1 + nαi)Li, respectively. Here,

n denotes the number of shared copies held by other cores.

IV. EVALUATING BARRIER ALGORITHMS

This section first gives a brief performance overview of the

OpenMP barrier implementations in GCC and LLVM. It then

provides an in-depth comparison of seven mainstream barriers

algorithms on three ARMv8 many-core platforms.

A. Barrier Performance in GCC and LLVM

GNU GCC and LLVM are regarded as the most widely

used open-source compiler infrastructures. Thus, we measure

the overhead of the barrier primitive for the GNU and LLVM

OpenMP implementations on the three ARMv8 multi-cores.

We use GCC 8.2.1 and clang 10.0.1 as the target compiler for

all evaluation platforms. We use the EPCC micro-benchmarks

to measure the barrier overhead using 1 to 64 threads. We run

each benchmark 20 times and report the average performance.



Table I
CORE-TO-CORE LATENCIES(NS) ON PHYTIUM 2000+

ǫ (local) L0 (within a core group) L1 (within a panel) L2 (panel 0-1) L3 (panel 0-2)
latency(ns) 1.8 9.1 42.3 54.1 76.3

L4 (panel 0-3) L5 (panel 0-4) L6(panel 0-5) L7 (panel 0-6) L8 (panel 0-7)
latency(ns) 65.6 61.4 72.7 95.5 84.5

Table II
CORE-TO-CORE LATENCIES(NS) ON THUNDERX2

ǫ (local) L0 (within a sockect) L1 (across sockect)
latency(ns) 1.2 24 140.7

Table III
CORE-TO-CORE LATENCIES(NS) ON KUNPENG920

ǫ (local) L0 (within CCL)
latency(ns) 1.15 14.2

L1 (within a SCCL) L2 (across SCCL)
latency(ns) 44.2 75

We found the noise across runs to be small, less than 2%.

During our evaluation, each thread is pinned to a distinct

physical core. Note that we use the same evaluation setting

throughout the paper.

Figure 6(a) shows that the barrier overhead for GNU GCC

implementation increases over the number of threads for both

Phytium 2000+ and ThunderX2. By diving into the code,

we know that the GCC OpenMP implementation adopts a

sense-reversing centralized barrier algorithm. On Kunpeng920,

the barrier performance fluctuates dramatically over threads.

Overall, Phytium 2000+ performs the best in GCC OpenMP

among the three ARMv8 many-cores.

By contrast, the LLVM OpenMP shows different perfor-

mance behaviors from the GCC OpenMP in Figure 6(b).

Because LLVM uses a tree-based algorithm (i.e., a hypercube-

embedded tree), the barrier performance has been improved

significantly. The overhead using 64 threads on Phytium

2000+ and ThunderX2 is reduced by 3x and 10x, respectively,

compared to that of the GCC OpenMP. We also note see that

the barrier overhead on Kunpeng920 has been reduced, but the

performance numbers look unstable.

B. Performance of Current Barrier Algorithms

Setup. We implement the seven barrier algorithms described in

Section II-B, including the sense-reversing centralized barrier

(SENSE), dissemination barrier (DIS), software combined tree

barrier with a fan-in of 2 (CMB), MCS tree barrier (MCS),

tournament barrier (TOUR), static f-way tournament barrier

(STOUR) and dynamic f-way tournament barrier (DTOUR).

We use the C programming language to implement the al-

gorithms. We develop a micro-benchmark using the OpenMP

parallel pragma to parallelize the code and run the micro-

benchmark using each barrier algorithm. We compile the

program using GCC v8.2.1. We also pin the threads to a
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Figure 6. The barrier performance of the GNU GCC and LLVM OpenMP
implementation on three ARMv8 multi-cores.

physical core to reduce the noise of measurements. Figure 7

shows the scalability of each barrier algorithm when running

the micro-benchmark using 1 to 64 threads. To aid clarity, we

separate the results of SENSE from others in Figure 7(a), as

this algorithm is much more expensive than others.

SENSE. This algorithm is used to implement the barrier

primitive in the GCC OpenMP library (i.e., GNU libgomp).

As shown in Figure 7(a), the overhead of this algorithm grows

linearly as the number of parallel threads increases. This

algorithm gives poor scalability as it uses a global shared

variable to coordinate the synchronization of parallel threads.

Because multiple threads try to load and store to the same

memory location multiple times, multiple cache controllers

local to the active cores will attempt to prefetch the data

simultaneously. It increases the contention of the network

controller, whose overhead grows quickly as the number of

processor cores increase. This algorithm also manifests high

overhead on ThunderX2 than the other two platforms. We also

note that our implementation has similar runtime compared



1 8 16 24 32 40 48 56 64
number of threads

0

5

10

15

20

25

30

35

40

ba
rri
er
 o
ve
rh
ea
d(
μs
)

Phytium 2000+
ThunderX2
Kunpeng920

(a) SENSE

1 8 16 24 32 40 48 56 64
number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ba
rri

er
 o

ve
rh

ea
d(
μs

)

CMB
MCS
TOUR
STOUR
DTOUR
DIS

(b) Phytium 2000+

1 8 16 24 32 40 48 56 64
number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ba
rri

er
 o

ve
rh

ea
d(
μs

)

CMB
MCS
TOUR
STOUR
DTOUR
DIS

(c) ThunderX2

1 8 16 24 32 40 48 56 64
number of threads

0

1

2

3

4

5

ba
rri

er
 o
ve

rh
ea

d(
μs

)

CMB
MCS
TOUR
STOUR
DTOUR
DIS

(d) Kunpeng920

Figure 7. Overhead comparison between different barrier algorithms on the evaluated ARMv8 platforms.

to the native implementation of libgomp, suggesting that our

implementations are effective. Later in other experiments, we

compare directly to the libgomp barrier implementation.

CMB & MCS. The synchronization tree of MCS has fewer

levels than the combined tree (CMB). As a result, MCS group

more parallel threads at a tree-level compared to the combined

tree. However, this strategy is ineffective when the number of

parallel threads is large because threads at a synchronization

point can run across the processor core cluster (Figure 4).

In other words, it leads to more Li (i > 0) communications

(Section III-B) than the combined tree and the tournament

barrier in the Arrival-Phase. This can be observed from Figures

7(c) and 7(d), where the overhead of MCS becomes higher

than CMB when using more than 8 threads. While MCS gives

similar performance over the tournament barrier (TOUR) on

Phytium 2000+ and ThunderX2 due to the use of the binary-

tree wake-up scheme at the Arrival-Phase, it has a significantly

higher overhead than the tournament barrier on Kunpeng920.

The results show that the tree-based barriers do not give a

portable performance on our evaluation platform.

DIS. The overhead of the dissemination barrier (DIS) has a

spike using 2, 4, 8, 16, and 32 threads. Each tipping point

occurs when the critical path length on its synchronization

hierarchy increases. While DIS performs well in a distributed

environment [22], [23], it gives poor scalability on the core-

cache organizations of ARMv8. The poor performance is

because of two reasons. First, the concurrent memory accesses

for setting flags during pairwise communications (Section

II-B) increase the contention of the on-chip network of the

many-core processor. Secondly, when the number of threads

exceeds the number of cores in a cluster, Nc, the dissemination

algorithm introduces remote memory access for Li (i > 0)

core-core communications in each round. By contrast, the

tree-based algorithms like MCS and STOUR only incur such

overhead in the last few layers (synchronization rounds), which

have lower overhead than DIS.

TOUR, STOUR & DTOUR. Both the static (STOUR) and

dynamic (DTOUR) f-way tournament barriers are variants of

the tournament barrier (TOUR). Compared with TOUR with

a fixed fan-in of 2, the overhead of STOUR and DTOUR

fluctuate more because they have a variable fan-in for each

round. We see that these three algorithms perform well on

all three ARMv8 processors. This is because their tree struc-

tures are suited for the hierarchical core-cache organization.

The static algorithms, TOUR, and STOUR, perform best on

Phytium 2000+ and Kunpeng920. The dynamic tournament on

ThunderX2 performs better than the static alternative. Based

on the observation, we choose to use the static tournament

barrier as our starting point to design our optimization strate-

gies.

V. OUR BARRIER OPTIMIZATION

A. Implementation Baseline

We choose the static f-way tournament algorithm (STOUR)

as the starting point to improve because it gives the best

overall performance during our initial evaluation (Section IV).

Another reason is that its arrival tree structure matches the

hierarchical core-cache organization on our targeting ARMv8

many-cores. It allows us to use a suitable thread grouping



strategy (Section III-A) to maximize the chance of mapping

the synchronization threads within the same core cluster during

each synchronization round to reduce the expensive cross-

cluster communications. Meanwhile, the advantage of using

a static barrier algorithm is that this implementation does not

have the overhead introduced by atomic instructions of a dy-

namic scheme. Our implementation focuses on minimizing the

arrival and notification phases, which dominate the overhead

of STOUR (Section IV).

B. Optimizing the Arrival-Phase

Optimization goals. At each synchronization point of

STOUR, a thread (node) indicates its arrival by setting a flag

shared with its parent thread. The parent thread continuously

polls the arrival flags of all child threads to check if all children

threads have reached the barrier. Therefore, the number of

children (i.e., fan-in) and the number of bytes of the arrival flag

occupies can significantly affect the barrier performance. Intu-

itively, the first parameter determines the number of concurrent

threads that participate in a children-parent synchronization,

and using a suitable number can reduce the expensive cross-

core-cluster communication. Moreover, choosing an appropri-

ate arrival flag size can avoid multiple flags being cached

in the same cache line, which leads to cache conflict when

multiple processor cores try to load/store the same cache line.

Our optimization aims to find the optimal settings for these

two parameters.
1) Determining the arrival flag size: The source publication

of STOUR [15] uses a 32-bit arrival flag, which leads to

a fan-in value, f , of 2 or 8. This allows the flags used by

the children nodes and their parent nodes to be packed into

a single cache line for most cache designs, as depicted in

Figure 8(a). Here, the parent node has three children (1, 2, and

3), leading to a fan-in of 4 (including the parent node itself).

The advantage of this approach is that the parent node needs

just one RR operation (Section III-B) to check the arrival

of all its children. However, this strategy is ineffective on

ARMv8 for the following reasons. First, it forces all children

to write into the cache line when signaling their arrival, for

which the write operations must perform in sequential. The

sequential write thus limits the write performance. Secondly,

since a cache line in ARMv8 can hold up to 16× 32-bit flags,

the arrival flags used by different parent nodes can reside in

the same cache line. This will, in turn, introduces mutual

interference among sub-trees of the synchronization tree. In

such a scenario, a store issued by children can lead to an

invalid cache when a parent of other sub-trees (that runs on a

different processor core) polls it children. Thirdly, as the order

of the write operations is nondeterministic, the same cache

line may have to be moved back and forth among the children

nodes. This can have a detrimental effect when a child node

does not reside in the same core cluster as its siblings because

two remote WR operations will incur.
We mitigate the issue by representing the flag of each child

node with a cache line. The cache line holds 16 bytes on

Phytium 2000+ and ThunderX2 and 32 bytes on Kunpeng920.

(a) one integer per flag

(b) one cacheline per flag

Figure 8. Read and write operations at a barrier point with different size of
the arrival flag. Node 0 is the parent of node 1-3. Node 3 is not in the same
core cluster with other nodes. The solid line represents local operations, the
dashed one represents remote operations (across NUMA node). Black line
means write operations and blue one means read operations.

(a) A fan-in of 3

(b) A fan-in of 4

Figure 9. The arrival tree with different fan-in on Phytium 2000+. Nodes of
the same color belong to the same core cluster. The solid line represents L0,
and the dashed line represents L1.

In this way, the write operation of each child can run in

parallel. The number of memory operations at one synchro-

nization point is WR + (f − 1) × RR in the best case and

(f−1)×WR+(f−1)×RR in the worst case. This technique

reduces the number of WR from f − 1 to 1 in the best case.

Thus, we can eliminate mutual interference between subtrees

for better parallelism at each level of the tree.

2) Selecting a suitable fan-in: In the origin algorithm, the

fan-in varies across different levels of the arrival tree. The main

idea is to calculate a fan-in that makes the tree as balanced

as possible based on the number of threads participating in

each level of synchronization. But we find the fan-in that

maintains tree balanced may destroy the grouping effect of the

tree on our platforms, resulting in more inter-core cacheline

movements Li (i > 0). Taking Phytium 2000+ as an example,

choosing a fan-in of 3 can get a balanced tree when using

9 threads (Figure 9(a)). But compared with a tree with the

fan-in of 4 (Figure 9(b)), it involves more remote cacheline

movements (L1). Because the number of cores in a core

cluster, Nc, is 4 or 32, we recommend fixing fan-in to be

a power of 2, aiming to avoid remote cacheline movements

with Li (i > 0).

The following-up question is to select a suitable fan-in.

The key is to weigh the length of the critical path and the

synchronization cost of each layer. We calculate the optimal

fan-in by modeling the overall cost in the Arrival-Phase. Our



model is built upon two assumptions. First, since the arrival

flag of each node has only one copy in its parent node,

we assume OWR
is (1 + αi) × Li. Second, we focus on

the best case, where the number of memory operations is

WR + (f − 1) × RR at a barrier point. Based on the two

assumptions, we can obtain the total cost of the Arrival-Phase

in (1). Then, we calculate the f , which minimizes T (f) by

taking the derivative of T (f) with respect to f :

T (f) = ⌈logfP ⌉(OWR
+ (f − 1)ORR

)

= ⌈logfP ⌉((1 + αi)Li + (f − 1)Li)

= ⌈logfP ⌉(f + 1)Li

(1)

T
′

(f) =
Li lnP ((ln f − 1)f − αi)

f ln2 f
(2)

According to (2), T
′

(f) = 0 when (ln f − 1)f = αi. Because

(ln f − 1)f is monotonically increasing and 0 ≤ αi ≤ 1, we

can get 2.718 ≤ f ≤ 3.591. Thus, f = 3 or f = 4 may be

the optimal solution. Given that f prefers a power of 2, we

select f = 4.

C. Optimizing the Notification-Phase

In the Notification-Phase, the root node wakes up other

threads which are spinning locally. This process can be viewed

as a broadcast operation. The two most commonly used

methods are (1) using a global variable and (2) using a binary

tree to perform the wake-up process. These two notification

methods are suitable for different architectures.

Global wake-up. The root node sets a wake-up flag called

“global sense” to trigger other threads to stop spinning and

leave the barrier. The whole process includes a WL and (P −
1) × RR. Significantly, each of the other P-1 nodes has a

copy of the wake-up flag. So the overhead of WL is (P −
1)αiLi. The overhead for other P-1 threads to poll the same

cacheline can be modeled as ORR
+ c(P − 1) [24], where

c is a coefficient used to indicate possible contention caused

by several readers moving the same cacheline. This contention

coefficient depends on different processors, and it can be zero.

The total overhead of global wake-up for P threads is Tglobal.

Tglobal = (P − 1)αiLi +ORR
+ c(P − 1)

= ((P − 1)αi + 1)Li + c(P − 1)
(3)

Binary tree wake-up. This wake-up process is spread on a

binary tree. In the binary tree, each node n connects to at

most two children, that is, node 2n + 1 (n < ⌈P−1

2
⌉) and

node 2n + 2 (n < ⌈P−2

2
⌉). For P threads, the binary tree

has ⌈log2(P + 1)⌉ levels. Each parent node writes the local

wake-up flags of its child nodes sequentially. At each wake-up

point, two WL and two RR are required. The copy of each

wake-up flag only exists in the child node. So the overhead of

WL is αiLi. Two RR can be performed concurrently because

they access different cachelines. The total cost of binary tree

wake-up for P threads is Ttree.

Ttree = ⌈log2(P + 1)⌉(αiLi + Li)

= ⌈log2(P + 1)⌉(αi + 1)Li

(4)

Since αi and c will have different values on different

processors, the performance of the two wake-up methods

varies according to processors. Our empirical results show

that the global wake-up is suitable for Kunpeng920, while

the binary tree wake-up is suitable for Phytium 2000+ and

ThunderX2.

NUMA-aware tree wake-up. The binary tree is not totally

suitable for the hierarchical core-cache organization. Taking

ThunderX2 as an example (Figure 10(a)), the binary tree

generates too many remote accesses with Li (i > 0), which

account for half of the total number of remote accesses. We

propose a new NUMA-aware tree topology to reduce the

number of remote accesses with Li (i > 0).

(a) binary tree topology

(b) NUMA-aware tree topology

Figure 10. Two kinds of wake-up tree topology on ThunderX2. The red line
means remote access with Li (i > 0).

In our NUMA-aware tree, the nodes are divided into two

categories: the master node and the slave node. The master

node refers to the first node in each NUMA node (core unit),

and the other nodes are slave nodes. During the wake-up

process, the number of children of the master node is no longer

two but four, including two other master nodes and two slave

nodes. The slave node still has only two child nodes. The

children (nchild) of a node (n) can be calculated as (5), where

Nc is the number of cores in a core cluster.

nchild =















2n+Nc, n | Nc and n < ⌈P−Nc

2
⌉

2n+ 2Nc, n | Nc and n < ⌈P−2Nc

2
⌉

2n+ 1, n ∤ Nc and n < ⌈Nc−1

2
⌉

2n+ 2, n ∤ Nc and n < ⌈Nc−2

2
⌉

(5)

The NUMA-aware tree topology is shown in Figure 10(b).

By changing the tree structure, while keeping the number

of levels of the tree unchanged, we can reduce the number

of remote accesses with Li (i > 0). Although there is an

extra overhead for the master node to wake up additional



child nodes, reducing remote access with Li (i > 0) can still

improve performance.

VI. PERFORMANCE RESULTS

This section presents how our optimized barrier performs

on the three ARMv8 many-core architectures.

A. Optimizing the Arrival-Phase

We compare the barrier overhead of the original static f-way

tournament and its two variants on three ARMv8 processors

in Figure 11. Comparing to “static f-way” and “padding

static f-way” methods in the figure, representing each arrival

flag with a cacheline is beneficial in terms of performance.

As shown in Figure 11(c), the performance improvement

reaches a speedup of up to 1.35x on Kunpeng920. This is

due to the fact that, a cacheline on Kunpeng920 holds 64

bytes, and using a 4-byte flag will incur more conflicts than

Phytium 2000+ and ThunderX2. Overall, the synchronization

overhead increases over the number of threads participating

in the synchronization. We also observe that when f varies,

the barrier overhead fluctuates significantly. Even using fewer

threads leads to a larger synchronization overhead. But we

have not observed such a fluctuation when using a fan-in of 4.

The “padding static 4-way” performs consistently better than

the “padding static f-way”, proving the preference of using a

fixed fan-in.

We also compare the overhead of static f-way tournament

barrier with different fan-in using 64 threads in Figure 13. The

best performance is observed with a fan-in of 4 on all three

platforms. This is in line with our model result.

B. Optimizing the Notification-Phase

Figure 12 compares the barrier performance using differ-

ent wake-up methods in the Notification-Phase on the three

processors. The results indicate that the binary tree wake-

up performs better on Phytium 2000+ and ThunderX2, while

the global wake-up is better on Kunpeng920. This is because

thread contention on Kunpeng920 has relatively little impact

on barrier performance. We also see that the “global” lines

meet with the “binary tree” when using fewer than 16 threads

on Phytium 2000+, 8 threads on ThunderX2, and 16 threads

on Kunpeng920. In other words, when the number of threads

is small, Tglobal and Ttree are equal.

We compare the performance of the “binary tree” and

the “NUMA-aware tree” on Phytium 2000+ and ThunderX2,

showing that the latter is more scalable. The two algorithms

have the same overhead within 16 threads and 32 threads

on Phytium 2000+ and ThunderX2, respectively. When the

number of threads is less than the number of cores in a core

cluster, Nc, the NUMA-aware tree is equivalent to the binary

tree. For Phytium 2000+, the overhead of waking up additional

child nodes can be offset by the performance improvement by

adjusting the tree structure when the number of threads is 4

to 16.

Table IV
PERFORMANCE IMPROVEMENT DELIVERED BY OUR OPTIMIZED

ALGORITHM

Phytium 2000+ ThunderX2 Kunpeng920 Geomean

GCC 8x 23x 11x 12.6x
LLVM 2.7x 2.5x 9x 4.7x

state-of-the-art 1.7x 1.8x 1.4x 1.6x

C. Overall Performance

We compare our optimized barrier algorithm with the GNU

GCC implementation, the LLVM implementation, and the

current best-performing barrier algorithm. The overhead is

measured with 64 threads on the three platforms. Table IV

shows the speedup of the optimized algorithm compared to

the other implementations. We see that our optimized barrier

runs, on average, 12.6x and 4.7x faster than the GCC OpenMP

and the LLVM OpenMP barrier implementations, respectively.

Further, our optimized barrier outperforms the state-of-the-art

barrier implementation by 1.6x on average. To conclude, we

confirm that our optimized barrier implementation is efficient

and scalable on the three ARMv8 platforms.

VII. RELATED WORK

There has been a large body of studies on the performance

evaluation and optimization of barrier synchronization.

Performance evaluation of barrier algorithms. Nanjegowda

et al. [25] show how different barrier implementations impact

the overheads of OpenMP constructs. They find no single

optimal algorithm for all the OpenMP constructs with different

numbers of threads and on different platforms. But in most

cases, the tournament and dissemination algorithms will have

a better performance. Rodchenko et al. [8] evaluate typical

algorithms on the Intel Xeon Phi coprocessor and have reached

similar conclusions. Hoefler et al. [22] compare typical barrier

algorithms and conclude that the dissemination algorithm is

the most promising algorithm for networked clusters. Ramos

et al. [23] model the dissemination algorithm based on their

cache communication model. But the built performance model

is based on the message-passing paradigm, which may not be

suitable for the shared memory architectures. Ball et al. [26]

compare several barrier implementations on the Sun Fire

6800 machine. The experimental results show the static f-way

tournament barrier can achieve the best performance. Lee et

al. [27] point out that the multistage network capacity cannot

meet the high bandwidth requirements of the dissemination al-

gorithm. When the number of threads increases, the advantage

of the dissemination algorithm decreases. We have observed

the same issue on the ARMv8 platforms. In this work, our

focus is on performance analysis of barrier implementations

on the ARMv8 many-core architectures.

Performance optimization of barrier algorithms. Re-

searchers have developed a large number of more efficient

and scalable algorithms. Hoefler et al. propose the n-way

dissemination algorithm [4] based on the inherent hardware
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Figure 11. Overhead comparison between static f-way (original), padding static f-way (fill per flag to an entire cache line) and padding static 4-way (fan-in
is 4) tournament algorithm.
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Figure 12. Overhead comparison between three wake-up methods including global sense, the binary tree and the NUMA-aware tree.
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Figure 13. Overhead of static f-way tournament barrier with different fan-in
on the three ARMv8 processors.

parallelism inside the InfiniBand network, which can speed up

the barrier by 40%. Rodchenko et al. propose a hybrid barrier

synchronization method based on their evaluation results. This

method partitions the process of barrier synchronization into

two phases: intra-core and inter-core, using a sense-reversing

centralized barrier for the former and using a dissemination

barrier for the latter. They have also used the SIMD instruc-

tions to optimize barrier, which is proposed by Caballero et

al. [5]. But the optimizations above have not considered the

thread interference and the NUMA effects.

Optimization specifics for shared-memory architectures.

Sudheer et al. [6] develop an efficient barrier implementation

based on the k-ary tree algorithm. As a matter of fact, the

k-ary tree they mentioned is an MCS tree. They focus on

the impacting factors of hardware prefetching and memory

subsystem. They have also considered optimization techniques

related to the degree of the tree and the flag representation.

But they ignore that the MCS tree topology is ill-suited for the

hierarchical inter-core organization. Aravind et al. [7] propose

a new ring barrier algorithm that can employ minimal remote

memory reference, facilitating a larger degree of parallelism.

In this work, we focus on optimizing the static f-way tour-

nament barrier algorithm by addressing the issue of thread

interference and the NUMA organization.

VIII. CONCLUSIONS

We have presented the first comprehensive study of barrier

synchronization performance on ARMv8 many-core systems.

Our work is motivated by the observation that the widely

used OpenMP barrier primitive implementations in GCC and

LLVM are significantly more expensive on ARMv8 multi-

cores than on the Intel platform. We use analytical methods

to model the cache load and store operations incurred during

barrier synchronization using micro-benchmarks. We evaluate

the performance of seven representative synchronization al-

gorithms, showing that the GCC and LLVM implementations

are ineffective in exploiting the processor hierarchy of ARMv8

many-cores. We then present new optimizations to improve a

static f-way tournament baseline. Experimental results show

that our new implementation, on average, outperforms the

OpenMP library of GCC and LLVM by 12.6x and 4.7x,

respectively. This translates to a 1.6x speedup over the best-

performing current barrier algorithm.
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