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Abstract 

Strong light-matter coupling to form exciton- and vibropolaritons is increasingly touted as a powerful 

tool to alter the fundamental properties of organic materials. It is proposed that these states and 

their facile tunability can be used to rewrite molecular potential energy landscapes and redirect 

photophysical pathways, with applications from catalysis to electronic devices. Crucial to their 

photophysical properties is the exchange of energy between coherent, bright polaritons and 

incoherent dark states. One of the most potent tools to explore this interplay is transient 

absorption/reflectance spectroscopy. Previous studies have revealed unexpectedly long lifetimes of 

the coherent polariton states, for which there is no theoretical explanation. Applying these transient 

methods to a series of strong-coupled organic microcavities, we recover similar long-lived spectral 

effects. Based on transfer-matrix modelling of the transient experiment, we find that virtually the 

entire photoresponse results from photoexcitation effects other than the generation of polariton 

states. Our results suggest that the complex optical properties of polaritonic systems make them 

especially prone to misleading optical signatures, and that more challenging high-time-resolution 

measurements on high-quality microcavities are necessary to uniquely distinguish the coherent 

polariton dynamics. 

 

Introduction 

There has long been substantial interest in using light-matter interactions to alter the photophysical 

dynamics of molecular materials. Historically, the principal approach has used intense light sources 

to stimulate reaction intermediates or coherently control the evolution of photoexcited 
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wavepackets through carefully tailored optical pulses.1–9 Such experiments typically rely on high light 

intensities and operate in a regime where the material excitations and photons are weakly coupled. 

Recently, polaritons have emerged as alternative approach to achieve such control in the absence of 

strong exciting field.10,11,20,21,12–19 These are hybrid states with mixed photonic and material character, 

and they are formed from the strong coupling between confined optical fields – often within Fabry-

Perot microcavities or in the near-field of a plasmonic surface – and molecular vibrational or 

electronic absorption transitions. The mixed character of their wavefunctions and straightforward 

energetic tunability offer the potential to rewrite potential energy landscapes and redirect 

photophysical pathways.19,20,22–26 Already, vibrational polaritons have yielded surprising changes in 

bulk chemical reactivity and rapid intermolecular vibrational energy transfer.27–30 Similarly, exciton-

polaritons formed from strong coupling to electronic absorption transitions have been reported to 

result in significantly enhanced charge-carrier transport,31 long-range energy transfer,32–34 and 

changes to fundamental singlet-triplet interconversion dynamics from the picosecond to 

microsecond timescales.35–38 

In the steady state, polaritons are chiefly identified through angle-dependent reflectivity. Polaritons 

inherit some of the dispersion from their parent photonic state, yielding angle-dependent upper and 

lower polariton bands which anti-cross at the parent exciton energy. This anticrossing is the hallmark 

of the strong coupling regime, and its magnitude defines the Rabi splitting which is used to 

benchmark the light-matter interaction strength.39 The dispersion of the lower polariton can 

additionally be observed in photoluminescence spectroscopy.40 Following non-resonant excitation 

(i.e. at energies above the lower polariton), the distribution of emission intensity along the lower 

polariton dispersion, and thus the energetic distribution of polariton population, depends sensitively 

on the energetic separation of the cavity photon and exciton. This dependence is widely interpreted 

to reflect the relaxation dynamics from uncoupled intracavity states (e.g., relaxed excitons, 

excimers) into the lower polariton and bottlenecks where this relaxation becomes ineffective.41–46 

Such measurements reveal that the principal states within these structures are not polaritons but 

rather uncoupled ‘dark’ states. The same can be deduced from first principles; within the Tavis-

Cummings model, for N dipoles that couple to the photonic mode, there will result 2 bright states—
the polaritons—and N-1 dark states. In bulk organic microcavities, the resulting dark states are 

expected to predominate by a factor ~105.47–49 However, their role in polariton-induced modification 

of photophysics is unclear, not least because they cannot be directly measured by 

photoluminescence spectroscopy. 

Transient absorption spectroscopy provides a useful window into these dynamics, as it is sensitive to 

bright and dark electronic states. In the first such investigation, Virgili et al. probed the dynamics in 

high-Q cavities containing a J-aggregated dye following excitation with 15 fs pulses.50 The resulting 

spectra were interpreted as signatures of excited upper and lower polaritons and uncoupled 

intracavity excitons, with the kinetics suggesting the dark states mediate relaxation between 

polariton manifolds. The ability to resolve unique signatures of these states and track their evolution 

makes this method the most direct route to understand whether and how photophysical pathways 

are altered by strong coupling. Accordingly, several subsequent studies using low-Q metallic cavities 

have reported intriguingly long polariton lifetimes (>1 ps) and alterations to intrinsic photochemical 

processes from energy transport to singlet fission.33,36,51–56 Crucially, the understanding of the 

dynamics in these experiments depends sensitively on the ability to robustly assign the observed 

spectral features to specific electronic states. In the studies on low-Q cavities, almost the entirety of 

the photoexcited response was assigned to photoexcited polaritons, with no direct signatures of the 

dark states reported. Parallel studies of vibrational polaritons have similarly found that the most 

prominent spectral features are centered at the polariton resonances.28,57–60 However, in vibrational 
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systems it has been shown that these responses can arise from optical artefacts and non-specific 

effects of photoexcitation.57–60 The leading example is ‘polariton contraction’ in which 
photoexcitation removes some molecules from the ground state and thus reduces the total 

absorption responsible for polariton formation.58,59 This should result in a slight dynamic reduction 

of the Rabi splitting. While clearly identified in vibro-polariton studies and implicated in the 

blueshifts of organic polariton condensates,61 it has been considered and explicitly discarded in the 

transient spectroscopy of exciton-polaritons.52,62 Recent work by Liu et al. on exciton-polaritons 

suggests that other effects—the modulation of molecular excited-state absorption spectra by the 

cavity structure,62 and carrier heating/thermalization dynamics within metal mirrors63—should 

likewise be taken into account. 

Here, we build on these ideas and explore how non-targeted side effects of photoexcitation can alter 

the transient absorption spectra of exciton-polariton systems, independently of material choice. We 

perform transient measurements on a set of low- and high-Q microcavities in the strong-coupling 

regime and observe long-lived, highly structured spectral responses analogous to earlier reports of 

photoexcited polaritons.36,50–52 We find that these signatures persist regardless of the choice of 

excitation wavelength, even in conditions when no polaritons or molecular electronic states should 

be excited. Instead, we can describe the critical characteristics of these features using a simple 

model that only considers polariton contraction, thermal expansion, and bulk refractive index 

changes. Moving beyond structures based on metallic mirrors,62,63 we find that these optical effects 

do not require direct photoinduced carrier heating within the mirror and can be similarly prominent 

in dielectric structures. Moreover, the richer spectrum of dielectric microcavities provides numerous 

additional signatures of non-specific photoinduced effects.  Our model suggests that these features 

inevitably appear near any optical resonances in the ground state due to the complex optical 

structure of strong-coupled cavities. In contrast to previous studies,52,62 we find that within practical 

pump intensity ranges the shape of these features remains constant, and hence power dependence 

may not be applied to rule them out, but they may be disentangled through their unique angular 

responses. Only when measuring with temporal resolution shorter than the very short expected 

polariton lifetime do we detect signatures that cannot be accounted for in the phenomenological 

model. Considering that, in the exciton-polaritons field, this stringent condition has only ever been 

met in the first transient absorption study,50 these results call for careful re-evaluation of the 

dynamics of organic exciton-polaritons. 

Methods 

The organic dye BODIPY-R was synthesized following published protocols.64 For thin film and 

microcavity preparation, we dissolved the dye to a concentration of 2.5 mg/mL in toluene. To 

increase processability and minimize aggregation and quenching effects, the dye was co-dissolved 

with polystyrene (PS, molecular weight 192000, Sigma Aldrich) at a concentration of 25 mg/mL, 

corresponding to ~10% dye in PS by weight. This solution was spin-coated onto quartz-coated glass 

slides, thin coverslips or the bottom mirrors of Fabry-Perot microcavities. Two types of microcavity 

were prepared, using metallic (Ag) or dielectric (SiO2, TiO2) mirrors. Ag was deposited using thermal 

evaporation, with typical bottom and top mirror thicknesses of 200 nm and 25 nm. SiO2 and TiO2 

were deposited with e-beam evaporation, with layer thicknesses of 105 nm (SiO2) and 71 nm (TiO2) 

in the structure TiO2/(SiO2/TiO2)5 to yield distributed Bragg reflectors (DBRs) with a stop-band 

centred at 650 nm. Top and bottom DBRs were fabricated using identical evaporation parameters. In 

both structures, top mirrors were deposited directly onto the spin-coated organic layer, the 

thickness of which was tuned in the range ~215-240 nm for DBR structures and ~125-140 nm for Ag-

Ag structures to yield λ and λ/2 cavities, respectively. 
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The angle-dependent reflectivity of DBRs and microcavities was characterized on a broadband fiber-

coupled goniometer. The resulting reflectivity dispersions were simulated with transfer matrix 

methods,65 using as inputs the normal-incidence transmission spectra of a 156-nm BODIPY-R/PS thin 

film (Figure 1a) and a 7-pair DBR. Following benchmarking using the steady-state reflectivity, a 

transfer matrix model was used to simulate pump-induced changes to the microcavity optical 

properties. Time-resolved measurements were performed on a home-built broadband transient 

absorption spectrometer in both transmission and reflectance geometry <5 °. Two modes of 

excitation were applied, namely (i) Narrow-band (10 nm FWHM) excitation pulses throughout the 

visible spectrum were generated with a commercial OPA, affording a temporal resolution of ~200 fs, 

and (ii) Compressed broadband pulses spanning 520-600 nm or 760-900 nm were used to achieve 

temporal resolution <15 fs in a similar manner to that detailed by Liebel et al.66 Likewise, two 

detection systems were employed. (i) For measurements out to long time-delays, we utilized a probe 

detection range of 500-800 nm. (ii) Variable pump-wavelength measurements were performed on a 

different system compatible with <15 fs pulses and enhanced probe sensitivity 800-1300 nm but 

reduced sensitivity <580 nm. The white-light probe continuum spanned 540-1300 nm, though the 

low transmission through optical microcavities strongly attenuated this range in the visible spectral 

region.  

Results 

 

Figure 1. BODIPY-R microcavities. (a) Chemical structure of BODIPY-R and steady-state optical spectra of 156 nm film of 
BODIPY-R loaded at 10 wt% in polystyrene matrix. (b) Structure of DBR microcavity, consisting of 5.5 pairs of TiO2/SiO2 
alternating layers. TiO2 layers are 71 nm thick and SiO2 layers are 105 nm thick, yielding a stopband centred at 650 nm. 
Alternative structures used Ag mirrors (top: 25 nm, bottom: 200 nm) instead of DBRs. Organic layer thickness was varied to 
tune the position of the cavity mode. (c) Angle-dependent reflectivity of DBR cavity, revealing two branches defined as lower 
and upper polaritons, with an anticrossing at the exciton peak at 630 nm. An additional interaction at 582 nm causes slight 
modulation of the upper polariton dispersion but no additional anticrossing. Transfer matrix model (right) reproduces the 
full cavity structure. Dashed lines are unperturbed cavity mode and exciton energies. Arrows denote excitation wavelengths 
applied in transient absorption. 

The absorption and photoluminescence of the BODIPY-R/PS thin film show no sign of significant 

aggregation or excimer emission,67 and the prominent 0-0 and 0-1 absorption peaks are well 
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resolved at 10% loading. As in numerous other BODIPY derivatives and previous studies of BODIPY-R, 

at this concentration the dye exhibits sufficient oscillator strength to undergo strong light-matter 

coupling within metallic and dielectric cavities (Figure 1b).42,61,68–72 Figure 1c shows typical angle-

resolved reflectivity from such a DBR cavity. In addition to the strong dispersion of the stop band, we 

resolve distinct local minima in the reflectivity surrounding the bare 0-0 vibronic peak at 630 nm. 

These anti-cross as the angle increases, with a separation of 111 meV demonstrating the 

achievement of strong coupling.73 By contrast, at the peak of the 0-1 vibronic absorption at 582 nm, 

we observe a clear broadening of the reflectivity dispersion and a faint splitting best resolved in the 

transfer matrix simulation, but no distinct anti-crossing. We thus consider the 0-1 peak to be in the 

weak or intermediate coupling regime. Accordingly, we label the states detected at lower angles as 

the lower polariton (LP) and upper polariton (UP). We note that the upper vibronic band, despite not 

being in the strong-coupling regime, nonetheless shows appreciable interactions which can 

complicate the analysis of transient data, see below. The full angle-dependent reflectivity can be 

described using our transfer matrix simulations, confirming our assignments of strong and 

intermediate light-matter coupling. Applying the model to ‘empty’ cavities containing only the PS 
matrix, we obtain cavity Q-factors in our structures of 334 (DBR) and 15 (Ag), corresponding to cavity 

photon lifetimes of 110 fs and 5 fs which should severely limit the observable polariton dynamics. 

To understand the dynamics of the UP and LP following photoexcitation, we apply standard pump-

probe spectroscopy techniques, first using state-selective narrow-band excitation. The transient 

transmission data of the reference BODIPY-R/PS thin film in Figure 2a shows prominent ΔT/T>0 

bands at 580 nm, 640 nm and 710 nm, indicating bleaching of the ground-state absorption (GSB) and 

stimulated emission (SE) from the photoexcited singlet state. Photoinduced absorption (PIA) is 

characteristically weak in BODIPY dyes and not evident on this scale.67,74 No changes in spectral 

shape are evident over the measured range, indicating that no further electronic states are required 

to describe the intrinsic BODIPY-R/PS film photophysics.  

In the microcavities, a seemingly much more complex picture emerges despite the relatively simple 

electronic structure observed in steady-state reflectivity. As previously highlighted in work on J-

aggregate microcavities, it is in principle necessary to measure both transient transmission and 

reflectance spectra in order to describe the full evolution of the states, since e.g. a decrease in 

transmission could be correlated with either an increase in excited-state absorption or a transient 

shift in the ground-state reflectivity.51 We have thus measured the transient transmission and 

reflectance of a dielectric cavity containing BODIPY-R, henceforth denoted BODIPY-R/DBR, under 

identical excitation conditions, shown in Figures 2b,c. In both detection modes we observe 

qualitatively similar features: sharp derivative-like combinations of positive and negative bands, with 

each pair centred around the polariton resonances evident in the ground state (650 nm and 610 nm 

at normal incidence) and opposite sign between transmission and reflectance. Similar features have 

previously been assigned as unique signatures of excited polariton states.50–52,75,76 Notably, these 

signatures persist into the 10’s and even 100’s of ps timescale, despite the polariton lifetime being 
nominally limited to <200 fs by the short photonic lifetimes intrinsic to our cavities.47,77 This 

paradoxical behaviour has been reported in multiple systems but never explained.51–53,75,76 We note 

that the transient transmission and reflectance data contain spectral signatures arising from the 

same parent states (based on spectral position) and exhibit a similar combination of dynamics 

spanning the sub-ps to 100-ps scale (Figure 2d). We thus consider them to report on the same 

physics and henceforth consider only the transmission data. 
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Figure 2. Transient spectroscopy of BODIPY-R and its dielectric cavities. (a) Transient transmission of BODIPY-R/polystyrene 
film, following excitation at 490 nm. (b) Transient transmission of DBR cavity, following excitation at 490 nm. (c) Transient 
reflectance of the same cavity in the same conditions. (d) Decay kinetics integrated over spectral features indicated in (a)-
(c). GSB: ground-state bleach, LP: lower polariton, UP: upper polariton. Sharp dips denoted by asterisks are from pump 
intensity fluctuations. 

To help disentangle the origin of the transient transmission features in Figure 2b, we performed the 

same experiment with narrowband excitation at 490 nm, 550 nm, 620 nm and 700 nm, and the 

corresponding spectra at selected time delays are presented in Figure 3a-d. The first two 

wavelengths are not resonant with any polariton states and, because they fall outside the stop-band 

of the cavity, are readily absorbed by the BODIPY-R film, generating intracavity excitons. Excitation 

at 620 nm is approximately resonant with the UP state, though photons transmitted through the top 

mirror would also be strongly absorbed by the 0-1 absorption transition of BODIPY-R. Excitation at 

700 nm is sub-resonant, falling below the dye absorption tail and even the LP, though we cannot rule 

out excitation into weakly absorbing states within the tail.69 Crucially, the fundamental behaviour is 

the same across these conditions: transient spectra with well-defined positive and negative peaks 

that appear at the same positions, do not shift with time delay and exhibit significant magnitude out 

to beyond 10 ps, a timescale difficult to reconcile with standard models of exciton-polaritons.47,77 

The features that identifiably recur between experiments are indicated with arrows for clarity. 
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Figure 3. Pump wavelength dependence of transient transmission. Transient transmission spectra of DBR cavity following 
narrowband excitation at (a) 490 nm, (b) 550 nm, (c) 620 nm and (d) 700 nm, and (e) broadband excitation centred at 890 
nm. Significant pump scatter and interference in the latter panels are shaded for clarity. (f) Equivalent data from BODIPY-
R/PS thin film, excited at 500 nm. Arrows indicate positions of spectral features reproduced between excitation conditions. 

Of these features, the sharply structured bands <660 nm coincide with the spectral position of the 

UP and LP and are consistent with previous assignments to photoexcited UP and LP states.50–52,75 We 

note, however, that these are highly correlated with additional features at longer wavelengths, such 

as positive bands at 675 nm and 750 nm and a negative peak at 770 nm. These cannot be easily 

linked to the polariton structure but show reasonable spectral agreement with the BODIPY-R 

stimulated emission (675 nm) and the edge of the stopband and first Bragg mode of the DBR (~750 

nm and 770 nm at normal incidence). The persistence of these features, with the same dynamics as 

in the UP/LP region, raises concern that the transient transmission data includes contributions from 

effects besides the electronic population of interest. Indeed, the excitation at 700 nm should not be 

able to generate intracavity excitons or LP states; we ensure that pump intensities are low enough to 

rule out multi-photon excitation processes. Nonetheless, the same key spectral features can be 

detected outside of the pump scatter window. To rule out any contributions from excitation of 

weakly absorbing tail states, we repeated the experiment with a broadband sub-gap pump pulse 

centred at 890 nm (Figure 2e). Here again we observe the same underlying spectral structure in the 

middle of our detection window, namely the peaks at 665 nm and 750 nm with finer modulations 

685-730 nm, in the absence of any electronic excitations. Strong pump scatter and low sample 

transmission prevent detection of other signatures.  

The principal difference between excitation conditions is the relative magnitude of the underlying 

photoinduced absorption. This band extends well into the near-infrared, is strongest for excitation 

most resonant with the BODIPY-R absorption and can be attributed to intra-cavity singlet states from 

its agreement with the BODIPY-R PIA (Figure 3f). This band provides a useful indication of whether 

BODIPY-R excitons have been generated, and its absence confirms that no electronic excitations are 

present in the 890 nm experiment. It is noteworthy that on the observed timescales the BODIPY-R 

film exhibits negligible spectral evolution whereas <10 ps decay is easily evident in microcavities 

when electronically excited states can be generated, demonstrating the direct role of the cavity 

structure in the detected dynamics. 



8 
 

 

Figure 4. Cavity transient transmission. (a) Transient transmission of a metallic ‘empty’ cavity containing only polystyrene, 
excited at 550 nm. Long-lived transient response is observed centred on the cavity mode despite the absence of photoexcited 
states. No dependence on pump wavelength is observed. (b) Transient transmission of metallic BODIPY-R cavity taken under 
similar conditions. (c) Global multiexponential fitting can accurately describe the principal decay components. (d) The 
residual following subtraction of the exponential fit reveals slow oscillations around the bare cavity mode. Similar results are 
obtained with DBR cavities. 

We further probed the possible contribution to our spectra of effects other than electronic 

excitations using a metallic optical cavity containing PS host matrix but no dye molecules. As shown 

in Figure 4a, upon photoexcitation we observe a sharp derivative-like feature centred on the cavity-

mode resonance, which decays on the few-ps timescale to yield a longer-lived photoinduced 

absorption, despite there being no molecules to photoexcite. These data highlight that no polaritons 

or electronic excitations are required to produce the types of spectral signatures often attributed to 

polaritons or apparent dynamics in the few- to 10-ps timescale. Indeed, the transient response of 

such purely photonic structures is well characterized.78,79 Here, the dominant effect is likely pump-

induced changes to the refractive index of the metallic mirrors, similar to suggestions using TIPS-

pentacene microcavities.63 Similar effects can be obtained within organic films, as reported for 

instance from a PMMA waveguide mode not coupled to any electronic excitations.80 We further 

highlight the pronounced growth kinetics observed in the PIA at 775 nm. These may potentially be 

related to the coherent phonon oscillations within the Ag mirror,63 but we additionally note that 

photoexcitation has been reported to create localized strain in thin films, resulting in propagating 

strain waves that manifest as time-domain oscillations in the transmission signal.81–84 These effects 

can be difficult to detect when superimposed with bulk electronic signatures. However, in a metallic 

BODIPY-R microcavity we can well describe the principal decay dynamics of the prominent transient 

bands with a global multi-exponential fit, and the residual shows evidence for a weak, slowly 

oscillating component (Figure 4b-d). These results suggest that to fully understand the transient 

transmission spectra of BODIPY-R microcavities in the strong-coupling regime, we must explicitly 

consider the role of non-polaritonic effects. We draw analogy here to the spectroscopy of organic 

thin films, where pump-induced, local thermal modification of the ground-state absorption can 

result in surprisingly long-lived spectral signatures that must be carefully distinguished from the 

electronic species of interest, especially in the region of sharp ground-state absorption bands.85–87 
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Even in the absence of electronic excitation, non-resonant interactions with the exciting pulse are 

sufficient to generate coherent vibrations, i.e. deposit energy in the electronic ground state. 

To understand the possible contributions of these effects, we turn to our transfer matrix model of 

the microcavity optical properties. Our transfer matrix model generates the full reflectance, 

transmittance and absorbance of the microcavity over the full spectral and angular range, based on 

the optical properties of the constituent layers (see Figure 1b). We seek to replicate the conditions 

of our transient optical experiments, in which the signal is based on the difference between ‘pump 
off’ and ‘pump on’ measurements. Accordingly, we describe these two conditions by varying key 

optical parameters within our transfer matrix description of strong-coupled BODIPY-R/DBR and 

BODIPY-R/Ag cavities. The ‘pump off’ microcavity is derived from our description of the steady-state 

reflectivity data in Figure 1. For the pump-modified microcavity, we alter the optical properties 

through a range of non-specific pump-induced effects, with no explicit treatment of photoexcited 

electronic states. To convert these results into a proxy transient transmission signal, we calculate ∆𝑇𝑇 = 𝑇𝑠𝑖𝑚 𝑂𝑁−𝑇𝑠𝑖𝑚 𝑂𝐹𝐹𝑇𝑠𝑖𝑚 𝑂𝐹𝐹  at each wavelength and angle. For example, to capture the potential effects of 

thermal expansion, we compare a cavity with slightly increased thickness (~0.1%) with the 

unmodified structure. The parameters considered in this analysis are as follows: 1) reduction in 

organic dye layer absorption, to replicate the effect of ground-state bleaching; 2) thickness of the 

organic layer (keeping the total film absorption constant), to capture thermal expansion; and 

background refractive index changes in 3) the organic polymer matrix and 4) the mirror material 

(metal or dielectric), in accord with previous transient studies on photonic structures.78,79 Within this 

scheme we only calculate steady-state optical properties; our assumption is that any spectral 

dynamics arise from the mechanism of the underlying effect. For instance, within the two-

temperature model of Liu et al., the <10 ps dynamics in microcavity transient reflectivity could be 

predominantly described by carrier thermalization.63 Similar dynamics are reported for hot carrier 

cooling in other photonic structures.78,79 Ground-state bleaching should roughly follow the dynamics 

of the bare film, resulting in persistent signatures on the order of nanoseconds. These effects span 

the sub-ps to ns timescale and could easily be reconciled with our measured dynamics. Thus, we do 

not explicitly treat the time dependence of these effects here, and our principal concern is the 

spectral shapes that arise. In the discussion below we focus on transmission data for ease of 

comparison with our experimental results, but the same basic behaviour is captured in the modelled 

reflectance (Supplementary Information). 

The full angle dependence of our non-specific pump-induced effects is presented in Figure 5 for 

perturbation magnitudes chosen to reproduce typical experimentally observed ΔT/T signal 

strengths. All reveal prominent derivative-like features centred on the upper and lower polariton 

resonances. These are qualitatively similar to the features often reported in organic microcavity 

transient absorption experiments and assigned to polaritons.36,50–52 Interestingly, we additionally 

calculate clear spectral signatures at the positions of the DBR sidebands, even when the effect we 

consider has no relation to the mirrors such as bleaching of the electronic ground state (Figure 5a). 
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Figure 5. Transmission changes due to non-specific photoinduced effects in microcavities. Transient transmission maps 
calculated for (a) ground-state bleaching of 0.1% of population; (b) a uniform increase in DBR refractive by 0.001%; (c) a 
uniform Increase in refractive index of the organic layer by 0.01%; and (d) an increase in the thickness of the organic layer 
by 0.005%. 

The effect of bleaching has been previously considered, particularly in the field of vibro-polaritons, 

and described in terms of polariton contraction.58,59 The derivative-like lineshape we recover results 

in a blue-shift in transmittance at low angle and a red-shift in transmittance at high angle, reflecting 

a narrowing of the gap between upper and lower polariton branches. This is an expected result from 

the reduction in the number of absorbing molecules in the ground state, which is related to the Rabi 

splitting as Ω ∝ √𝑁. This can yield pronounced transient effects even at relatively small excitation 

density. The model in Figure 5a assumes 0.1% of the molecules are photoexcited, a typical degree of 

excitation in transient absorption experiments, and the resulting signal changes are likewise within 

the range measured by ourselves and others.36,50–52,62,63 In previous studies, the contribution of such 

polariton contraction has been ruled out through intensity-dependence measurements, where it is 

assumed that the Ω ∝ √𝑁 relation should yield progressively smaller Rabi splitting and thus 

increasingly shifted polariton resonances as the laser power is increased.52,62 Our calculations reveal 

that the assumption behind this approach in incorrect, and intensity dependence cannot be used for 

this determination (Figure 6). The spectral shape arising from the bleaching effect remains almost 

identically the same, and the magnitude scales almost precisely linearly with the degree of 
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excitation, up to >1% bleaching. This behavior is a straightforward consequence of the fact that the 

bulk film absorption is only slightly altered in typical transient absorption experiments, and that 

slight alteration is further mitigated through the √𝑁 dependence and the linewidths attainable in 

our experiments. Indeed, only for extreme excitation fractions of ~10% or greater is the deviation 

from linearity large enough to potentially be detected in transient absorption experiments. In short, 

the reported absence of an intensity dependence to the spectral shape52,62 does not rule out 

contributions from bleaching effects.  

The remaining three effects, when modelled as an increase in n or d, produce a red-shift across the 

entire angular range, principally due to a shift in the energy of the uncoupled cavity mode (Figure 

5b-d). The changes in refractive index within the DBR or organic layer are qualitatively similar, 

though they can be distinguished at higher angles where the curvature of the cavity mode is 

prominently affected by norganic. The effect of nDBR is especially pronounced outside of the cavity stop-

band through modulations of the mirror side-bands, providing multiple points to uniquely 

distinguish these effects. We note that markedly smaller spectral effects are obtained from an 

equivalent change in the Ag refractive index in BODIPY/Ag cavities (Supplementary Information), 

which we attribute to the substantially thinner Ag layer in these structures. 

In Figure 7 we plot spectral cuts of our calculated transient transmission maps at low angle for DBR 

cavities. The magnitude of simulated perturbations is small and easily achieved within a transient 

experiment (e.g. 0.1% excitation fraction, or Å-scale thickness changes in a 200-nm film), yet the 

signal magnitudes are easily comparable with experimental results. Thus, these features must be 

understood and explicitly considered in the interpretation of transient absorption spectroscopy on 

strongly coupled organic microcavities. Moreover, it is likely that all of these will be present at the 

same time. We have explored the linearity of all effects, both in terms of individual scaling as for 

polariton contraction above and for combinations of different effects (see Supplementary 

Information for details). We find that within the ranges relevant to this study (where the peak 

ΔT/T<0.01), all four effects scale linearly with perturbation magnitude and can be linearly combined 
with negligible errors. Thus, we can treat the spectra in Figure 7 as basis spectra to approximate our 

transient transmission data. 

Figure 6. Linearity of polariton contraction. Simulated transient 
transmission through a BODIPY-R/DBR cavity for the degree of 
bleaching indicated. Each spectrum is scaled by excitation fraction. 
Only at very high powers, beyond the regime of reliable transient 
absorption measurements, do deviations in shape become 
detectable. 
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The best fit to the data at 1 ps, shown in Figure 8, includes 0.03% bleaching, 0.0024% decrease in 

refractive index of the DBRs, 0.008% increase in the refractive index of the organic layer, and a 

0.0085% expansion in cavity thickness. Because of the close spectral similarity of organic layer 

refractive index and thickness effects (Figure 7) the solution at a single angle is not uniquely 

determined. Additional measurements at higher angles would enable disentanglement of these 

contributions. Nevertheless, this simple qualitative model reproduces many of the key features 

highlighted in Figure 3, particularly those that appear in the absence of electronically excited states 

(Figure 3e). Even the modulations in the NIR appear at the correct spectral position. The fact that we 

can capture so much of the rich structure of our transient experiment without any explicit 

consideration of intracavity or polaritonic excited states suggests that the transient transmission 

data is dominated by non-specific optical effects. We note that the character of the fit is extremely 

Figure 8. Transient transmission spectra of non-specific 

photoinduced effects. Spectral cuts from the maps in Figure 5, 
taken at low angle. The small perturbations indicated are sufficient 
to generate experimental-scale ΔT/T signatures. Due to their 
linearity, these spectra can be used as basis spectra to model full 
transient transmission data. 

Figure 7. Phenomenological simulated transient transmission 

spectrum. Best-fit model of experimental data, composed from the 
following sample changes: 0.03% bleaching, 0.0085% increased
thickness, 0.0024% decrease in the DBR refractive index, 0.008% 
increase in the organic refractive index. Experimental data is 
reproduced from Figure 3b, 1 ps delay. Individual components are 
offset to highlight their relative magnitudes. 
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sensitive to the film thickness. Increasing the baseline active layer thickness by 10 nm results in 

excellent agreement with the central absorptive peaks ~700 nm at the expense of the absorptive 

band at 650 nm (Supplementary Information). Given such thickness variations are common in 

organic thin films, including similar BODIPY cavities,61 quantitative accounting for these effects likely 

demands more uniform, evaporated cavity layers. Moreover, our modelled spectrum in Figure 8 

significantly diverges from the experimental result at long wavelengths. This difference should be 

chiefly related to the contribution of the transient absorption of intracavity BODIPY-R excitons, i.e. 

states within the exciton reservoir, giving rise to an extended PIA in the near-infrared and complex 

features in the GSB region. Similarly, the slight positive peak in the experimental data at 710 nm 

matches the BODIPY-R stimulated emission (Figure 3f). Though not directly incorporated into our 

scheme, these signatures can be readily identified. 

These transfer-matrix calculations and the persistence of the polariton-like spectral signatures even 

in the absence of excited electronic states suggest that the dominant transient transmission features 

in Figures 2,3 do not reflect long-lived exciton-polaritons. This contradicts earlier findings in other 

strong-coupled systems.51,52,75,76 However, any given photoexcited polariton in our and others’ 
microcavities should have a lifetime chiefly limited by the cavity photonic lifetime, through 𝜏𝑝𝑜𝑙−1 =𝐴𝜏𝑝−1 + 𝐵𝜏𝑥−1, where 𝜏𝑝and 𝜏𝑥 are the lifetimes of the unmixed photonic and excitonic states and A 

and B their respective fractions in the wavefunction. The Q-factors of our cavities thus give an upper 

limit to the polariton lifetime of 5 fs (Ag) or 110 fs (DBR), well within the resolution of our 

measurements. This limitation is common to all reported organic exciton-polariton transient 

absorption studies36,51–54 except for the first,50 which is also the only study to directly distinguish the 

features of reservoir excitons from polaritons. While long-lived intracavity excitons can serve as an 

exciton reservoir and populate the LP over ps, ns and even µs timescales, rapid intrinsic losses from 

the LP mean kscattering<<kLP_decay and this process is incapable of producing a detectable LP population 

signal. In the absence of a clear model to explain long-lived polaritonic states, we find that the most 

plausible explanation of the spectra we detect is a combination of intracavity excitonic states,62 

modification of the Rabi splitting through depopulation of the ground state and non-specific thermal 

effects including transient changes to the bulk refractive indices and thermal expansion.  

 

Figure 9. Ultrafast polariton signatures. Transient transmission of a BODIPY-R cavity with Ag mirrors, excited with a 
broadband, 15 fs pump pulse. By 80 fs (dashed) the spectrum has assumed the same shape detected on longer timescales. 

The implication of this finding is that to directly observe the spectral signatures and dynamics of the 

UP and LP states, we must use excitation pulses with duration comparable to or shorter than the 

state lifetime. Accordingly, we have performed preliminary broadband transient transmission 
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measurements on BODIPY-R/Ag microcavities using <15-fs excitation pulses, shown in Figure 9. By 80 

fs time delay, the spectrum has assumed the same shape reported in slower measurements and 

discussed above. Only in the first spectral slices (bold) do we detect any features distinct from the 

long-time spectrum, which we infer from the above analysis to consist chiefly of non-specific optical 

effects and reservoir excitons. These features are distinct from the coherent response of the 

instrument and indicate unique ultrafast dynamics, but their interpretation is beyond the scope of 

the present study. Nonetheless, the results suggest ultrafast spectroscopy combined with higher-Q 

microcavities holds the promise to enable direct identification of the unique spectral features of 

exciton-polaritons and elucidation of their dynamics, a critical step towards unlocking their potential 

to modify photochemistry. 

Conclusions 

We have explored the time-resolved spectroscopy of strongly coupled microcavities containing the 

organic dye BODIPY-R. Our transient transmission data revealed many of the same types of 

features—chiefly derivative-like lineshapes centred at the polariton resonances—described in 

previous organic polariton systems.33,36,50–52,54,56 However, the lifetimes of these features were 

strikingly longer than what would be reasonably expected based on the partially photonic character 

of the polariton states. We consider this behaviour to be a common, and commonly overlooked, red 

flag that the spectral features cannot be simply assigned to photoexcited exciton-polaritons. Indeed, 

these features were accompanied by similar modulations at the stop-band edge and DBR sideband, 

which are highly unlikely to directly relate to exciton-polaritons. Moreover, we find that many of the 

same underlying spectral features are present whether excitation is above, at, or below the 

polariton resonance. On the basis of transfer matrix modelling, we propose that these spectral 

features and their unexpectedly long lifetimes can be explained through non-specific photoinduced 

effects such as polariton contraction. We find that numerous small changes which could reasonably 

be expected to occur in any transient transmission experiment readily yield spectral signatures of 

the same magnitude as those reported here and elsewhere, 36,50–54  and the lifetimes of these effects 

can span the ps-ns regimes. As highlighted by Liu et al.62,63 and in parallel studies of 

vibropolaritons,57–60 the Fabry-Perot structures used in this and similar works are complex optical 

systems despite their relatively simple structure. Accordingly, their optical spectra are highly 

sensitive to changes in the optical properties of any one of the components. These effects can occur 

regardless of the nature of the material composing the cavity mirrors or active layer, and their 

linearity with degree of excitation means they can be challenging to separate from real excited-state 

effects. We thus conclude that similar effects are likely present in all previous transient absorption 

and related studies of organic exciton-polaritons in Fabry-Perot cavities,36,50–55 and that these effects 

may explain the altered photophysical dynamics and surprisingly long lifetimes that have been 

reported. 

While the many overlapping contributions from these non-specific effects pose a substantial 

challenge for rigorous exciton-polariton spectroscopy, our results suggest a fruitful path forward. 

The unique angle dependence of each contribution in Figure 5 is a potent tool to disentangle their 

signatures. We would expect any real signatures of polaritons to exhibit still different angle 

dependence, whether they continuously relax down the lower polariton branch or remain stuck at a 

bottleneck. Just as the angle dependence of photoluminescence provides important insight into the 

polariton population distribution and dynamics,41–45 we expect that angle-dependent transient 

absorption will prove necessary to unambiguously separate the multiple species contributing to the 

transient absorption dynamics. This is rarely probed and is not systematically explored at present, 

and there is as yet no equivalent of the widespread Fourier-plane imaging used to record polariton 
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emission. The other crucial tool already available is temporal resolution. To unambiguously assign 

the dynamics of organic exciton-polaritons, it is essential to employ a temporal resolution shorter 

than the expected polariton lifetime. This requires the use of compressed, ultrafast pulses and/or 

high-Q dielectric cavities, as combined in the original study of Virgili et al. but not applied since.50 

Through this combination and careful accounting for non-specific optical effects, we anticipate it will 

be possible to uncover the intrinsic dynamics and rich photochemistry of organic molecules in the 

strong-coupling regime. 
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