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(is study aimed to assess the suitability of hyperpolarized 129Xe (HPXe) MRI for noninvasive longitudinal evaluation of
pulmonary function in preclinical lung cancer models. A mouse model of lung cancer (LC) was induced in 5 mice by intra-
peritoneal injection of urethane, while a negative-control (NC) mice (N� 5) was prepared by injection of saline solution.
Longitudinal HPXe MRI was performed over a 5-month period to monitor lung ventilation and gas exchange. (e treatment
efficacy of ethyl pyruvate (EP), an anti-inflammatory drug, to the mouse LC model was monitored using HPXe MRI by
commencing administration of EP pre (early-phase) and 1-month post (late-phase) injection of urethane (N� 5 mice for each
group). Gas-exchange function in LC mice was significantly reduced at 1-month after urethane injection compared with NC mice
administered with saline (P< 0.01). (ereafter, it remained consistently lower than that of the NC group for the full 5-month
measurement period. In contrast, the ventilation function of the LC model mice was not significantly different to that of the NC
mice. Histological analysis revealed alveolar epithelial hyperplasia in LC mice alveoli at 1 month after urethane injection, and
adenoma was confirmed 3 months after the injection. (e early- and late-phase EP interventions were found to improve HPXe
MRI metrics (reduced at 1 month postinjection of urethane) and significantly inhibit tumor growth. (ese results suggest that
HPXe MRI gas-exchange metrics can be used to quantitatively assess changes in the precancerous lesion microenvironment and to
evaluate therapeutic efficacy in cancer. (us, HPXe MRI can be utilized to noninvasively monitor pulmonary pathology during LC
progression and can visualize functional changes during therapy.

1. Introduction

Lung cancer is the leading cause of cancer mortality
worldwide [1]. In Japan alone, the mortality rate and the
number of lung cancer associated deaths reached 59.5%
and 74,120, respectively, in 2017, and these numbers are
predicted to further increase [2]. Moreover, there is a lack
of effective lung cancer treatments and thus the devel-
opment of novel drugs, for example, molecular targets and

immune checkpoint inhibitors [3, 4], is of significant
interest. Preclinical studies using small animals such
as mice and rats are key steps in the assessment of
the treatment efficacy of new drugs prior to consideration
for clinical trials. Magnetic resonance imaging (MRI)
is safe, nonionising and well-suited to repeated, longi-
tudinal measurements and is therefore a powerful
tool for treatment response assessment in a preclinical
setting.
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Hyperpolarized (HP) noble gas MRI is gaining signifi-
cant attention in the preclinical arena as a robust method to
evaluate respiratory abnormalities in ventilation and mi-
crostructure for small animal lung imaging [5]. In particular,
hyperpolarized 129Xe (HPXe) can be imaged at low cost
using natural abundance xenon gas [6]. It dissolves in lung
tissues and red blood cells and gives rise to well separated
peaks reflecting the chemical environment of the dissolved
medium. (ese properties allow the evaluation of gas-ex-
change as well as ventilation function of the lung [7]. To
make the most of these properties for preclinical lung
functional assessment, we have developed a preclinical
HPXe MRI system with custom-built flow-mode polariza-
tion apparatus to produce HPXe and deliver it to a mouse in
a closed loop [8]. Hitherto, we successfully applied this
system to early pathological detection and evaluation of
treatments in chronic obstructive pulmonary disease
(COPD) and pulmonary fibrosis using mice models [9, 10].

Whilst HP noble gas MRI is well-suited to the study of
the respiratory pathologies, its application to lung cancer has
been constrained by the lack of interaction between noble
gases and cancer cells and a relative insensitivity to meta-
bolic information. Previous studies were performed only
after solid tumor nodules had fully developed [11–18], with
few studies exploring dissolved-phase 129Xe in lung cancer
models to date [14, 17]. In light of these previous reports, we
attempted to perform an exploratory HPXe MRI study in
preclinical lung cancer. (at is, in this work, we evaluated
changes in pulmonary ventilation and gas exchange function
during progression of pathology in a mouse model of lung
cancer induced by urethane injection [19] using HPXe MRI.
Additionally, to investigate the relationship between pul-
monary functional and morphological changes during
cancer progression, we performed histology measurements
and compared them with the HPXe MRI metrics. Finally, we
used HPXe MRI to monitor the response of pulmonary
function to treatment with EP in the mouse model of lung
cancer.

2. Materials and Methods

2.1. Animal Preparation. All experimental and animal care
procedures conformed to the guidelines of Osaka University.

Ten male, eight-week-old, ddY mice (Japan SLC, Inc.,
Shizuoka, Japan) were included in this study. Mice initially
underwent lung functional assessment with HPXe MRI at
baseline, i.e., preceding any disease model treatment (0
months). Subsequently, mice were divided into two groups:
a negative-control (NC) group (N� 5) and a lung cancer
model group (LC group, N� 5). To induce lung cancer, a
500 μL saline solution of urethane (Tokyo Kasei, Tokyo,
Japan) was intraperitoneally administrated to each mouse of
the LC group (500 mg/kg body weight). (e NC mice were
intraperitoneally administered with a 500 μL saline solution.
Subsequently, all mice were intratracheally administered
with a 20 μL solution of saline daily for five months to
replicate the experimental procedure used for ethyl pyruvate
(EP) administration detailed as follows. Lung function was
assessed in the two groups by HPXe MRI at 1, 2, 3, 4, and 5

months from the initial saline or urethane administration.
(e schematic diagram of experimental design is shown in
Figure 1(a). (roughout MRI, mouse body temperature was
maintained with warm water circulating through a rubber
tube placed on the abdomen. As such, HPXe MRI was
performed without tracheal intubation or tracheotomy and
hence was entirely noninvasive. (e survival rate of the
whole procedure was 100% for both groups. After 5 months,
mice were euthanized with a lethal dose of carbon dioxide
gas to measure the number and size of lung surface tumors.

In addition to the NC and LC groups, a third, ethyl
pyruvate (EP), an anti-inflammatory drug, treated group was
prepared (N� 10). (e EP-treated group was divided into
two subgroups: an early-phase intervention group (N� 5)
and a late-phase intervention group (N� 5). (e schematic
diagram of the experimental design of the EP treatment is
shown in Figure 1(b). Initially, mice in the EP-treated group
underwent a HPXe MRI baseline scan (0 months). (en, for
the late-phase intervention group, a saline solution of
urethane was intraperitoneally administrated to each mouse
in the same manner as for the LC model mice. In addition,
beginning 1 month after the urethane injection, a 20 μL
solution of EP in saline (2.6 mg/kg, Tokyo Chemical Industry
Ltd, Tokyo, Japan) was intratracheally administered to each
mouse on five consecutive days within one week for four
months. HPXe gas-exchange MRI was performed at 1, 2, 3,
and 4 months from the initial urethane administration (i.e.,
0, 1, 2, and 3 months from commencement of EP treatment).

For the early-phase intervention group, prior to the
administration of the urethane-saline solution, a 20 μL so-
lution of EP in saline was intratracheally administered to
each mouse (2.6 mg/kg). Urethane administration was then
performed as described above and thereafter, EP adminis-
tration was continued on five consecutive days within one
week for five months. HPXe gas exchange MRI was per-
formed at 1, 2, 3, and 4 months from the initial urethane
administration. After 5 months, mice of the late- and early-
phase intervention groups were euthanized with a lethal
dose of carbon dioxide gas to measure the number and size
of lung surface tumors. Again, the survival rates of the whole
5-month procedure were 100% for the EP-treated group,
after which mice were euthanized.

2.2. 129Xe Polarization and Gas Supply. HPXe was produced
in a similar manner as previously described [9]. In brief, a
gas mixture of 70% Xe (natural abundance, 26% 129Xe) and
30% N2 was supplied to a home-built continuous-flow 129Xe
polarizer from a pre-mixed cylinder (Japan Air Gases Ltd.,
Tokyo, Japan) at a pressure of 0.15 atmospheres. (e gas
mixture was flowed continuously through a glass cell and
129Xe was polarized to ∼10% by irradiating a volume Bragg
grating external-cavity diode laser with an output of 171 W
and a wavelength of 794.6 nm (AW-SEOP; Aurea Works
Corporation) onto the glass cell (see [20]). HPXe was
subsequently compressed to atmospheric pressure via a
diaphragm pump (LABOPORT® N86 KN.18, KNF Neu-
berger GmbH, Freiburg, Germany) and delivered directly
and continuously from the polarizing cell to the mouse in the
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magnet. (e gas mixture was flowed continuously at a rate of
50 mL/min to each mouse and was mixed with O2 (con-
tinuously supplied at 9 mL/min) and N2 (as a balance) in the
mouse mask. (e percentages of Xe, N2, and O2 sponta-
neously inhaled by the mice were 59%, 26%, and 15%,
respectively.

2.3. MRI. All MRI measurements were performed on an
Agilent Unity INOVA 400WB NMR spectrometer system
(Agilent Technologies, Inc., Santa. Clara, CA, USA). A 9.4T
vertical magnet with a bore width of 89 mm (Oxford In-
struments Plc., Oxford, UK) was used. A self-shielded
gradient probe was used in combination with Litz volume
RF coils of 34 mm inner diameter, tunable to the Larmor
frequencies of 129Xe (110.6 MHz) and 1H (399.6MHz) (Clear
Bore DSI-1117, Doty Scientific, Inc., Columbia, SC, USA).
To acquire respiratory-gated images from spontaneously
breathing mice, a respiratory sensor was used to synchronize

the acquisition of HPXe lung images with inspiratory or
expiratory phases as described previously [9].

HPXe images were acquired using a balanced steady-
state free precession (bSSFP) sequence [9, 10] with either
four 180° pulses or two 90° pulses to extract information
about pulmonary gas exchange or ventilation function,
respectively. Acquisition parameters are as follows: 1000-μs
Gaussian-shaped RF pulse of flip angle α� 40°; acquisition
bandwidth, 88 kHz; TR/TE� 3.6 ms/1.8 ms; echo train
length, 8; number of shots, 4; number of averages, 8; coronal
slice thickness, 20 mm; matrix, 64× 32 with a field of view of
80× 25 mm2. Acquisition was commenced after confirming
a steady state signal by monitoring 129Xe MR spectra ob-
tained by the application of an 8° hard RF pulse with an
interval of two seconds.

2.4. Assessment of Pulmonary Function. Parameters of pul-
monary gas exchange, fD (%), and fractional ventilation, ra,
were derived from HPXe MR images as described previously

MRI MRI MRI MRI MRI MRI
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Figure 1: Schematic diagram of experimental design of the longitudinal measurement of (a) lung cancer progression and (b) EP treatment.
Late-phase and early-phase: late- and early-phase intervention groups.
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[9]. Here, fD is the rate of HPXe magnetization diffusion
from the gaseous Xe (in the alveoli) to Xe in the dissolved-
phase (lung tissue and blood) within a given exchange time,
as evaluated by the xenon polarization transfer contrast
(XTC) method [21]. (e XTC image was generated by ac-
quiring bSSFP gas ventilation images at expiration, sepa-
rated by the application of four frequency-selective 180°

inversion pulses (interpulse delay 20 ms) at the Larmor
frequency of dissolved-phase 129Xe. (e resulting ventilation
image intensities were then compared with those acquired
without irradiating inversion pulses.

(e fractional ventilation, ra, is the alveolar volume
fraction of gas turned over in a single breath. After gas-phase
HPXe magnetization in the lung was destroyed by two
saturation 90° prepulses, a set of inspiratory images was
acquired after n breathing cycles. n was incremented from 1
to 10 in steps of one, and then to 12, 15, and 20. From these
images, a ra map was obtained by linear least squares fitting
of the signal intensity as a function of n.

Maps of fD and ra were calculated pixel-by-pixel using in-
house MATLAB (MathWorks, Inc., Natick, MA, USA)
routines. Maps were subsequently averaged to obtain whole
lung ra and fD values; and these values were compared
between groups.

2.5. Lung Tumor Count. After HPXe MRI, mice were eu-
thanized and lungs were extracted and immersed in 10%
formalin at 25 cmH2O for at least 1 week. Surface tumors were
counted, and tumor diameter was measured using calipers.

2.6. Histology. After lung tumor counting, the lungs of NC
and LC model mice were processed for histology by staining
with hematoxylin and eosin (H&E). Four coronal H&E-
stained whole lung slices were obtained from each mouse
and then captured using a digital microscope (Celestron
LCD Microscope PRO <CE44345>; Celestron, LLC., Tor-
rance, CA, USA).

In order to monitor morphological progression of the
lung cancer model by urethane administration, three addi-
tional groups of LC model mice (“histological analysis” groups)
were prepared at 1, 2, and 3 months after urethane injection
(N� 3 mice for each timepoint) and histological images were
obtained using the same protocol as described above.

2.7. StatisticalAnalysis. Statistical analysis was performed by
Student’s t-test or one-way ANOVA with Tukey–Kramer
post-hoc analysis to identify significant differences between
the NC, LC model, and EP-treated groups. All data are
presented as mean± standard deviation and/or box-and-
whisker plots, and differences in functional parameters are
considered significant at the P< 0.05 level.

3. Results

Figures 2 and 3 show longitudinal fD (gas exchange) and ra
(ventilation) maps and box plots of average values, re-
spectively, over the 5-month measurement period, obtained
from the NC and LC model mice groups. (e average fD
value of the LC model mice was significantly reduced
compared with that of the NC mice at 1-month after ure-
thane injection (fD_NC_1m� 7.0± 0.9% versus
fD_LC_1m� 5.0± 0.7%, P< 0.01). (roughout the remaining
observation period of 5 months, the fD of the LC model
mice continued to be significantly lower than that of the
NC mice. In stark contrast, NC and LC mean ra values
were not statistically different over the measurement pe-
riod, and neither group showed tendency for decline in
ventilation function. (e spatial distribution of ra was
relatively uniform compared with that of fD, which
exhibited considerable spatial heterogeneity, particularly
in LC model mice.

Figure 4 shows representative histological microphoto-
graphs as a function of scan timepoint for the histological
analysis (LC) subgroup, and at 5 months for the NC group.
Precancerous lesions classified as alveolar epithelial hy-
perplasia were observed at 1 month after urethane in-
jection [22]. (is was followed by a mixture of alveolar
epithelial hyperplasia and atypical adenomatous hyper-
plasia at 2 months, and adenoma at 3 and 5 months.
Figure 5 shows a qualitative visual comparison between
the fD and ra maps and histological images for two rep-
resentative LC model mice at 5 months. Regions of low fD
exhibited good spatial correspondence with tumor regions
on histological images.

Figures 6(a) and 6(b) show longitudinal fD maps and
average values, respectively, over the 4-month measurement
period, obtained from the EP-treated groups. For both of the
late- and early-phase intervention groups, the average fD
value at 1 month after urethane injection was significantly
decreased compared with that of the base line (0 months), in
a similar manner to that observed in the LC group. For the
late-phase intervention group, the average fD value signifi-
cantly increased at 4 months after urethane injection (i.e., 3
months after commencing EP treatment) when compared
with that at 1 month. In contrast, for the early-phase in-
tervention group, the average fD value was significantly
improved (higher) at 2 months after urethane injection (2
months after commencing EP treatment) and continued to
be higher for the remaining observation period when
compared with that at 1 month.

Figure 7(a) shows representative photographs of the
lungs of the LC, late-, and early-phase EP-intervention
groups, highlighting several surface tumors in the LC group
and a decreased number for the intervention groups.
Figure 7(b) shows the total tumor number and size of the
largest tumor obtained from the LC, late-phase intervention,
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and early-phase EP-intervention groups. (e median tumor
numbers of the late-phase and early-phase intervention
groups were 7 and 3, respectively, and significantly de-
creased compared with that of the LC mice (median: 13). (e
median size of the largest tumor of the late-phase (2.2 mm)
and early-phase (2.2 mm) intervention groups was also
significantly lower than that of the LC mice (3.5mm). (ere
was no significant difference between the late- and early-
phase intervention groups.

4. Discussion

In this study, lung functional assessment by HPXe MRI
revealed abnormalities in gas-exchange rate, fD, in a ure-
thane model of lung cancer in mice. (is was characterized

by a significantly lower mean fD value compared with that of
the NC group at 1 month after urethane injection (Figures 2
and 3) and consistent gas exchange impairment for the
remainder of the 5-month observation period. In contrast,
the ra of the LC model mice was not significantly different to
that of the NC mice, despite the fact that solid tumor lesions
were confirmed histologically at 3 months after urethane
administration. However, since we acquired “projection”
images with no anterior-posterior spatial selectivity, the
images represent the average gas distribution in that di-
rection, reducing the sensitivity to regionally localized
ventilation abnormalities. While tumors are known to be
associated with ventilation defects on HPXe lung images,
these defects are typically locally confined to cancer regions
and are not expected to affect large regions of the mice lung
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Figure 2: Representative parametric maps of longitudinal changes in (a) fD and (b) ra derived from mice in the negative-control (NC) group
(n� 5) and lung cancer (LC) model group (n� 5), respectively.
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Figure 3: Box plots of the temporal change of mean (a) fD and (b) ra values for all mice, separated by group, as a function of time
postinjection of saline (NC) or urethane (LC). Significant differences between groups are indicated by solid lines (∗: P< 0.05, ∗∗P< 0.01).
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[11]. Since the scale of tumors in this study is relatively small
(see Figures 5 and 7), this likely prevents the observation of
neoplastic lesions on ra maps. As such, we postulate that ra
may be an unsuitable parameter for study of this cancer
model, and any observed ventilation abnormality may reflect
accompanying respiratory disorders, rather than the tumors
themselves. For similar spatial selectivity reasons, it was
difficult to locally identify the tumor regions on the fD maps;
however, as shown in Figure 5, gas exchange defects were
observed from two mice to be spatially correspondent to the
solid tumor regions, which likely predominantly reflects true
gas exchange pathology.

To elucidate the relationship between pulmonary gas
exchange function and morphology during cancer pro-
gression, histological analysis was performed on subgroups
of mice at 1, 2, and 3 months after urethane injection

(Figure 4) and a range of neoplastic lesions was observed,
similar to that reported in [23]. Alveolar epithelial hyper-
plasia was observed at 1 month after urethane injection,
while adenoma was observed after 3 months after urethane
injection. (erefore, the decrease of fD observed at 1 month
in LC model mice (Figures 2(a) and 3(a)) can be associated
with alveolar epithelial hyperplasia. To the best of our
knowledge, this is the first report of the application of HPXe
MRI to study gas exchange abnormalities in alveolar epi-
thelial hyperplasia.

(e reduction in fD appears to correspond to the
thickening of alveolar epithelium, similar to the reported
result that fD in a mouse model of lung fibrosis was also
reduced due to thickening of the alveolar epithelium [9]. In
the XTC measurement performed to derive fD, HPXe
magnetization in the dissolved-phase is inverted, and this
inverted HPXe magnetization is retransferred to the gas-
phase, which causes a decrease of the gas phase signal that is
used to infer an fD map. In our experiments, we performed
XTC by applying 4 inversion pulses with interpulse delay of
20 ms, i.e., 80 ms of exchange time. When the alveolar ep-
ithelium becomes thickened, that is, the volume of the
dissolved-phase compartment increases, it may be expected
that fD would also increase; however this is contrary to our
finding of reduced fD in LC mice. We postulate that HPXe
might not reach equilibrium between the gas- and dissolved-
phase compartments within 80 ms in thickened epithelia,
and as a result, some of the inverted HPXe magnetization
might not return to the gas-phase within that time. Since the
inverted magnetization remaining in this dissolved-phase
does not affect the gas-phase signal, the fD of the LC model
mice might decrease. In our previous report using healthy
mice, it took about 50 ms for the saturated dissolved-phase
HPXe magnetization to reach equilibrium with that of the
gas-phase [24]. (erefore, when the volume of the dissolved-
phase compartment is increased due to alveolar hyperplasia,
the time required to reach the equilibrium is likely extended.

Histology
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Figure 5: Qualitative spatial comparison of the HPXe MRI
parametric maps (fD and ra) and histology slides obtained from two
examples of LC model mice. Arrows indicate deficits in fD that
correspond spatially with the location of tumors on histology.
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Figure 4: Representative examples of microphotographs of H&E-stained histology slides obtained from the LC model mice at 1, 2, 3, and 5
months post-urethane administration (right). For comparison, microphotographs of a representative NC mouse obtained at 5 months are
also shown on the left.
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According to [25], in lung cancer model mice, inflam-
mation can occur as early as one week after urethane ad-
ministration, which is reported to be correlated with the
development and progression of lung cancer. Previously, we
reported fD reductions in mice models of COPD and lung
fibrosis [9, 10], attributed to bronchial and alveolar wall
thickening resulting from inflammation. (erefore, in the
present study, the alveolar epithelial hyperplasia observed
histologically at 1 month after urethane injection was likely
accompanied by the pulmonary inflammation. Accordingly,
the observed impairment of gas exchange (reduction in fD)
was possibly caused by pulmonary inflammation associated
with alveolar epithelial hyperplasia, preceding the appear-
ance of neoplastic lesions.

(e major mechanism of alveolar epithelial hyperplasia
is considered to be damage of the alveolar epithelium caused
by pulmonary inflammation as mentioned above [25, 26].
(is inflammation results in continuous release of inflam-
matory cytokines from inflammatory cells involving High-

Mobility-Group-Box1 (HMGB1), which is one of the
damage-associated-molecular-pattern (DAMP) molecules.
In our previous reports, we suggested that HMGB1 was
associated with fD reductions in mice models of COPD and
lung fibrosis due to alveolar structural changes caused by
inflammation [9, 10]. HMGB1 has been implicated not only
in various inflammatory diseases but also in cancer devel-
opment [27], and overexpression of HMGB1 has been ob-
served in non-small cell lung cancer patients [28]. Once
HMGB1 released from necrotic or apoptotic cells into the
extracellular space binds to advanced glycation end product
receptors and toll-like receptors in lung precancerous le-
sions, it activates the transcription factor nuclear factor-
kappa B (NF-κB) signaling pathways and exacerbates in-
flammation and pathology [27].

EP has been shown to exhibit anti-inflammatory effects
by downregulating HMGB1 expression through inactivation
of NF-κB [29, 30]. Based on this mechanism, EP has been
reported to show anticancer effects in vivo on liver cancer
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[31–33], mesothelioma [34], diffuse large B-cell lymphoma
[35], and angiogenesis using Lewis lung carcinoma cells
subcutaneously injected into the flanks of mice [36].
(erefore, in order to test the hypothesis that the fD re-
duction observed at 1 month after urethane administration
here is due to inflammation associated with HMGB1 se-
cretion, we examined the therapeutic effect of EP on LC
model mice by HPXe MRI. In the late-phase intervention
group, fD gradually increased and showed a significantly
larger value at 4 months than that at 1 month (Figure 6). In
addition, the number and size of surface tumors in the late-
phase intervention group were significantly decreased
compared with those of the LC mice (Figure 7).

For the early-phase intervention group, even though EP
was administered prior to urethane administration, the fD at
1 month was significantly lower than that of the baseline (0
months) to a similar degree as the LC group and late-phase
intervention group. However, following that, the fD value
recovered to a significantly larger value than that of the
baseline at 2 months post urethane administration. (is
recovery in fD was maintained for the remaining observation
period (Figure 6). (e number of tumors in the early-phase
intervention group was significantly reduced to about 25% of
that of the LC group, and the median size of the largest
tumor was also significantly reduced (Figure 7). Combining
all results from the two intervention groups, the hypothesis
of EP action described above appears to be supported.

5. Limitations

One of the main limitations of this study is that direct
imaging of the dissolved-phase was not performed. Ac-
cordingly, it is challenging to explain the exact mechanisms
of the decrease in gas exchange function due to inflam-
mation in the LC model mice. Direct simultaneous imaging
of the dissolve-phase and gas-phase HPXe would help to
further clarify our hypothesis that the diffusion of HPXe
between the gas- and dissolved-phase compartments does
not reach equilibrium in 80 ms of exchange time as men-
tioned above [17].

A further limitation of this study is that morphological
evaluation of the lung cancer was difficult. Hitherto, the
morphological evaluation of urethane-induced lung cancer
mouse models has been performed by x-ray CT, MRI, and
PET [25, 37–42]. According to those reports, the presence of
cancer was confirmed 2 months after urethane adminis-
tration by CT [25, 37, 38]. (e evaluation of efficacy of drugs
for lung cancer was also attempted by CT, and the effects of
anti-inflammatory drugs on inhibition of tumor growth
have been observed [43, 44]. In addition, the observation of
lung cancer has been shown to be feasible by 1H MRI and
PET, and its longitudinal changes were also evaluated
[39–42]. However, these reports were based on observations
after cancer nodules had already developed, which is at a
later stage than our functional evaluation. (erefore, the

EP-treated mice
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Figure 7: (a) Representative photographs of lungs obtained from LC and EP-treated mice. (b) Box plots of the number of solid tumors and
the diameter of the largest tumor of LC and EP-treated mice. Late and early: late- and early-phase intervention groups.
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methods presented in the present study may be used in a
complementary means with other imaging modalities to
evaluate the efficacy of drugs after starting treatment.

6. Conclusions

In a murine model of lung cancer induced by urethane
injection, lung functional impairment during cancer pro-
gression was detected by the HPXe MRI metric of gas-ex-
change, fD, concordant with the onset of alveolar epithelial
hyperplasia. (is metric shows potential as an indicator of
tumor microenvironment, including inflammatory pro-
cesses, preceding the appearance of atypical adenomatous
hyperplasia and adenoma. EP treatment was found to im-
prove the lung cancer induced gas exchange impairment and
inhibit further lung cancer development. (ese findings
suggest that HPXe dissolved-phase MRI is suitable for
longitudinal monitoring and assessment of treatment re-
sponse in preclinical lung cancer models.
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