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(Communicated by John C. Wierman)

Preferential attachment networks are a type of random network where new nodes

are connected to existing ones at random and are more likely to connect to those

that already have many connections. We investigate further a family of models

introduced by Antunović, Mossel and Rácz where each vertex in a preferential at-

tachment graph is assigned a type, based on the types of its neighbours. Instances

of this type of process where the proportions of each type present do not converge

over time seem to be rare.

Previous work found that a “rock-paper-scissors” setup where each new node’s

type was determined by a rock-paper-scissors contest between its two neighbours

does not converge. Here, two cases similar to that are considered, one which is

like the above but with an arbitrarily small chance of picking a random type and

one where there are four neighbours which perform a knockout tournament to

determine the new type.

These two new setups, despite seeming very similar to the rock-paper-scissors

model, do in fact converge, perhaps surprisingly.

1. Introduction

We consider a model for randomly growing networks that have nodes of different

types, where the types of nodes are chosen based on what they see connected to

them when they join the network. These types could represent, for example, brand

preferences, where people choose their preference based on those of their friends

or those of celebrities.

The model we consider is based on the linear preferential attachment graph, where

nodes are more likely to connect to those that already have a lot of connections,

similar to the influence of celebrities in the example above. The type-assignment

model on preferential attachment graphs was introduced by Antunović, Mossel

and Rácz [Antunović et al. 2016]; the general set-up provides for N types and a
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flexible family of type-assignment rules based on the types of neighbouring vertices.

They proved a strong result for the case with two types, that the proportion of

each type present over time almost surely converges to a limit, which is a fixed

point of a one-dimensional differential equation and, depending on the choice of

type-assignment mechanism, may be random.

They also conjecture [Antunović et al. 2016, Conjecture 3.2] that a similar result

is true for three or more types. However, in previous work [Haslegrave and Jordan

2018], one of the coauthors showed that this is not true for a “rock-paper-scissors”

case, where each node is connected to two others and the type of the new node is

chosen by the winner of a rock-paper-scissors contest between its two neighbours.

It seems, with three types at least, that these exceptions are unusual and special,

and most natural cases do converge almost surely.

Here, we consider some variations on the rock-paper-scissors model, mainly on

one which is very similar, but with a small probability h of taking a random type,

rather than performing the rock-paper-scissors process (this can be considered to

be a very small perturbation of the rock-paper-scissors model). Indeed, this model

does converge almost surely to one third of the nodes present being each type. We

will also consider a model where new nodes receive four neighbours and these four

types perform a “knockout tournament” to decide the type of the new node. The

equivalent case with m = 2 is the original rock-paper-scissors case, but in the m = 4

case, this model also converges almost surely.

2. The Antunović–Mossel–Rácz framework

The framework introduced by Antunović, Mossel and Rácz [Antunović et al. 2016]

considers a standard preferential attachment graph where the new vertex connects

to m existing vertices. Preferential attachment as a network model was popularised

in [Barabási and Albert 1999], and a rigorous mathematical formulation followed

in [Bollobás et al. 2001]. The specific version of preferential attachment used in

[Antunović et al. 2016] and in the present paper is the “independent model” of

[Berger et al. 2014]. The initial graph is called G0, and then for every t ∈ N a

new vertex is connected to m vertices in G t−1 (allowing multiple edges) where the

probability of being connected to each other vertex is proportional to its degree,

and the m vertices are chosen independently; this gives G t .

For the framework of [Antunović et al. 2016], each vertex is one of N types

(types notated 1, . . . , N ) and a vertex receives a type when it joins the network;

this type never changes. The type of a new vertex is determined by the types of all

its neighbours. To define the type-assignment rule, for each vector u of length N

with elements summing to m, we define a vector pu, also of length n and giving

a probability distribution on {1, . . . , N }. If the number of each type in the new
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vertex’s neighbours is given by u then the probabilities of each type for the new

vertex are given by pu. We will generally assume that each type is present in the

initial graph G0, though this is not necessary in all examples.

A simple example is where pu = u/m; this is known as the linear model and

has special properties. For more general models, Antunović, Mossel and Rácz

[Antunović et al. 2016] demonstrated that the sequence of vectors xn which give the

proportions of degrees of each type is a stochastic approximation process, meaning

that we can write

xn+1 − xn =
1

n
(P(xn) + ξn+1 + Rn).

Here P is an (N−1)-dimensional vector field P which depends on the pu, and,

letting (Fn)n∈N be the natural filtration of the process, E(ξn+1 | Fn) = 0 and Rn is

Fn-measurable and satisfies Rn → 0 and
∑∞

n=1|Rn|/n is finite almost surely. This

means that we can apply standard results on stochastic approximation, as given for

example in [Pemantle 2007, pp. 18–19], and doing this analysis of the vector field P

is key to understanding the behaviour of these models. When N =2, a full analysis is

given in [Antunović et al. 2016], showing that the proportions of each type converge

to a stationary point of P, but when N > 2 it is hard to give a general analysis

of P due to the variety of behaviours of higher-dimensional dynamical systems;

the relationship between stochastic approximation and dynamical systems, giving

an idea of the complications which can arise, is covered in detail in [Benaïm 1999].

Haslegrave and Jordan [2018] considered a type-assignment system with N = 3

types, labelled “rock”, “paper” and “scissors”, and m = 2. The type of a new node

is determined by a rock-paper-scissors competition between the types of its two

neighbours, so that the winner becomes the type of the new node. If both neighbours

are the same, the new node takes their type. In the notation above, we have

p(2,0,0) = (1, 0, 0), p(0,2,0) = (0, 1, 0), p(0,0,2) = (0, 0, 1),

p(1,1,0) = (0, 1, 0), p(1,0,1) = (1, 0, 0), p(0,1,1) = (0, 0, 1).

The results of [Haslegrave and Jordan 2018] showed that in this model the propor-

tions of the types did not converge and instead cycled.

3. Small perturbation case

In this section, we consider a small perturbation case of the rock-paper-scissors

model described above. In this perturbation case, there is a small probability h (any

h < 1 can be used) of ignoring the result of the above process, and the new node

just taking a new type at random, and thus a probability 1−h of the new type being

selected using the original rock-paper-scissors method.

In this way, for a small h, the process can be very close to that of the original

rock-paper-scissors model, and the perturbation can be arbitrarily small as h gets
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Figure 1. Results for a simulation of the perturbation model with

h = 0.05. Here, G0 is a complete graph with three of each type.

The red line shows the value of the product 27XnYn Zn .

very close to zero. Note that the case with h = 0 is the original model of [Haslegrave

and Jordan 2018].

Define k = 1
3
h. In the notation from Section 2, for this model we have

p(1,1,0) = (k, 1 − 2k, k), p(0, 1, 1) = (k, k, 1 − 2k),

p(1,0,1) = (1 − 2k, k, k), p(2, 0, 0) = (1 − 2k, k, k),

p(0,2,0) = (k, 1 − 2k, k), p(0, 0, 2) = (k, k, 1 − 2k).

Let An , Bn and Cn denote the normalised proportions of types 1, 2 and 3 respectively

in Gn .

Simulation results suggest that for this model, it may be that the proportions of

each type do not behave as they do in the original model, but instead may converge

to
(

1
3
, 1

3
, 1

3

)

. Figure 1 shows the results of a simulation with h = 0.05.

From Figure 1, and comparing with the original model [Haslegrave and Jordan

2018] it seems that this model likely converges. Let Xn, Yn, Zn denote the (nor-

malised) sums of degrees of the nodes of types 1, 2 and 3 respectively in Gn , and

define the product Mn = XnYn Zn; from Figure 1, this appears to be increasing

and converging to 1, where in the original model it converges to a random limit.

The oscillations of the proportions are also getting smaller each time here, which

suggests they may eventually all converge to 1
3
.

This motivates the main result of this section:

Theorem 3.1. For the perturbation model with any h > 0, we have (An, Bn, Cn)

and (Xn, Yn, Zn) converge almost surely to
(

1
3
, 1

3
, 1

3

)

.

This will follow from Proposition 3.2 later.
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For this model, the vector field P, defined by (3.1) of [Antunović et al. 2016],

on the triangle 12 is given by the components

P1(x, y, z) = 1
2

x(z − y) + y(x + z)k − x(x + 2z)k + 1
2
(y2 + z2)k,

P2(x, y, z) = 1
2

y(x − z) + z(x + y)k − y(2x + y)k + 1
2
(x2 + z2)k,

P3(x, y, z) = 1
2
z(y − x) + x(y + z)k − z(2y + z)k + 1

2
(x2 + y2)k.

The following result tells us that 3(x, y, z) = −xyz is a Lyapunov function

for this vector field. Because (Xn, Yn, Zn) is a stochastic approximation process,

standard results on stochastic approximation with a Lyapunov function (for example

in [Pemantle 2007, pp. 18–19]) will allow us to use it to conclude Proposition 3.2.

Proposition 3.2. The product xyz is constant on the trajectories of P only when

(x, y, z) =
(

1
3
, 1

3
, 1

3

)

. Otherwise, it is strictly increasing on said trajectories.

Proof. We have d(xyz)/dt = xy P3 + xz P2 + yz P1. Substituting in the components

above gives

d(xyz)

dt
= 1

2
xyz(y − x) + x2 y(y + z)k − xyz(2y + z)k + 1

2
xy(x2 + y2)k

+ 1
2

xyz(x − z) + xz2(x + y)k − xyz(2x + y)k + 1
2

xz(x2 + z2)k

+ 1
2

xyz(z − y) + y2z(x + z)k − xyz(x + 2z)k + 1
2

yz(y2 + z2)k.

This reduces to

d(xyz)

dt
= 1

2
k(x2(1 − x) + y2(1 − y) + z2(1 − z) − 6xyz).

Indeed, at (x, y, z) =
(

1
3
, 1

3
, 1

3

)

, we have d(xyz)/dt = 1
3
· 2

3
− 6

27
= 0, and when

(x, y, z) = (1, 0, 0), (0, 1, 0) or (0, 0, 1), we have d(xyz)/dt = 0.

Now, using that z = 1 − x − y, we can write

d(xyz)

dt
∝ x2 − x3 + y2 − y3 + (1 − x − y)2 − (1 − x − y)3 − 6xy(1 − x − y),

which reduces to

d(xyz)

dt
∝ x − x2 + y − y2 − 10xy + 9x2 y + 9xy2.

Define f = x −x2 + y − y2 −10xy +9x2 y +9xy2. We can classify the stationary

points of f , and since it is the derivative multiplied by a constant, it will retain the

signs of the derivative (and all the behaviour regarding being positive, negative or

zero).

Its partial derivative with respect to x is ∂ f/∂x = (9y−1)(2x + y−1). Therefore,

at all stationary points, either y = 1
9

or 2x + y = 1.
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Similarly, ∂ f/∂y = (9x − 1)(x + 2y − 1) and so at all stationary points, either

x = 1
9

or x + 2y = 1. From this we get all the stationary points of f in the form

(x, y, z): they are
(

1
3
, 1

3
, 1

3

)

,
(

1
9
, 1

9
, 7

9

)

,
(

1
9
, 7

9
, 1

9

)

and
(

7
9
, 1

9
, 1

9

)

.

Now, these stationary points are to be classified. We calculate the second partial

derivatives as

∂2 f

∂x2
= 18y − 2,

∂2 f

∂x∂y
= 18(x + y) − 10,

∂2 f

∂y2
= 18x − 2,

and define these as A, B and C respectively. Then, for the stationary point
(

1
3
, 1

3
, 1

3

)

,

the values of the derivatives are A = 4, B = 2 and C = 4, and so A > 0 and

AC > B2. This means the point is a local minimum. For all other stationary points,

the value of AC is zero and of B2 is 36, and so B2 > AC . This means those points

are saddle points.

The only way that the local minimum at
(

1
3
, 1

3
, 1

3

)

could not be a global minimum

on the simplex 12 is if the value of the function is lower than zero on the boundary

of 12, as here the point may not be a local minimum due to the behaviour outside

of the simplex. However, on the boundary, at least one of x , y and z are zero.

And thus, d(xyz)/dt is nonnegative, because −6xyz = 0 and all other parts of the

function are never negative for x, y, z ≤ 1. In fact, d(xyz)/dt is negative on the

boundary except at the corner points, and at these points inspection of the vector

field shows that trajectories started there are also strictly decreasing.

In conclusion, the only minimum point is
(

1
3
, 1

3
, 1

3

)

, at which the value of

d(xyz)/dt is zero. It is positive everywhere else in the interior, since there are no

other minimum points, and xyz is also decreasing on trajectories started on the

boundary. In other words, the product xyz is increasing on the trajectories of P,

except at
(

1
3
, 1

3
, 1

3

)

, where it is constant, as required. �

Proof of Theorem 3.1.. Proposition 3.2 shows that 3(x, y, z) = −xyz is a Lyapunov

function as defined in [Pemantle 2007, pp. 18–19] for the vector field P (since it is

decreasing, as xyz is increasing). Hence, by Proposition 2.18 of [Pemantle 2007]

this process must converge to a stationary point of P, and the only such point is
(

1
3
, 1

3
, 1

3

)

. This proves Theorem 3.1. �

4. Knockout tournament case with m = 4

In this section, we will consider a new model which is a version of the rock-paper-

scissors model of [Haslegrave and Jordan 2018] but with m = 4, so that each

new node is connected to four existing nodes. In our model, these four nodes

then perform a knockout tournament, again following rock-paper-scissors rules, to

decide the type of the new node. Specifically, the four nodes are paired off into two

matchings, and the winner of each matching competes in the final.
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Figure 2. Results for a simulation of the tournament model with

m = 4. As before, here G0 is a complete graph with three of each

type. The red line shows the value of the product 27XnYn Zn .

Simulation results suggest that this case, despite seeming to have similar proper-

ties to the original rock-paper-scissors setup, converges. See Figure 2 for results

from a 109 step simulation; the proportions of each type settle around 1
3

quite

quickly.

We will prove the following theorem:

Theorem 4.1. Assume that each type is present in the initial graph G0. Then, for

the m = 4 tournament model, (An, Bn, Cn) and (Xn, Yn, Zn) converge almost surely

to
(

1
3
, 1

3
, 1

3

)

, where Xn, Yn, Zn denote the (normalised) sums of degrees of the nodes

of types 1, 2 and 3 respectively in Gn .

There are many possible scenarios based on the initial matching. What happens

in each case is detailed below. These will inform the formulas for the p(u).

• All four nodes are the same: the new node takes this type with probability 1.

• Two types of nodes are present: the new node takes the type of whichever would

win a heads up contest, with probability 1.

• All three types of nodes are present: in this case, there is one type which is present

twice, and the others are present once each. There are two possibilities. First, the

two duplicates may be matched up in round 1, and then the duplicated type will

win (as it will face the type it beats in the final). This happens with probability 1
3
.

Otherwise, the type that beats the duplicated type will win (as it will face the type

it beats in both rounds). This happens with probability 2
3
. The final type, which

loses to the duplicated type, cannot win.
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From this understanding, we derive the following (we define type 1 to be “rock”,

type 2 to be “paper” and type 3 to be “scissors”):

p(4,0,0) = p(3,0,1) = p(2,0,2) = p(1,0,3) = (1, 0, 0),

p(0,4,0) = p(1,3,0) = p(2,2,0) = p(3,1,0) = (0, 1, 0),

p(0,0,4) = p(0,1,3) = p(0,2,2) = p(0,3,1) = (0, 0, 1),

p(2,1,1) =
(

1
3
, 2

3
, 0

)

, p(1,2,1) =
(

0, 1
3
, 2

3

)

, p(1,1,2) =
(

2
3
, 0, 1

3

)

.

The vector field (defined by (3.1) of [Antunović et al. 2016], as with the pertur-

bation case) is given by the components

P1(x, y, z) = 1
2

x(−3x2 y+x2z−3xy2 −2xyz+3xz2 − y3 −3y2z+5yz2 +3z3),

P2(x, y, z) = 1
2

y(−3y2z+ y2x −3yz2 −2xyz+3yx2 −z3 −3z2x +5zx2 +3x3),

P3(x, y, z) = 1
2
z(−3z2x +z2 y−3zx2 −2xyz+3zy2 −x3 −3x2 y+5xy2 +3y3).

Our approach is now similar to that in the previous section: we will show that

3(x, y, z) = −xyz is a Lyapunov function for the vector field P, and thus deduce

convergence of the underlying stochastic approximation process.

Proposition 4.2. The product xyz is constant on the trajectories of P only when ei-

ther (x, y, z) =
(

1
3
, 1

3
, 1

3

)

or at least one of x, y, z is zero. Otherwise, it is increasing

on said trajectories.

Proof. We have d(xyz)/dt = xy P3 + xz P2 + yz P1. Substituting in the components

above gives

d(xyz)

dt
= 1

2
xyz(3x2z+3xy2+3yz2−3x2 y−3y2z−3xz2−6xyz+2x3+2y3+2z3).

To find the zeroes of this function, we first consider the zeroes of 1
2

xyz: they are

precisely when one or more of x , y, z is zero.

For all other cases, 1
2

xyz is nonzero, and we define

f = 3x2z + 3xy2 + 3yz2 − 3x2 y − 3y2z − 3xz2 − 6xyz + 2x3 + 2y3 + 2z3,

which has the same zeroes as d(xyz)/dt away from the edges of the triangle. Since

x + y+z = 1, we have z = 1−x − y. Substituting z = 1−x − y and expanding gives

f = 2 − 9x − 3y + 15x2 + 6xy − 3y2 − 6x3 − 9x2 y + 9xy2 + 6y3.

The partial derivatives of f are

∂ f

∂x
= 3(−3 + 10x + 2y − 6x2 − 6xy + 3y2),

∂ f

∂y
= 3(−1 + 2x − 2y − 3x2 + 6xy + 6y2).
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Rearranging the first, we obtain that

y = 1
3
(
√

27x2 − 36x + 10 + 3x − 1).

Substituting this into ∂ f/∂y gives that, at stationary points,

(3x − 1)(2
√

27x2 − 36x + 10 + 9x − 7) = 0.

This implies that either x = 1
3
or x =− 1

3
. Since here x is always nonnegative, the only

relevant solution is x = 1
3
. Symmetrical reasoning implies that y = 1

3
and z = 1

3

are satisfied at any zero of f . Hence, our only stationary point from f is
(

1
3
, 1

3
, 1

3

)

.

Calculating second derivatives gives

∂2 f

∂x2
= 6(5 − 6x − 3y),

∂2 f

∂y2
= 6(−1 + 3x + 6y),

∂2 f

∂x∂y
= 6(1 − 3x + 3y).

At
(

1
3
, 1

3
, 1

3

)

, these are 12, 12 and 6 respectively, and since 12 is positive and

12 · 12 > 62, we have that
(

1
3
, 1

3
, 1

3

)

is a local minimum.

The only way this local minimum is not a global minimum is if the value of the

function is negative somewhere on the edges of the triangle. But, 1
2

xyz is zero at all

these points and so d(xyz)/dt is zero. Hence,
(

1
3
, 1

3
, 1

3

)

is a global minimum. �

We are now able to prove Theorem 4.1, in a similar vein to Section 3.

Proof of Theorem 4.1. Proposition 4.2 shows that 3(x, y, z) = −xyz is a Lyapunov

function for the vector field P. Hence, by Proposition 2.18 of [Pemantle 2007], this

process must converge almost surely to a stationary point of P.

It remains to check that the convergence must be to
(

1
3
, 1

3
, 1

3

)

. Proposition 4.2

shows there are no other stationary points in the interior of 12, and straightforward

analysis of P on the boundary of 12 shows that the only other stationary points

are the corners (1, 0, 0), (0, 1, 0) and (0, 0, 1), each of which is a linearly unstable

saddle point.

To show that (1, 0, 0) is a limit with probability zero, assume that for some

ǫ > 0 and for n ≥ n0 we have Yn, Zn ≤ ǫ, and consider the following coupling to

a two-type process. Merge the rock and scissors types as “red”, and consider the

paper type as “blue”. Then, conditional on observing three red neighbours and

one blue neighbour, for large n the probability that all three red neighbours are

in fact rock is at least 1 − 6ǫ when n ≥ n0, and in this case the new vertex will

be paper. Similarly if there are two red neighbours the probability the new vertex

is paper is at least 1 − 4ǫ, and if there is one red neighbour, this probability is at

least 1 − 2ǫ. Hence, for n ≥ n0 the probability the new vertex is paper is at least as

large as that in a two-type process with, in the notation of [Antunović et al. 2016],

p0 = 0, p1 = 2ǫ, p2 = 4ǫ, p3 = 6ǫ, p4 = 1. For ǫ sufficiently small, Theorem 1.4

of [Antunović et al. 2016] shows that this two-type process does not have positive
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probability of convergence to red domination as long as some blue vertices are

present initially, and so convergence to (1, 0, 0) cannot have positive probability in

our model. Analogous arguments apply to (0, 1, 0) and (0, 0, 1). �
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