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Abstract

Classical security design papers equate competitive capital markets to securities

being fairly priced in expectation. We revisit Nachman and Noe (1994)’s adverse-

selection setting, modeling capital-market competition as free entry of investors and

allowing firms to propose prices for their securities, as happens in private securities

placements and bank lending. We identify equilibria in which high types issue un-

derpriced debt, which yields positive expected profits to uninformed lenders, while

low types issue steeper securities, such as equity. In addition, pooling equilibria

exist in which firms issue underpriced debt. Introducing pre-existing capital struc-

tures provides further foundations for pecking-order theories of external finance.
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1 Introduction

Which securities should be issued to finance an investment project by a firm possessing

private information that investors lack? And when will these securities be fairly priced?

Seminal papers by Myers (1984) and Myers and Majluf (1984) posed these questions,

developing a ‘pecking-order theory’ of external financing, according to which debt should

be issued as it minimizes the mispricing of the security issued by the best firms. Nach-

man and Noe (1994) (henceforth, NN) provides theoretical foundations for this theory,

identifying conditions under which, within the class of monotonic securities that satisfy

limited liability and zero investor profits, issuing risky debt is uniquely optimal.1

This result has two caveats. First, NN predict that all firms would pool on the same

debt contract. Thus, as Leary and Roberts (2010) observe, ‘strictly speaking, the pecking

order does not allow for any savings behavior or equity issuances’. That is, NN cannot

be used to micro-found empirical tests based on firms’ heterogenous financing choices.2

Second, this pooling debt contract is fairly priced for the average firm type. This conflicts

with the evidence that many securities issued are underpriced.3

Our contribution provides theoretical foundations for (1) the pecking-order theory, and

(2) underpricing of securities, despite free and costless entry of investors. We prove that

1Specifically, NN prove that issuing debt is (uniquely) optimal if cash flow distributions across
types are ordered according to (strict) conditional stochastic dominance. Noe (1988) discusses counter-
examples in which conditional stochastic dominance fails, while first-order stochastic dominance holds,
and debt is suboptimal.

2Common empirical tests of the pecking-order theory ask whether the set of ‘better firms’ in a sample
relies more on debt than the set of ‘worse firms’ (e.g., Frank and Goyal (2003) and Fama and French
(2005)). These tests are inconsistent with an equilibrium in which all firms pool on debt, as in NN. As
Leary and Roberts (2010) put it, they test a ‘modified pecking-order theory’ that lacks solid foundations.

3See, for example, the literature on the credit spreads puzzle (e.g., Bai, Goldstein and Yang (2020)),
and the recent evidence on the cost of loans in Chodorow-Reich, Darmouni, Luck and Plosser (2021).
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there exist equilibria in NN’s environment in which better types issue underpriced debt,

while the worst type issues an alternative, fairly-priced security (e.g., equity) that is

steeper than debt (in the sense of DeMarzo, Kremer and Skrzypacz (2005)). In these

equilibria, competitive investors make strictly positive profits on debt because it is priced

so that investors would make zero profits if it were issued by the worst firm type.4 We

then prove that pooling equilibria exist in which all firms issue underpriced debt, i.e., debt

with a price below its full-information value when issued by the average firm type. Our

characterization of all equilibria delivers clear testable predictions: worse firms issue less

debt; better firms issue underpriced debt on which investors make strictly positive profits.

The contrast with NN reflects two key modeling differences. First, unlike NN, we do not

exogenously equate competition among investors with zero expected profits for investors

in equilibrium. Rather, we only assume that investors are individually rational, which just

requires that they expect non-negative profits. Thus, equilibrium profits are an outcome

of the model, rather than an ad hoc assumption. Second, NN do not let firms offer prices

for their securities—for instance, firms cannot propose to raise a fixed amount with a

loan at a given interest rate from banks, or seek to privately place shares with an investor

at a proposed price. In contrast, we let firms choose whether or not to propose prices.

What sustains a partial-pooling equilibrium with positive profits, despite free entry of

investors? In classic security design settings such as NN, three properties must hold in any

partial-pooling equilibrium that satisfies standard refinements: (i) low-type firms must be

indifferent between mimicking or not the equilibrium security choice of higher types—i.e.,

4This marks an important qualitative difference between our work and that on underpricing in IPOs,
where underpricing is a costly signal that enables future refinancing at cheaper terms (Welch (1989),
Allen and Faulhaber (1989)). Our model has no future refinancing periods.
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their incentive constraint binds; (ii) securities issued by low-type firms cannot be under-

priced in equilibrium; and (iii) zero-profit curves corresponding to different types do not

intersect. Together these properties imply that investors must make profits on high-type

firms in any partial-pooling equilibrium. Therefore, equilibria in which investors expect

zero profits necessarily involve full pooling (Innes (1993), Nachman and Noe (1994)).

Unlike these papers, we do not impose zero investor profits, and we uncover that partial-

pooling equilibria with strictly positive profits exist and satisfy standard refinements.

To clarify why ‘reasonable’ equilibria with strictly positive investor profits exist, we

first consider the case of two types. We show that there exist separating equilibria in

which high-type firms issue just enough debt to cover their external financing needs, and

low types issue equity that also just meets their financing needs. The properties above

imply that investors must break even on the debt were it issued by low-type firms. In

such an equilibrium, any deviation that could benefit high-type firms would also appeal

to low-type firms, because high-type firms’ equilibrium security (straight debt) is the flat-

test feasible security (in the sense of DeMarzo et al. (2005)), meaning that it minimizes

the mispricing for high types among all feasible securities with a given expected value.

This includes offering off-equilibrium a public bond—i.e., issuing debt without a pro-

posed price—as in NN. Therefore, pessimistic off-equilibrium beliefs sustain ‘reasonable’

separating equilibria with positive investor profits.5

Turning to pooling equilibria, we first confirm that an equilibrium exists in which all

firms pool on issuing debt which is fairly priced on the average type, as in NN, and in-

5Specifically, the standard D1 refinement of Cho and Kreps (1987), also used in NN, has no bite;
therefore, such pessimistic beliefs are ‘reasonable’ for investors to hold off-equilibrium.
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vestors break even in expectation. However, we then show that this is the sole equilibrium

allocation that features zero investor profits. In particular, there also exists a continuum

of equilibria in which firms pool on underpriced debt. The most severe underpricing cor-

responds to the case in which debt is priced so that investor profits would be zero were it

issued by a low-type firm, as in partial-pooling equilibria. Thus, unlike in other security

design settings, in our model all firms are worse off (generically) under partial-pooling

than pooling.

Comparing these two types of equilibria reveals a fundamental contrast between our

framework and costly signaling models. Consider, for instance, the literature on under-

pricing in IPOs (e.g., Welch (1989), Grinblatt and Hwang (1989) or Allen and Faulhaber

(1989)). In these settings, high types credibly signal their identity by leaving money on

the table in the IPO market, in order to enjoy reduced financing costs in future SEOs

(Seasoned Equity Offerings). Thus, accounting for SEOs, high types always benefit from

separating. In contrast, high types in our model never benefit from separation, because

they issue underpriced debt once, and there are no subsequent financing rounds.

To investigate the driving forces behind our partial-pooling equilibria, we extend the

analysis so that firms start with an exogenous amount of outstanding debt and equity.

Brennan and Kraus (1987) show in this setting that if firms have enough shares to repur-

chase, then zero-profit curves intersect across types, unlike in NN. Thus, full separation

of types without strictly positive investor profits is possible. In contrast, we focus on

the intermediate case—between those of Brennan and Kraus and NN—in which firms

have a positive but limited amount of securities that they can repurchase. We identify

fully separating equilibria with strictly monotonic leverage and positive investor profits,
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in a three-type setting. In these equilibria, high-type firms issue debt and repurchase the

available shares. This debt is priced so that it would break even if issued by medium types,

and so it yields strictly positive profits to investors. Medium types, instead, repurchase

strictly less shares and issue debt that is priced at the full-information rate. Finally, low

types issue fairly-priced equity (or other securities that are steeper than debt). There-

fore, equilibrium leverage is strictly monotonic, providing a micro-foundation to the net

leverage regressions typically run by empirical studies.

From a theoretical standpoint, our paper contributes to the vast security design lit-

erature under adverse selection. Seminal contributions include Innes (1993), Nachman

and Noe (1994), DeMarzo and Duffie (1999) and DeMarzo, Kremer and Skrzypacz (2005).

The crucial difference between these papers and ours is that we do not mandate that com-

petition among investors must lead to zero profits. Instead, we allow for non-negative

profits and explicitly model competition as free and costless entry. We show that the

zero-profit restriction fundamentally alters the set of securities that arise in equilibrium.

Our partial-pooling equilibria with positive investor profits are robust to prior hetero-

geneity over the population distribution of firm types. Each security offered is priced such

that investor profits would be zero were it issued by low types. Therefore, these equilibria

are robust to ambiguity aversion over the fraction of types, or the cash flow distributions

of different types. This is relevant for the growing literature on security design under am-

biguity aversion (Carroll (2015), Lee and Rajan (2018) and Malenko and Tsoy (2020)).

Finally, our extension of NN’s setting is empirically relevant. NN’s mechanism in which

firms choose securities and then investors compete in an auction can describe public bond
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issuance by large corporations, or even IPOs and SEOs. However, it does not match the

widespread phenomena of private securities placements, such as the sale of private debt

and equity, or bank lending and syndication. Typical examples are raising a fixed amount

with a loan at a given interest rate from banks, or offering shares of a firm’s stock at a

price to private equity investors. While NN exogenously rule out such securities, private

financing instruments represent a common funding channel for small and medium en-

terprises or individuals that invest under severe informational asymmetries. In contrast,

public issuances of debt or equity typically come from larger, established corporations—

entities for which informational asymmetries are far lower.

Our setting is particularly relevant for bank lending, where a large literature relates

bank profits to an informational advantage of banks (e.g., Dell’Ariccia and Marquez

(2004)), which contrasts with recent evidence that even fintech lenders mostly rely on

credit scoring and hard information (e.g., Di Maggio and Yao (2020)). In our model,

lender profits are solely driven by incentive compatibility considerations—they are re-

quired to discourage low-type borrowers from mimicking high types, and issue equity

instead. Because any deviation to lower interest rates would attract all firm types, pes-

simistic off-equilibrium beliefs sustain bank profits in equilibrium, even though banks

lack informational advantages over the market on their borrowers. As a result, our gen-

eralization of NN’s security design problem extends it to new economic environments.

Before proceeding to the analysis, we highlight the robustness of our main empirical

predictions—which are that (i) better types issue relatively more debt, and (ii) high types

issue underpriced debt securities. The first prediction holds strictly in any partial-pooling

equilibrium, and it holds weakly under full pooling. Our second, underpricing prediction

6



is a generic feature of equilibrium—every equilibrium except NN’s features strictly posi-

tive investor profits. Thus, our paper clarifies that the zero-profit pooling equilibrium on

which the literature focuses is knife-edged in important ways.

The paper unfolds as follows. Section 2 presents a simple example that conveys the

main driving forces behind our results. Section 3 introduces our baseline, two-type model.

Section 4 characterizes all equilibria of the two-type model. Section 5 extends the char-

acterization to N > 2 types. Section 6 introduces the possibility that firms have an

outstanding amount of debt and equity that can be repurchased, showing that there exist

fully separating equilibria strictly monotonic leverage across types. Section 7 concludes.

2 Example

To clarify the economic intuition, consider a simple example. A firm needs $1 to finance

a project. A high-type firm’s project yields xH with probability fH , and zero otherwise.

A low-type firm’s project yields xL with probability fL, and zero otherwise. Assume that

xH > xL > 0 and 1 > fH > fL > 0. The fraction of type i in the population is pi ∈ (0, 1)

and
∑

i pi = 1. There is free entry of risk-neutral investors and the risk-free rate is zero.

Firms can only issue debt, equity, or a mix of the two.6 Debt offers bondholders a pay-

ment of min{x,D} for x ∈ {0, xL, xH}, where D is the face value of debt. Equity, which

is junior to debt, gives shareholders a dividend of α(x−D)+ = max{α(x−D), 0}, where

α ∈ [0, 1] is the fraction of shares sold. Thus, a mix of debt and equity is worth fi[α(xi−

D)++min{xi, D}] if issued by type i ∈ {L,H}. It is worth the weighted average of these

6In this example, one can trivially separate the types by exploiting the non-overlapping support.
Our main model assumes a common support and shows that the economics is unaffected.
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two expressions (with weights pi) if all firms pool on the same mix of debt and equity.

Figure 1: Equilibria in the example

ZPL

←Eqm.

ZP0

IPH,L

α

D

Figure 1 plots the four relevant iso-profit curves in (α,D) space given parameter choices

xH = $6, xL = $4, fH = 3
4
fL = 1

3
and pL = 0.5. The ZPi curves for i ∈ {L,H} describe

all combinations of debt and equity such that investors make zero profits on type i firms,

solving fi [α(xi −D)+ +min{xi, D}] = 1. ZP0 is the zero-profit curve for a pool of both

types: pH
3
4
[α(6−D)+ +min{6, D}] + pL

1
3
[α(4−D)+ +min{4, D}] = 1. Finally, IPH,L

is the iso-profit curve for high types that offer only debt (α = 0) on ZPL, and so is parallel

to ZPH . To derive IPH,L, solve ZPL for D when α = 0 to obtain D = 3. Next, compute

the value of (α,D) = (0, 3) if issued by high types by substituting into the left-hand side

of ZPH , to get 2.25. Thus, IPH,L is characterized by 1
2
[α(6−D)+ +min{6, D}] = 2.25.

NN show that if investors must make zero profits, then, in the unique equilibrium sat-

isfying the D1 refinement, both types pool on issuing debt, fairly priced for the average

type. To derive their result, start from any mix of debt and equity (α,D). First, be-

cause ZPH < ZP0 < ZPL, investors cannot make zero profits on all firms in a separating
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equilibrium.7 Thus, given the zero-profit restriction, the equilibrium contract must be

on the zero-profit pooling line, ZP0. Second, if firms pool on anything other than debt,

then, because ZPH is steeper than ZPL, high types could deviate to issuing debt that

is slightly underpriced from the average firm type’s perspective. The deviation would

not be profitable for bad types, but it is strictly profitable for high types if accepted by

investors. Therefore, issuing equity cannot be part of a ‘reasonable’ equilibrium.

Turning to our positive-profits equilibria, suppose high types offer only debt on ZPL,

while low types offer only equity on ZPL. Then, debt is underpriced because it is issued

by high types, but equity is fairly priced. The high type’s iso-profit line to which this

contract belongs is IPH,L, which lies strictly below ZPL whenever α > 0. Therefore,

deviating to any contract that could benefit high types, also benefits low types. Thus,

common refinements including D1 have no bite: with sufficiently pessimistic beliefs, this

deviation would be unprofitable, sustaining the positive-profits equilibrium. Indeed, sep-

arating equilibria exist in which low types issue any mix of debt and equity such that

α > 0 on ZPL, while high types only issue debt on ZPL. In addition, pooling equilibria in

which all firms issue underpriced debt exist: all debt contracts along the y-axis in Figure

1, between ZP0 and ZPL—as highlighted by the solid segment—are equilibrium securities.

Summing up, the example delivers clear testable empirical implications: (i) high types

issue relatively more debt than low types; and (ii) investors make strictly positive expected

profits on high types’ equilibrium debt securities. We now show that this intuition extends

to a standard NN setting with general contracts and cash flows distributions.

7Abusing notation, we write ZPH < ZP0 to indicate that the cost of financing under full-information
for high types is strictly less than that for a fifty-fifty pool of types. Thus, the iso-profit curve for high
types has a strictly lower α for any given D, relative to the pooling iso-profit curve.
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3 Baseline model with two types

Our two date (t = 0, 1) model features two types of risk-neutral firms that seek external

financing for a risky project. Firms can raise funds from a continuum of competitive, risk-

neutral investors.8 We normalize the risk-free rate to zero. Projects require investment

of $1 at date t = 0 to generate random cash flows x̃ at t = 1. A firm’s type θ ∈ {θH , θL}

corresponds to its expected cash flows, where θH > θL > 1. Thus, both firm types have

strictly positive NPV projects and it is efficient to fund them. A fraction p ∈ (0, 1) of

firms are high types with θ = θH . The mean firm type is θ0 := pθH + (1− p)θL.

We denote a realization of x̃ by x, and the probability density function over x for a

type-θ firm by fθ(x), which we assume is strictly positive on a common, finite support

[0, x̄]. The random cash flows associated with the two firm types are ordered by the strict

Monotone Likelihood Ratio Property (MLRP): ∂
∂x

fH(x)
fL(x)

> 0 for every x ∈ [0, x̄].9 That is,

the probability that a cash flow x comes from high types increases in x.

Contracts. As in NN, firms can sell securities s(x) : [0, x̄]→ R that specify payouts to

investors as a function of the realized cash flows x. NN impose the condition that the price

Q(s) of an equilibrium security equals its expected value given investor beliefs about the

firm type offering it, imposing Q(s) = E[s|s has been offered]. We enlarge the contract

space by allowing firms to propose selling prices, as often occurs in private security place-

8If instead of a continuum of investors we had any number N ≥ 2, our results would hold a fortiori,
as positive-profits equilibria are easier to sustain with Betrand competition than free entry.

9NN impose Conditional Stochastic Dominance, a weaker condition than MLRP. The literature
mostly works with MLRP (e.g., DeMarzo et al. (2005)), as it is more tractable and does not alter
economic intuition.
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ments. Thus, a contract c := (s(x), Q(s)) consists of a security s(x) and a selling price

Q(s). Competitive investors can accept or reject purchasing the security at price Q(s).10

With this formulation, the option not to propose a price (as in NN) is redundant—a firm

can achieve the same allocation by proposing a price that equals the expected security

auction price. NN’s equilibrium in which c∗θ = (s∗θ) and Q(s∗θ) = E[s∗θ|s
∗

θ has been offered]

corresponds in our model to the case in which c∗θ = (s∗θ, Q
∗

θ(s
∗

θ)), where Q∗

θ(s
∗

θ) = Q(s∗θ).

Our formulation has two advantages relative to NN’s. First, it enlarges the contract

space from which firms can choose. Second, it captures private securities placements,

in which the amount that firms want to raise is often fixed and equal to their external

financing needs for a budgeted project. For example, a bank loan of $1 is a security in

which s = min{x,D} for some D ∈ [0, x̄] and Q(s) = $1. A private equity issuance for

$1 of capital is a security in which s = αx for some α ∈ [0, 1] and Q(s) = $1. In all cases,

the value of the security for investors need not be $1, and whether or not competition

pushes the price to $1 is an outcome of the analysis, rather than an assumption.

As is standard in the literature, and also imposed by NN, we assume that a feasible

security satisfies two-sided limited liability and monotonicity:11

Definition 1. A contract c is feasible if it offers investors a feasible security s. A security

s is feasible if it satisfies:

(LL) Limited Liability: s(x) ∈ [0, x] for every x.

(M) Monotonicity: for every (x, x′ < x) ∈ [0, x̄]2, s(x) ≥ s(x′) and x−s(x) ≥ x′−s(x′).

10With many bidders, a lottery allocates the security to one bidder, for example, with equal probability.
11Limited liability guarantees that an equilibrium exists, and is needed to derive most results in the

security design literature, including ours. Monotonicity ensures that the optimal security for better types
is debt, but is not key for the existence of separating equilibria. We maintain this assumption to simplify
exposition and comparisons with NN. Koufopoulos, Kozhan and Trigilia (2019) derive conditions under
which monotonicity can be micro-founded by appealing to the possibility of window dressing.
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Timing. At stage 1, a type-θ firm offers a feasible contract cθ = (sθ, Qθ), which consists

of a feasible security sθ and a price Qθ(sθ). After a contract c is issued, investors form

beliefs p′i(c) := Pr.[θ = θi|c] about the firm type offering it. We denote the vector of pos-

terior probabilities by p′. At stage 2, given these beliefs, investors either accept or reject

the contract. We denote the acceptance decision by r ∈ {0, 1}, where r = 1 if investors

accept.12 If a price Q ≥ 1 is offered, then (observable and verifiable) investment occurs.

Otherwise, the firm is worth zero. If Q > 1, we follow NN and assume, without loss of

generality, that the difference Q − 1 is paid to the firm’s shareholders as a dividend at

t = 0. It is useful to define E[s(τ)] := E[s(x)|θ = τ ], which denotes the full-information

value of security s when issued by type τ . Then, the expected payoff to a type-θ firm

that offers a contract c = (s,Q(s)) when the acceptance decision is r is

Uθ(c) := r(Q(s)− 1 + θ − E[s(θ)]). (1)

We focus on ‘reasonable’ pure strategy Perfect Bayesian equilibria, i.e., Perfect Bayesian

equilibria that satisfy the D1 refinement (as defined in Cho and Kreps (1987), Section 5):

Definition 2. A ‘reasonable’ pure strategy PBE consists of feasible contracts (c∗L, c∗H)

and posterior beliefs p′(c) of investors that satisfy:

SR Sequential rationality: firms propose contracts optimally given the beliefs p′(c) of

investors and their associated optimal acceptance decision r∗(p′(c));

BC Belief consistency: p′(c∗) are derived from Bayes’ Rule.

12We follow NN, as well as the rest of the security design literature, and only consider pure strategy
equilibria. As is well known (see, e.g., Dasgupta and Maskin (1986)) the equilibrium set would expand
dramatically if one allowed for mixed strategy equilibria.
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D1 Off-equilibrium-beliefs refinement: there does not exist a pair (θ, θ′) ∈ {θ1, ..., θN}
2,

with θ 6= θ′, and an off-equilibrium contract c such that: {r(p′(c))|Uθ′(c|p
′(c)) ≥

Uθ′(c
∗

θ′)} ⊂ {r(p
′(c))|Uθ(c|p

′(c)) > Uθ(c
∗

θ)}.
13

The D1 refinement is standard in this literature. It rules out equilibria sustained by

off-equilibrium beliefs that assign positive probability to types that weakly benefit from

the deviation ‘in strictly less cases’ than other types, in a set-inclusion sense. D1 forces

off-equilibrium beliefs to assign probability one to the firm type that benefits ‘in strictly

more cases’ than any other type. Henceforth, we dub a ‘reasonable’ equilibrium any pure

strategy PBE that satisfies the conditions detailed in Definition 2.

Ranking securities. We follow DeMarzo et al. (2005) and define an ordered set of

securities as a function s(z, x), where z ∈ [z0, z1] is an index and s(z, ·) denotes the

payment from the firm to the investors across cash-flow states x. As before, we de-

fine E[s(z, τ)] := E[s(z, x)|θ = τ ]. We require the ordering to be full in the sense that

E[s(z0, θ1)] ≤ θ1 and E[s(z1, θN)] ≥ θN , and we also require that E[s(z, x)] is increasing in

the index z, for any probability distribution over types used to compute the expectation.

To rank ordered sets of securities, we use the notion of ‘steepness’ proposed in DeMarzo

et al. (2005) to measure the information sensitivity of a security design.

Definition 3. Security s(x) crosses from below security s′(x) if E[s(θi)] = E[s′(θi)] im-

plies that E[s(θi+1)] > E[s′(θi+1)]. An ordered set of securities s(z, x) is steeper than

13We use the standard definition of the D1 refinement (see Section 5 of Cho and Kreps (1987)), which
ranks sets of off-equilibrium posteriors. NN’s alternative definition ranks off-equilibrium prices. The
definitions are equivalent, because to any price Q ≥ 1 offered off-equilibrium there is a corresponding
off-equilibrium posterior, and vice versa.
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another ordered set of securities s′(z, x) if, for all s(x) ∈ s(z, x) and s′(x) ∈ s′(z, x), s(x)

crosses s′(x) from below.

This definition says that a security s crosses from below another security s′ if there exists

an x̂ such that s(x) > s′(x) ⇐⇒ x > x̂ (DeMarzo et al. (2005), Lemma 5). For instance,

equity crosses debt from below; while equity and call options cross straight equity from

below. We are now equipped to solve for the set of equilibria of the financing game.

4 Equilibria with two types

4.1 Separating Equilibria

We first analyze separating equilibria. Lemma 1 details the well-known result that sepa-

rating equilibria cannot exist if investors must make zero profits on every security offered

in equilibrium.

Lemma 1. There is no separating equilibrium in which all securities issued are fairly

priced. That is, there is no equilibrium with sH 6= sL and Eθ[sθ(x)] = Q(sθ), ∀θ.

Proof. All omitted proofs are in the Appendix.

Intuitively, if all securities were fairly priced, then regardless of the security design cho-

sen by high types, low types would always benefit from mimicking high types. It follows

directly that, if a separating equilibrium exists, it must feature strictly positive profits for

competitive investors on at least one firm type. We now highlight properties of separating

equilibria with positive investor profits that have been overlooked by papers imposing zero
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investor profits. First, in any ‘reasonable’ separating equilibrium, low-type firms must be

indifferent between offering their equilibrium contract cL and mimicking high-type firms

by offering cH 6= cL. Otherwise, high-type firms would have deviations that would not

attract low types, but would make high types better off, violating D1. Thus,

Lemma 2. A separating equilibrium is ‘reasonable’—i.e., it satisfies D1—only if the

incentive constraint for low-type firms binds: UL(cL) = UL(cH).

While the intuition behind Lemma 2 is straightforward, the lemma has the important

implication that the incentive constraint for high-type firms can never bind in separating

equilibria. To see this, start from a pair (sL, sH) with sH 6= sL such that EL[sL] = EL[sH ].

Consider the effect of a change of measure on both sides of the equation, from FL to FH .

The effect must be heterogeneous, as long as the securities are different. Moreover, the

incentive constraint must hold. Thus, high-type firms must issue flatter securities (in the

sense of Definition 3) than low-type firms at a separating equilibrium. Indeed, the corner-

stone of both NN’s arguments and ours is the fact that the flattest feasible security is debt:

Lemma 3. Debt crosses all feasible securities from below: the flattest ordered set of

feasible securities is sD(d, x) := min{x, d} for d ∈ [0, x̄].

Lemma 3 allows us to conclude that low-type firms must issue steeper securities than

debt in any separating equilibrium:

Lemma 4. A separating equilibrium is ‘reasonable’ only if the incentive constraint for

high-type firms is slack: UH(cH) > UH(cL). Thus, the security issued by low-type firms,

sL, must cross from below that issued by high-type firms, sH .
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Recall that Lemma 1 rules out separating equilibria with zero expected profits on all

securities. We next establish that in any separating equilibrium, competitive investors

never make strictly positive profits on low-type firms. Therefore, investors must make

strictly positive expected profits on high types in any separating equilibrium.

Lemma 5. A separating equilibrium is ‘reasonable’ only if investors do not make positive

profits on low-type firms: EL[sL] = Q(sL).

Our last preliminary lemma establishes that in any ‘reasonable’ separating equilibrium,

high-type firms must offer a security that exactly covers their financing needs. Intuitively,

all firms value cash in the same way, but high types expect to pay more to lenders for

any security, so borrowing less cash and issuing less securities appeals to high types.

Lemma 6. A separating equilibrium is ‘reasonable’ only if high-type firms offer a security

that raises the exact amount needed by the project: Q(sH) = 1.

Proposition 1 builds on these lemmas to establish that separating equilibria exist, and

that they all share the same qualitative structure. Specifically, in every separating equi-

librium, high types issue debt, while low types issue steeper securities such as equity, or

a non-degenerate combination of debt and equity.

Proposition 1. There exists a continuum of ‘reasonable’ separating equilibria. Every

such equilibrium features the following common properties:

1. High-type firms issue a standard debt security: sH = min{x,DH};

2. The security sH is underpriced: the face value DH sets EL[min{x,DH}] = 1;

3. Investors make strictly positive profits on high-type firms: EH [min{x,DH}] > 1.
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4. Low-type firms issue any security different from debt (i.e., sL 6= min{x,D} for any

D ∈ [0, x̄]), such that EL[sL] = Q(sL) ≥ 1.

Proposition 1 is novel in the context of the security design literature, providing insights

into both the theoretical and empirical literature on capital structure and security design.

Theoretically, our results show that, given the standard assumption of monotonic secu-

rities, there exist equilibria in which investors make strictly positive profits on high-type

firms, and at which the securities issued by different types can be ranked according to

their steepness, or information sensitivity. These equilibria are typically ruled out in ex-

isting papers by the imposition of zero-profits constraints on investors in equilibrium (see,

e.g., the ‘competitive rationality’ condition for equilibrium in NN). With this added con-

straint, consistent with our characterization, the unique equilibrium that satisfies D1 has

all firms pool on the same debt contract, which is fairly priced for the average firm type.

Empirically, our results provide theoretical foundations to empirical tests of the ‘pecking-

order’ hypothesis. Such tests typically ask whether in some sample of firms, the set of

‘better firms’ (high types) relies more on debt than the set of ‘worse firms’ (low types).

But as we just argued, while the idea behind the pecking order hypothesis is that worse

firms may not be able to issue debt, security design under asymmetric information and

zero profits necessarily delivers a pooling equilibrium in which every firm relies on debt,

contrary to the pecking-order premise. A contribution of our paper is to show that when

one allows for the possibility of positive investor profits, then a foundation for these tests

of the pecking-order obtains. That is, in our separating equilibrium, high types issue only

debt, while low-types must issue other securities as well, such as equity, to make their
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payout to investors strictly more informationally sensitive. Observe that our argument

does not rely on the concept of a firm’s debt capacity, which is not micro-founded in this

adverse selection setting (Leary and Roberts (2010)). Instead, in our model, low types

have an intrinsic preference relative to high types for steeper securities (e.g., equity rather

than debt). That is, in the context of our example, the iso-profit curve of low types is

flatter—in the equity/debt space—than that of high types (see Figure 1).14

4.2 Pooling Equilibria

We next characterize all pooling equilibria in which sL = sH ≡ sP for some feasible sP .

Under the exogenous imposition of zero profits for investors, NN show that a unique

pooling equilibrium satisfying D1 exists (see their Section 3). In this equilibrium all firm

types pool on a debt contract that is fairly priced for the average firm type. We relax

this restriction, allowing investors to make non-negative profits in equilibrium.

Investors make non-negative profits in a pooling equilibrium if and only if Q(sP ) ≤

E0[sP ] := pHEH [sp] + pLEL[sp]. We first establish that in any pooling equilibrium with

non-negative profits, the security sP on which the two types pool must cross all feasible se-

curities from below. Thus, within monotonic securities, all firm types issue straight debt.

Lemma 7. In any ‘reasonable’ pooling equilibrium, all firm types issue debt: sL = sH =

min{x,DP} for some DP ∈ [0, x̄].

We next establish that in any pooling equilibrium, all firms raise the minimum amount

14There is also a sense in which these separating equilibria require less information than pooling
equilibria, as they only demand that investors know the possible types of firms, but not necessarily the
proportion of each type within the economy.
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needed for investing. NN (Theorem 8) prove that this property must hold in the unique

‘reasonable’ equilibrium in which firms issue debt without proposing a selling price for it to

investors. This result extends when firms can propose prices for the securities they issue:

Lemma 8. In any ‘reasonable’ pooling equilibrium, all firm types raise exactly the capital

required to invest in the project: Q(sp) = 1.

The characterization of all pooling equilibria of our game in Proposition 2 below follows

directly from Lemmas 7-8. One equilibrium is the zero-profit debt equilibrium identified

by the literature. The other equilibria involve all firm types issuing debt that is under-

priced relative to the average type, with a degree of underpricing that spans from zero to

the other extreme in which debt is priced so that it would make zero profits for investors

if it were only issued by low-type firms.

Proposition 2. There exists a continuum of ‘reasonable’ pooling equilibria. In any

such equilibrium, all types raise exactly $1 of capital by issuing debt with a face value

DP ∈ [D0, DH ], where DH solves EL[min{x,DH}] = 1 and D0 solves E0[min{x,D0}] = 1.

Importantly, high-type firms are strictly better off in all pooling equilibria that have

debt contracts with face value DP ∈ [D0, DH) than they are in all separating equilibria,

even though high types cross-subsidize low types in these pooling equilibria. This reflects

the fact that the debt security issued by high types in any separating equilibrium would

break even for investors if it were only issued by low types. This is the opposite of what

happens in standard settings in which better firms choose to separate by means of costly

signals, in order to minimize the future mispricing of their securities.
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5 Extension to N > 2 types

Our first extension considers the case of more than two types. Our primary objective is

to establish that the key conclusions drawn from the two-type case generalize: (i) there

exist equilibria in which low types issue equity while high types issue debt (but not vice

versa); (ii) investor profits are strictly positive in equilibrium (generically, and in contrast

to NN’s pooling equilibrium, which is the sole exception); (iii) the degree of underpricing

of high types’ securities only depends on the technology of the worst type, and not on

the number of types or their share in the population.

We now denote a firm’s type by θ ∈ {θ1, ..., θN}, where types are ordered so that

1 < θ1 < θ2 < ... < θN . Thus, all firms have positive NPV projects and it is efficient to

fund them. Let pi := Pr.[θ = θi]. Denote the mean firm type by θ0 :=
∑N

i=1 piθi. Strict

MLRP requires that ∂
∂x

fi+1(x)
fi(x)

> 0 for every x ∈ [0, x̄) and for i ∈ {1, ..., N − 1}.

A first useful observation is that, as in NN, if in an equilibrium a type θ issues a security

that is underpriced relative to the full-information case, while another type θ′ issues a

security that is not underpriced, then we must have that θ > θ′. Namely, it must the

better type that issues underpriced securities in equilibrium:

Lemma 9. If there is an equilibrium security s = s∗(θ) such that E[s(θ)] ≤ Q∗(s), and

another security s′ = s∗(θ′) such that E[s(θ′)] ≥ Q∗(s′), then:

min{θ|s∗θ is underpriced relative to full information} >

max{θ|s∗θ is not underpriced relative to full information}.
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Lemma 9 implies that if there is a pool of types issuing securities that are underpriced

relative to the full-information case, while another pool of types issues non-underpriced

securities, then the lowest type that faces underpricing must have a higher net present

value than the highest type issuing a security that is not underpriced.

In addition, as in the two-type case, incentive constraints prevent two different equilib-

rium securities from being both priced as they would have been under full information.

Lemma 10. There is no equilibrium such that: (i) s∗θ′ 6= s∗θ′′, for a pair of types θ′ and

θ′′ 6= θ, (ii) E[s∗θ(θ)] = Q∗(s∗θ) for θ ∈ {θ′, θ′′}.

Combining these results, it follows that if some type issues securities that are priced as

they would have been under full information, then it must be the lowest type.

Corollary 1. The only type that can issue a fairly-priced security in equilibrium is the

lowest productivity type θ = θ1.

Proof. Immediate from Lemmas 3 and 9.

Another implication of this analysis is that the highest type must issue underpriced

securities in equilibrium, relative to the full-information benchmark. Therefore, this type

can never benefit from raising more than the $1 it needs for investment purposes.

Corollary 2. In every equilibrium, Q∗(s∗θN ) = 1.

Proof. Immediate from Lemmas 3 and 9.

To characterize equilibria, observe that there are two mutually exclusive and exhaustive

types of equilibria: those in which the low type issues fairly-priced securities, and those in
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which the low type issues over-priced securities—that is, securities that have a higher price

relative to those that the low type would issue under full information. This is because the

lowest type always has a positive net present value project, so it can always finance itself

at the full-information rate. If one also imposes that investors must make zero profits, as

in NN, then one can prove that fairly-priced securities cannot be issued in equilibrium,

and there must be pooling. However, this is not the case with the more general contract

space that we consider. To clarify intuition, we analyze these two cases separately.

5.0.1 Partial pooling

We begin with the case in which the lowest type issues fairly priced securities, that is,

securities such that E[s∗θ1(θ1)] = Q(s∗θ1). In this case the characterization of a continuum

of partial-pooling equilibria obtains straightforwardly from incentive compatibility con-

siderations, for similar reasons as those highlighted in the two-type case. All of these

equilibria have the feature that investor profits are strictly positive, and that low types

must issue a security that crosses debt from below, such as equity.

Proposition 3. There exists a continuum of ‘reasonable’ partial-pooling equilibria. In

every such equilibrium, the following properties hold:

1. The low type θ = θ1 issues a security s∗θ1 such that E[s∗θ1 ] = Q(s∗θ1) that crosses debt

from below (e.g., equity).

2. All other types issue a debt security s∗
−θ1

such that E[s∗
−θ1

(θ1)] = Q(s∗
−θ1

). That is,

investors would break even on s∗
−θ1

were it issued by type θ = θ1 instead.

3. Expected investor profits are strictly positive, despite free entry.
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Proposition 3 highlights the importance of modeling competition explicitly, without im-

posing zero profits exogenously. By imposing zero profits, the literature has missed the

existence of a continuum of equilibria in which low types issue equity, and higher types

issue debt which is so underpriced not to be an attractive deviation for low types. At this

debt contract, investor profits must be strictly positive, as otherwise incentive constraints

would be violated, but competition among investors is not able to erode the profits, as it

faces the threat of attracting low types as well. The intuition for why partial-pooling equi-

libria with severe underpricing exist is that when low types are expected to issue equity in

equilibrium, any other security offered that would benefit higher types would also domi-

nate equity issuance for low types, making it not incentive compatible on-the-equilibrium

path, and unprofitable off-equilibrium path (if investors are sufficiently pessimistic).

5.0.2 Pooling equilibria

It remains to consider the possibility that the lowest type issues overpriced securities in

equilibrium. In this case, an investor would not accept to purchase the security unless the

low type was pooling with some higher-NPV type τ . Using arguments that mirror those in

NN, one can show that this pooling must be on debt, as it is the flattest ordered set of secu-

rities. This logic allows one to conclude that all types must be in the same pool that issues

debt. However, there still is an important contrast relative to NN, because in our model

there is no reason for this debt to be fairly priced relative to the average type. Indeed, we

prove that there exists a continuum of pooling equilibria, and that these equilibria span all

possible degrees of underpricing, from NN’s equilibrium with fair pricing on the average

type, all the way to the extreme underpricing that occurs at partial-pooling equilibria.

23



Proposition 4. There exists a continuum of ‘reasonable’ pooling aquilibria. At every

such equilibrium, the following properties hold:

1. All types issue a debt security s∗p such that E[s∗p] ∈ [$1,E[s∗p(θ1)]].

2. Investor profits are strictly positive at every pooling equilibrium, except that which

implements NN’s allocation—that is, they are strictly positive whenever E[s∗p] > $1.

Proposition 4 highlights a second key implication of NN’s zero-profit assumption: it pins

down a non-generic pooling equilibrium in which debt is fairly priced relative to the aver-

age type, so that investor profits are zero. While NN’s prediction that full pooling must in-

volve the issuance of debt securities is robust, we also find that investor profits are strictly

positive at every equilibrium allocation but NN’s, so positive expected profits are expected

in settings where firms seek financing under ex-ante informational asymmetries, as in NN.

6 Pecking-order with pre-existing capital structures

As we stressed in the introduction, the motivation behind our theoretical exercise is

twofold. First, we want to establish what drives the results in NN, and to characterize the

set of equilibria when one drops NN’s assumptions that (i) competition among investors

implies that profits must be zero in equilibrium; and (ii) firms cannot propose prices

for their securities. Second, we seek to provide a micro-foundation for empirical tests of

pecking-order theories of external financing, which are inconsistent with a pooling equi-

librium in which all firms issue debt and therefore have exactly the same capital structure.

As a preliminary step in micro-founding firms’ heterogenous capital structure, we estab-

lished that equity issuance by a low type is possible in equilibrium, while high types must
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issue debt. Thus, capital structure heterogeneity emerges in our baseline model. However,

the partial-pooling equilibrium that we derive masks further heterogeneity that is relevant

in empirical applications, because it consists of a corner solution in which higher-type

firms must pool. To clarify this point, we now relax the strong assumption that NN make

that firms have no pre-existing capital structure, and we micro-found the cross-sectional

leverage regressions that empirical papers testing the pecking-order theory typically run.

In empirical practice, firms choose how to obtain external financing when they already

have a capital structure in place. This adds a dimension to a firm’s optimization prob-

lem, as now the firm chooses not only what securities to issue, but also what fractions of

pre-existing securities to repurchase. For concreteness, we modify our example of Section

2. First, we introduce a medium type whose project would yield xM ∈ (xL, xH) with

probability fM ∈ (fL, fH), and zero otherwise. Second, we now assume that a firm’s

manager inherits a capital structure from the past that consists of (1) a face value of

liabilities of ∆ ≥ 0, and (2) a fraction of shares sold in the past to outside investors of

β ∈ [0, 1]. All claims are contingent on the final realization of cash flows x.

The assumption that projects are positive net present value for the firm’s manager

translates into the condition fi(1 − β)(xi − ∆)+ ≥ 1 for i ∈ {L,M,H}. Since fi and

xi strictly increase with i, it follows that a sufficient condition for all projects to have

positive net present value for the firm under full information is fL(1− β)(xL −∆)+ ≥ 1.

We assume that this inequality holds. Moreover, to ensure monotonicity across types

(which is immediate when β = ∆ = 0, and corresponds graphically to a condition on

the ordering of the crossing points of zero profit curves) we assume that the types are

sufficiently different that fH−fM
fHfMxH−fHfMxM

> fL−fM
fLfMxL−fLfMxM

.
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Figure 2: Extension of Figure 1 to pre-existing capital structures
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Figure 2 plots the zero-profit curves in the (α,D) space when model parameters are:

β = 0.45, xH = $10, xM = $8, xL = $6, fH = 3
4
, fM = 1

2
, fL = 1

3
and pH = pM = 1

3
. Note

that the set of feasible securities is no longer bounded below and to the left by zero, as

it was in the example analyzed in Figure 1. Now, a firm can issue up to −β shares and

up to −∆ worth of bonds. If a firm has both a combination of debt and equity, then the

maximum amount of shares that are available to repurchase when fL[(1−β)(xL−∆)+ ≥ 1

is 1− 1
pL(xL−∆)+

, as depicted in the negative orthant of Figure 2.

As Figure 2 shows, there is never a gain from repurchasing debt in this model. The

only type that could ever repurchase debt is the low type, at an equilibrium in which it

separates from other types and thus can repurchase the debt at its full-information price.

The nature of equilibria in this setting depend critically on the shares outstanding β.

Brennan and Kraus (1987) analyze in a related setting, the case in which full separation
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without investor profits is possible, which requires sufficient shares outstanding. In con-

trast, we focus on settings with fewer shares outstanding, so that β ≤ β :=
∣

∣

fM−fH
fMfH(xH−xM )

∣

∣,

where β is the unique level of shares α such that ZPH intersects ZPM .15 When high types

are not able to repurchase β̄ shares, full separation with zero investor profits on all equilib-

rium contracts is no longer feasible. However, in line with our earlier analysis, separating

equilibria with positive investor profits continue to exist.

Figure 3 shows an example of the type of fully separating equilibria that can obtain. In

this equilibrium, as with no pre-existing capital structures, low types can issue a combi-

nation of debt and equity, without repurchasing any security, such as s∗L. Medium types

issue debt and repurchase the minimal amount of shares that guarantees separation from

low types, and offer s∗M , at the intersection of ZPM and ZPL. Finally, high types repur-

chase strictly more shares than medium types, all the way to the corner −β, issuing s∗H .

To see why this is an equilibrium, consider high types first. At s∗H they are leaving

strictly positive profits to investors (because IPH is shifted to the right relative to ZPH),

but there is no other feasible mixture of debt, equity and repurchases that can make them

better off: any feasible deviation lies below ZPM , and thus would attract medium types

and be loss making in expectation for investors off-equilibrium (if sufficiently pessimistic).

Similarly, medium types do not have a profitable deviation, because any feasible devia-

tion that would make them better off if accepted by investors, could either attract low

types and be loss making, or if it does not attract low types it is loss-making on medium

types for investors, and hence would be rejected.

15To obtain this expression, first set the right-hand side of ZPH equal to the right-hand side of
ZPM and solve for α. Then, solve for D the equation ZPH , and plug in the expression for α that was
obtained, and solve for α again to get our expression.
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Figure 3: A fully separating equilibrium with strictly monotonic leverage
and positive investor profits, when β ≤ β̄
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We emphasize a few features of this equilibrium. First, our main conclusions from the

setting with no pre-existing securities extend: (i) high types issue underpriced debt on

which competitive investors make strictly positive expected profits; (ii) medium types also

issue debt, but they issue strictly less debt than high types, because they optimally choose

to repurchase fewer shares; (iii) low types issue strictly less debt than medium types, and

possibly choose steeper securities than debt, such as equity. However, unlike the case with-

out pre-existing capital structure, this fully separating equilibrium features strictly mono-

tonic leverage across types—the higher the type, the higher the equilibrium leverage—for

a set of firms that started off with an identical inherited capital structure (β,∆). This

provides a direct foundation for the net-leverage regressions used to test the pecking-

order theory, and clarifies that the partial pooling equilibrium is driven by the hidden

assumption β = 0, without which there exists a continuum of fully separating equilibria

all featuring underpricing at the top and strictly monotonic leverage across firm types.
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Figure 4: Pooling equilibria with pre-existing securities (first case)
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Figure 5: Pooling equilibria with pre-existing securities (second case)
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To conclude the analysis, observe that such fully separating equilibria are not the only

type of equilibrium that obtains. First, there is a trivial partial pooling equilibrium at

which low and medium types pool and offer s∗M , while high types issue s∗H . Second, there

exists an equilibrium in which investor profits are zero, as in NN. This equilibrium is

unique, and it features either pooling of the high and medium type, while the low type
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can offer something like s∗L on ZPL, or it features full pooling of all types. Which of these

cases arises depends on the amount of outstanding shares β. Figure 4 illustrates the

case where enough shares are outstanding that low types do not want to mimic a pool of

high and medium types. This is because these types are repurchasing their equity at a

price that low types find too expensive. Thus, the unique zero-profit equilibrium features

pooling of high and medium types, both of whom issue s∗pool. In contrast, in Figure 5,

the available shares are not enough for a pool of high and medium types to separate

from low types. Thus, the unique zero-profit equilibrium must feature full pooling, as in

NN. To conclude the characterization, note that every partial pooling (or fully pooling

equilibrium where high and medium types issue a convex combination of s∗pool and s∗H)

is also an equilibrium, for the same reasons as when there are no pre-existing securities,

and these equilibria all feature strictly positive investor profits.

7 Conclusion

Our paper reconsiders the classical security design problem of a firm that seeks finance

from competitive investors for a project whose quality the firm alone knows. Nachman

and Noe (1994) show that in this setting if investors must earn zero profits, under certain

conditions it follow that all firm types pool on offering a debt contract that breaks even

in expectation. However, there is a tension between this prediction and empirical evi-

dence suggesting that many securities are under-priced and that there is a pecking-order

relationship in which better firms issue relatively more debt.

Our paper highlights hidden assumptions that drive NN’s result, and it shows that
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relaxing these assumptions yields foundations for these empirical findings. In addition to

imposing a zero profit requirement for investors, NN restrict the contract space, not allow-

ing firms to propose prices for their securities, which investors can then accept or reject. In

practice, prices are often proposed in private placements or bank lending, where an issuer

shops around, negotiates with different potential investors, and then selects the best deal.

In this paper, we allow firms to propose prices for their securities to competitive in-

vestors, who are willing to provide capital as long as they can earn non-negative profits in

expectation. We show that restrictions to zero profits are not driven by some un-modeled

Bertrand competition, but rather by the exclusion of securities with proposed prices—

and that this restriction has bite. In addition to a fairly-priced pooling debt equilibrium

that is the analogue to NN’s unique equilibrium, we identify ‘reasonable’ equilibria in

which low types issue steeper securities than debt, while higher types issue debt that

is fairly priced for low types, and hence underpriced relative to its true value given the

pool of types issuing it. In such equilibria, investor profits on high types are strictly

positive. We also identify a range of pooling equilibria in which all types issue debt that

is underpriced relative to its true value given that it issued by the average firm type, and

so also featuring positive investor profits.

We then consider firms with pre-existing capital structures and show that, because

higher types have greater incentives to repurchase equity, fully separating equilibria ob-

tain in which leverage is strictly monotonic across types, high types issue underpriced

debt and low types issue steeper securities such as equity. Thus, our model provides

theoretical foundations for empirical tests of the pecking-order theory of external finance

and for the profitability of bank loans, syndicated loans and privately-placed debt, in a
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setting in which lenders do not have any informational advantage relative to other in-

vestors, and there is no moral hazard in the model to justify their rents. In our setting,

banks make strictly positive profits even though they are competitive and do not possess

‘soft’ information about firms. These lender profits are driven by incentive compatibility

considerations and the need to incentivize low types to issue steeper securities.
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Appendix

Proof of Lemma 1

Proof. If Eθ[sθ(x)] = Q(sθ), ∀θ, then Uθ = θ−1 for every θ in equilibrium. The incentive

constraint for low-type firms not to mimic high-types reads: θL − 1 ≥ Q(sH)− 1 + θL −

EL[sH(x)] ⇐⇒ EL[sH ] ≥ Q(sH). Because EH [sH ] = Q(sH), incentive compatibility

requires EH [sH ] ≤ EL[sH ] ⇐⇒
∫ x̄

0
sH(fH − fL)dx ≤ 0. Integrating by parts yields

∫ x̄

0
dsH
dx

(FL−FH)dx ≤ 0. Monotonicity of security payments in cash flows (Condition M),

yields dsH ≥ 0 and since sH is a continuous function, it is differentiable almost every-

where. By continuity and because investment is risky, we have dsH > 0 for a positive

measure of cash flows. Strict MLRP implies that FH(x) < FL(x), for every x ∈ [0, x̄).

Therefore, the incentive compatibility constraint cannot hold.

Proof of Lemma 2

Proof. Suppose, by contradiction that a separating equilibrium satisfying D1 exists at

which UL(cL) > UL(cH) ⇐⇒ EL[sH ]−Q(sH) > EL[sL]−Q(sL). Investors are individu-

ally rational so EL[sL]−Q(sL) ≥ 0. Thus, EL[sH ]−Q(sH) > 0. We have already shown

that, by strict MLRP, EL[s] < EH [s] for any strictly monotonic security s. Therefore,

EH [sH ] − Q(sH) > EL[sH ] − Q(sH) > 0: the participation constraint for investors upon

observing the high-type equilibrium security sH is slack.

Consider the deviation for high types to a security s′H = αsH , for some α such that

α ∈ (Q(sH)−Q(sL)+EL[sL]
EL[sH ]

, 1), such that Q(s′H) = Q(sH). To see that s′H is a feasible se-

curity, and hence the interval is non-empty, observe that Q(sH)−Q(sL)+EL[sL]
EL[sH ]

< 1, because

EL[sH ]−Q(sH) > EL[sL]−Q(sL), but positive because EL[sL]−Q(sL) ≥ 0.

Deviating to s′H would be not be profitable for low types, regardless of investor be-

liefs. To see this, notice that at the lowest possible α, where α = Q(sH)−Q(sL)+EL[sL]
EL[sH ]

,

incentive compatibility for low types requires EL[sL] − Q(sL) ≤ EL[s
′

H ] − Q(s′H) =

EL[αsH ] − Q(sH) = EL[sL] − Q(sL). In contrast, the deviation is profitable for high-

type firms because (i) it costs less, EH [s
′

H ] < EH [sH ]; and (ii) it would be accepted by

investors. Thus, a contradiction obtains.

Proof of Lemma 3

Proof. In order to prove the Lemma, it is useful to define rL,H := 1−FH(x)
1−FL(x)

. Given our

assumption that strict MLRP holds, we have that rL,H is strictly increasing in x, for

x ∈ [0, x̄). To see this, note that for x ∈ [0, x̄ − y] and y ∈ (0, x̄ − x], we have that

rL,H(x+y)−rL,H(x) > 0 ⇐⇒ (1−FH(x+y))(1−FL(x))−(1−FH(x))(1−FL(x+y)) > 0.

Adding and subtracting (1−FH(x))(1−FL(x))) to this expression, we get that rL,H(x+
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y)−rL,H(x) > 0 ⇐⇒ (1−FL(x))[FH(x)−FH(x+y)]−(1−FH(x))[FL(x)−FL(x+y)] > 0.

Dividing through by (1− FH(x))(1− FL(x))) yields that rL,H(x+ y)− rL,H(x) > 0 ⇐⇒
FH(x)−FH(x+y)

1−FH(x)
− FL(x)−FL(x+y)

1−FL(x)
= FL(y|x) − FH(y|x). Because of strict MLRP, we know

that FL(y|x) > FH(y|x), concluding the proof that rL,H is strictly increasing.

First, note that sD(d, x) satisfies the definition of a full ordered set of securities, where d

corresponds to the index z. Integration by parts implies that, for every possible cash-flow

distribution fi and feasible security s:
∫ x̄

0
s(x)dFi(x) =

∫ x̄

0
∂s
∂x
(1 − Fi(x))dx. Moreover,

for debt securities we have that ∂sD

∂x
= 1 for 0 ≤ x ≤ z, and ∂sD

∂x
= 0 for x > z. It follows

that
∫ x̄

0
(s(x) − sD(x))dFi(x) =

∫ x̄

0
( ∂s
∂x
− ∂sD

∂x
)(1 − Fi(x))dx =

∫ z

0
( ∂s
∂x
− 1)(1 − Fi(x))dx +

∫ x̄

z
∂s
∂x
(1 − Fi(x))dx. As we just proved that rL,H(x) is strictly increasing in x over the

interval [0, x̄), it follows that for 0 ≤ x ≤ z ≤ x′, we have rL,H(x) ≤ rL,H(z) ≤ rL,H(x
′).

Generically—that is, whenever x 6= z—we also have that ∂s
∂x

∣

∣

x′
rL,H(x

′) ≥ ∂s
∂x

∣

∣

x′
rL,H(z)

and
(

∂s
∂x

∣

∣

x
− 1

)

rL,H(x) ≥
(

∂s
∂x

∣

∣

x
− 1

)

rL,H(z). We can now re-write:

∫ z

0

(

∂s

∂x
− 1

)

(1− FL(x))dx+

∫ x̄

z

∂s

∂x
(1− FL(x))dx =

∫ z

0

(

∂s

∂x
− 1

)

rL,H(x)(1− FH(x))dx

+

∫ x̄

z

∂s

∂x
rL,H(x)(1− FH(x))dx

> rL,H(z)

(
∫ z

0

(

∂s

∂x
− 1

)

(1− FH(x))dx

+

∫ x̄

z

∂s

∂x
(1− FH(x))dx

)

= rL,H(z)

(
∫ x̄

0

(s(x)− sD(x))dFH(x)

)

.

As a result, whenever E[s(θH)] ≤ E[sD(θH)], then E[s(θL)] < E[sD(θL)].

Proof of Lemma 4

Proof. Suppose, by contradiction, there exist sH , sL with sL 6= sH and UH(cH) = UH(cL).

Then UL(cH) = UL(cL) from Lemma 2. Combining these equations yields EL[sL] −

EH [sL] = EL[sH ] − EH [sH ], or, equivalently:
∫ x̄

0
(sL − sH)d(FL(x) − FH(x)) = 0. From

strict MLRP, this can hold only if sL = sH , a contradiction. Lemma 2 then implies that

EH [sH ]−EL[sH ] < EH [sL]−EL[sL]. Lemma 2 implies that we need to consider the family

of securities with the same expected value under the measure that puts probability one

on low-type firms. Strict MRLP implies that, within this set of securities, high-type firms

strictly prefer the flatter one, so sH must be flatter than sL.
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Proof of Lemma 5

Proof. Suppose, instead, that a separating equilibrium exists with EL[sL] > Q(sL). From

Lemma 4, low-type firms can deviate to a security s′L = βsL for β ∈ (Q(sL)−Q(sH)+EH [sH ]
EH [sL]

, 1)

at which all incentive constraints hold: the security is constructed so that it is never a

profitable deviation for high types. The proof logic from Lemma 2 guarantees that

s′L is feasible. Moreover, for β ∈ ( Q(sL)
EL[sL]

, Q(sL)), which is a non-empty interval given

EL[sL] > Q(sL), the participation constraint for investors still holds. Therefore, deviat-

ing to s′L is profitable when θ = θL, but not when θ = θH , violating D1.

Proof of Lemma 6

Proof. Suppose, instead, there is a ‘reasonable’ PBE with Q(sH) > 1. EL[sH ]−Q(sH) =

EL[sL]−Q(sL) = 0 from Lemmas 2 and 5; and EH [sH ]−Q(sH) < EH [sL]−Q(sL) from

Lemma 4. Consider the deviation for high-type firms to another security (s′H , Q(s′H))

such that Q(s′H) = Q(sH) − ǫs′H = αsH for some α ∈ (0, 1 − ǫ
EH [sH ]

). The proof logic

from Lemma 2 guarantees that s′H is feasible. If accepted, s′H makes high types strictly

better off relative to sH . Further, low types do not mimic since EL[s
′

H ]−Q(s′H) > 0 ⇐⇒

αEL[sH ] − Q(sH) + ǫ > 0 ⇐⇒ (1 − α)EL[sH ] − ǫ < 0 ⇐⇒
(

EL[sH ]
EH [sH ]

− 1
)

ǫ < 0 ⇐⇒

EL[sH ] < EH [sH ], where to proceed from (1−α)EL[sH ]− ǫ to
(

EL[sH ]
EH [sH ]

− 1
)

ǫ simply plug

the highest possible value for α inside the first expression. EL[sH ] < EH [sH ] by strict

MLRP, so the deviation is profitable. Therefore, the posited equilibrium violates D1.

Proof of Proposition 1

Proof. Lemma 4 ensures that low types do not issue debt. Suppose first, by contradic-

tion, that property (1) fails, and both firm types issue securities different from debt.

That is, sθ 6= min{x,Dθ} for Dθ ∈ [0, x̄], for each θ. Consider the deviation by high-

type firms to a debt security s′H = min{x,DH} for some DH ∈ [0, x̄], where DH is such

that EL[min{x,DH}] = 1 + ǫ, for a small ǫ > 0. By Lemma 2, this deviation is un-

profitable for low-type firms, because low types are indifferent between mimicking or not

when ǫ = 0. High-type firms compare EH [min{x,DH}] with the expected payout at the

posited equilibrium EH [sH ]. Strict MLRP implies that if D is the face value of debt such

that EL[min{x,D}] = 1, then EH [min{x,D}] < EH [sH ], where the inequality follows

from the fact that any feasible (monotonic) security other than debt crosses the payoff

of debt from below. Thus, one can increase slightly the face value of debt from D to DH

so that EH [min{x,DH}] < EH [sH ], and EL[min{x,DH}] = 1 + ǫ.

Now, consider the case where high-type firms issue debt: sH = min{x,DH} for the DH

such that EL[min{x,DH}] = 1. The only deviation that could lower the payout for high

types is to a security s′ such that EL[s
′] < 1. However, this would be profitable for low
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types whenever it is profitable for high types (i.e., when the investors’ off-equilibrium

belief is such that the offer is accepted). Thus, D1 has no bite in this case.

Property (4) follows immediately from the previous analysis, because if low-type firms

issue debt, then the high-type firms cannot find a security design that separates them

without attracting the low types. Thus, if sL is debt, there can only be pooling. Prop-

erty (2) follows immediately from Lemmas 2 and 5, which imply that EL[min{x,DH}] =

EL[sL] = 1. Property (3) follows from the strict MLRP assumption.

Proof of Lemma 7

Proof. Suppose, instead, that there is a pooling equilibrium where sP 6= min{x,DP} for

some DP ∈ [0, x̄]. Consider the deviation to the debt security s′ = min{x,D′} with a face

valueD′ such that E0[min{x,D′}] = E0[sP ]. Evidently, s
′ is flatter than sP (see Definition

3). Thus, low-type firms are worse off at s′ than at sP , while high-type firms are better

off, conditional on the offer being accepted by investors. Thus, D1 implies that investors

hold the off-equilibrium belief p′H(s
′) = 1, which makes the deviation profitable.

Proof of Lemma 8

Proof. Suppose, instead, that a ‘reasonable’ pooling equilibrium exists in which Q(sp) 6=

1. We only need to consider Q(sp) > 1 because Q(sp) < 1 would mean a firm cannot in-

vest, so no capital would be provided, as investors would expect to lose money on it. Sup-

pose now that the high type deviates to a security s′ such thatQ(s′) = 1. Because of cross-

subsidization, we have
∫ x̄

0
sp(x)dFH(x) > Q(sp) >

∫ x̄

0
sp(x)dFL(x). Therefore, the devia-

tion is only profitable for high types, if accepted. It is never profitable for low types.

Proof of Proposition 2

Proof. Lemma 7 implies that we can restrict attention to debt contracts being offered

by all types on-the-equilibrium path. Lemma 8 implies that we can restrict attention

to contracts that raise exactly $1 of capital. Any pooling debt contract with a face

value D > DH would violate the incentive constraint for low types, and so it cannot

be part of an equilibrium. Moreover, investors would reject any pooling debt contract

with face value D < D0, as they would expect to lose money on it. Consider now a

candidate equilibrium in which debt is issued with a face value DP ∈ [D0, DH ]. Then

E0[min{x,DP}] ≥ 1, so investors would accept such a debt contract. We must show

that it satisfies D1, regardless of the expected profits that accrue to investors. To see

this, observe that, starting from a debt contract, for some security s′ to benefit high-type

firms, it must be such that EL[s
′] < EL[min{x,DP}]. Thus, whenever the off-equilibrium

belief held by investors leads to acceptance, both types benefit strictly. It follows that
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D1 has no bite regardless of the level of profits made by the investors in equilibrium.

Proof of Lemma 9

Proof. We first prove the following instrumental claim: If there is an equilibrium secu-

rity s = s∗(θ) such that E[s(θ)] ≤ Q∗(s), and another security s′ = s∗(θ′) such that

E[s(θ′)] ≥ Q∗(s′), then the we must have that θ′ > θ.

Suppose that θ′ < θ instead. From MLRP and monotonicity we know that, for any fea-

sible security s, E[s(θ′)] < E[s(θ)]. To see this, integrate by parts the above inequality to

obtain
∫ x̄

0
ds
dx
(Fθ′−Fθ)dx > 0. Monotonicity of security payments in cash flows (Condition

M), yields ds ≥ 0 and since s must be a continuous function, it is differentiable almost

everywhere. By continuity and because investment is risky, we also must have ds > 0

for a positive measure of cash flows. Strict MLRP implies that Fθ(x) < Fθ′(x), for every

x ∈ [0, x̄). Therefore, the inequality must hold. It follows from the inequality that we

have: Q∗(s)−E[s(θ′)] ≥ Q∗(s)−E[s(θ)] ≥ 0 ≥ Q∗(s′)−E[s′(θ′)], with at least one strict

inequality. Thus, type θ′ would have an incentive to mimic type θ at this candidate equi-

librium, and so incentive compatibility is violated. We conclude that we must have θ′ > θ.

Now observe that this logic extends trivially to pool of types, as stated in the Lemma.

Proof of Lemma 10

Proof. It follows from the three conditions above that Uθ = θ − 1 and Uθ′ = θ′ − 1 in

this equilibrium. The incentive constraint for a type-θ firm not to mimic a higher type

θ′ > θ reads: θ − 1 ≥ Q∗(s∗θ′) − 1 + θ − E[s∗θ′(θ)] ⇐⇒ E[s∗θ′(θ)] ≥ Q∗(sθ′). Because

E[s∗θ′(θ
′)] = Q∗(s∗θ′), incentive compatibility requires E[s∗θ′(θ

′)] ≤ E[s∗θ′(θ)]. However, this

inequality contradicts the fact that θ′ > θ (see the proof of Lemma 3).

Proof of Proposition 3

Proof. Suppose that the low type θ = θ1 issues an equilibrium security that is fairly

priced—that is E[s∗θ1(θ1)] = Q∗(s∗θ1). In this case, type θ1 gains nothing from raising more

than $1 and therefore Q∗(s∗θ1) = 1. Incentive compatibility for the pair θ1, θN requires

that Q∗(s∗θ1)−E[s∗θ1(θ1)] ≥ Q∗(s∗θN )−E[s∗θN (θ1)] for every θ. Given that also Q∗(s∗θN ) = 1,

incentive compatibility requires that E[s∗θ1(θ1)] ≤ E[s∗θN (θ1)]. In equilibrium, this incen-

tive constraint must bind, as otherwise a high type could always deviate to a security such

that the constraint is an ǫ closer to be binding and financiers would accept. Thus, we ob-

tain that E[s∗θN (θ1)] = E[s∗θN (θ1)]. That is, in any such an equilibrium the high type must

be issuing a security that is so underpriced, that investors would break even on it if it were

issued by a type θ1 for sure. Moreover, the same logic iterates now to type θN−1, as now
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we know that this type also must issue underpriced securities and therefore raises exactly

$1. As a result, we conclude that E[s∗θ(θ1)] = E[s∗θ′(θ1)] for every pair θ, θ′; all incentive

constraints are binding, and therefore all types raise $1. In addition, we know that among

all securities such that E[s∗θ(θ1)] is constant—that is, among all the feasible securities such

investors make zero profits on a low type, types θ > θ1 the equilibrium security satisfies

D1 only if it crosses all other securities from below, and therefore it must be debt. To see

this, suppose that the security issued by some type θ > θ1 is not debt. Then, there exists

another security that crosses debt s∗θ from above. Thus, one can find a pair s,Q such that

the deviation would be profitable for type θ, but not for type θ1. This follows immediately

from the definition of crossing from below. Thus, we must have that s∗θ>θ1
= min{x, d} for

d such that E[min{x, d}|θ = θ1] = 1. If there are multiple solutions to this equation, one

selects the smallest feasible solution. As for s∗1, this can be either debt, or another security

which crosses debt from below, such as equity, or a mixture of the two. Evidently, any such

equilibrium would satisfy D1 as the steepest ordered set of securities is debt (Lemma 3).

Thus, any deviation that would benefit a type θ > θ1 would necessarily also benefit θ1.

Proof of Proposition 4

Proof. Suppose, by contradiction, that the low type θ = θ1 and this higher type who is

pooling with it (i.e., type τ) pool on a feasible security s that is not debt. Then, we know

that there always exists a steeper ordered set of securities s′ such that one can set Q(s′) =

Q(s) and have E[s′(θ1)] > E[s(θ1)], while E[s
′(τ)] < E[s(τ)]. It follows from D1 that type

τ would deviate and choose s′ off-equilibrium, as investors would accept the offer. Thus,

the low type must be pooling on a debt contract. A similar argument implies that any pool

of types must involve the issuance of debt, and as a result, by incentive compatibility, there

can be at most one pool of types. Further, incentive compatibility requires that all types

θ > θ1 who are not pooling with type θ1 to offer a security s′′ such that Q(s′′)−E[s′′(θ1)] ≤

Q(s) − E[s(θ1)]. Among all such securities, debt minimizes the difference E[s(θ1)] −

E[s′′(θ1)], and hence it is optimal. We therefore conclude that there must be a single pool

of types issuing debt. Moreover, underpricing of the debt issued by high types implies that

all firms raise just $1. One possibility is that this debt is priced so that investors break

even, as in NN. Another possibility is that debt is underpriced relative to the average type.

Any degree of such underpricing can be sustained in equilibrium, as it would satisfy D1 for

the same reason as the partial pooling equilibria sustain. Thus, we conclude that, for ev-

ery θ, in equilibrium s∗θ = min{x, d} for d such that E[min{x, d}| all types pool] ≥ 1.
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