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
Abstract—Remaining useful life (RUL) prediction for

condition-based maintenance decision making plays a key role in
prognostics and health management (PHM). Accurately
predicting RUL of the rotating components of complex machines
becomes a challenging task for PHM. For many existing methods
the current prediction error of RUL prediction may be
accumulated into the future predictions, and thus can lead to a
prediction error superposition problem. In this paper, the
formation mechanism of prediction error superposition is
analyzed, and for the first time a deep adversarial long short-term
memory (LSTM) prognostic framework is proposed to overcome
the major issue related to prediction error superposition. In the
proposed framework, a generative adversarial network (GAN)
architecture combining the LSTM network and auto-encoder (AE)
is investigated for bearing RUL monitoring. In the proposed deep
adversarial learning prediction framework, due to the potential
involvement of long-term and complex tasks, the LSTM network
(generator) is used to predict the degradation process of rolling
bearings based on available historical data, and a simple but
useful AE (discriminator) is used to determine and refine the
accuracy of the prediction. Therefore, the AE plays the
adversarial role of the LSTM network, and the prediction
accuracy of the LSTM network can be significantly improved. For
illustration purpose, two practical case studies, which use a series
of bearing degradation data and the IEEE PHM 2012
PRONOSTIA datasets, respectively, are presented to show the
prediction performance of the proposed method. Experimental
results show that the proposed method works very well for
vibration monitoring and performs better in comparison with the
reference machine learning and deep learning approaches.
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However, the existing remaining useful life prediction methods for
rolling bearing have a prediction error superposition problem
that can affect the multi-step prediction performance. The new
adversarial learning prognostics model proposed in this paper can
overcome the problem. The proposed method uses long
short-term memory network as a generator to predict remaining
useful life for rolling bearing, and uses auto-encoder as a
discriminator to estimate the prediction accuracy. The method
can significantly improve the multi-step prediction accuracy of
remaining useful life for rolling bearing, and provides reliable and
scientific strategy in prognostics and health management of
mechatronics equipment.

Index Terms—Auto-encoder (AE), condition monitoring, deep
adversarial learning, deep learning, generative adversarial
network (GAN), long short-term memory (LSTM), prediction
error superposition, prognostics and health management,
remaining useful life (RUL) prediction, rolling bearings.

I. INTRODUCTION

OLLING bearings are important and expensive rotating
components in many industrial machinery systems, such

as high-speed railway, induction motors, and wind turbine
drivetrain systems. The harsh working environment of rotating
machinery makes rolling bearings expose to high-low
temperature, high pressure, and humid working conditions, and
all this can quickly cause damage to the rolling bearings. Any
failure of the rolling bearings can cause the entire machine to
malfunction and result in high-priced maintenance costs. If
rolling bearing faults can be predicted in advance, the entire
rotating machinery shutdown caused by bearing faults can be
avoided. With the development of industrial Internet, large
amounts of data have been collected from the prognostics and
health management (PHM) systems in rotating machines.
Remaining useful life (RUL) prediction for degrading systems
plays a key role in any PHM. Accurately predicting the RUL of
the rotating components from monitoring data with new
advanced approaches has attracted increasingly more attention
in recent years [1]-[4].

The existing RUL prediction methods proposed for PHM can
be categorized into two types: model-based methods and
data-driven methods [5], [6]. Model-based methods require to
establish a mathematical or physical model of the machine to
describe the degradation process, and joint measured data to
determine model parameters. For example, Li et al. [7]
proposed an improved exponential model based on adaptive
first predicting time (FPT) selection approach for predicting
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RUL of rolling bearings. Lei et al. [8] proposed a model-based
method for RUL prediction of machinery. In addition,
model-based RUL prediction methods have also been
employed in many other applications [9]-[11]. One advantage
of model-based RUL prediction methods is that they can
combine the expert knowledge with actual operational data. As
a result, such a method has favorable performance when
dealing with RUL prediction for rolling bearings. However,
there are two main defects for rolling bearings using existing
model-based RUL prediction methods: 1) The physical or
mathematical model of rolling bearing drive systems could be
tremendously complicated, even the mechanical principle of
rotating machinery itself is a highly complex system whose
model can be very complex. A reduced mathematical model
used for RUL prediction may not be able to sufficiently
represent the real system of interest, as a consequence, a
model-based RUL prediction method may fail. 2) Different
rolling bearings need different models. For those rolling
bearings whose mathematical models have already been
available, the cost of undertaking model-based RUL prediction
may be small and acceptable, but for rolling bearings whose
models are not available, the cost of building a mathematical
model could be extremely expensive.

Data-driven approach tends to infer the rolling bearing
degradation process (RBDP) from historical actual data
through machine learning techniques [12]-[15]. Therefore,
data-driven RUL prediction methods are mainly affected by
two factors: 1) the quantity and quality of the historical actual
data, and 2) the prediction performance of the machine learning
models. Recently, with the rapid development of sensor
technology and especially deep learning in Industry 4.0, highly
accurate and robust sensors can capture high-quality and
sufficient quantity data from complex real-world applications,
and deep learning models such as deep belief network (DBN)
and long-short term memory (LSTM) network can use these
captured data to characterize the RBDP. Specially, Zhang et al.
[16] proposed a multi-objective DBN in which the
multi-objective evolutionary algorithm embedded with the
traditional DBN learning technique to achieve RUL estimation.
Guo et al. [17] proposed a recurrent neural network based
health indicator for RUL prediction of bearings, where
data-driven method can incorporate both measured information
and intelligent deep learning model. Consequently, data-driven
approach becomes an indispensable alternative for RUL
prediction of bearings.

Data-driven RUL prediction methods are usually
implemented through one-step time-series prediction or
iterative multi-step ahead RUL prediction. The former needs to
know the entire RBDP, and uses the measured data to make
prediction. The latter only needs to know the first half of the
RBDP, and the latter half is inferred by the prediction model
constructed using deep learning methods. Obviously, a
data-driven RUL prediction method based on one-step
time-series prediction is simpler and more accurate, and
detailed results on this may be found in [18] and [19]. In [18], a
one-step time-series RUL estimation was proposed based on
support vector regression (SVR). In [19], a SVR method was

proposed for the monitoring of rolling bearings, where the
estimation of the RUL is achieved by a one-step time-series
predictor based on SVR. More work on SVR-based prediction
methods can be found in [20]-[23]. One-step time-series
prediction method can be beneficial if the entire RBDP is
available. Nevertheless, the dependence on whether the entire
RBDP is available is challenging for practical applications. In
contrast, iterative multi-step ahead RUL prediction is more
suitable for actual working conditions.

Iterative multi-step ahead RUL prediction forecasts one or
several steps from previously observed data, then adds the
predicted points to the historical data to predict the next part,
and so as to iteratively get the entire RBDP. Because of this
characteristic, such an approach is more challenging compared
with a one-step time-series prediction based method, but it has
attracted more and more attention in recent years, due to its
effectiveness. For example, Xia et al. [24] applied deep neural
network architecture to develop a two-stage prognostics
method for the RUL prediction of bearings. Sun et al. [25]
proposed a sparse auto-encoder (AE) based on deep transfer
learning method for RUL prediction. It should be noted that
although these methods have good performance, there is still a
nonnegligible issue, that is, the prediction error superposition
problem, which has not been resolved. This is a case where the
previous prediction error is accumulated into the next
prediction. This is related to the iterative multi-step ahead RUL
prediction method mentioned above.

Recently, deep learning techniques [26], especially
generative adversarial networks (GAN), have been widely used
in natural language processing (NLP), computer vision (CV),
etc. GANs normally consist of the generative model G and
discriminative model D, leading them to Nash equilibrium
[27]-[30]. The G aims to estimate the data distribution, whilst
the D is designed to evaluate the probability; the two against
each other, and this mechanism can be used to improve the
performance of the GAN. The core idea of the ‘generator’ and
‘discriminator’ proposed in GANs can be used to solve the
prediction error superposition problem. In this paper, a deep
adversarial LSTM framework is proposed for rolling bearing
RUL prediction using a two-stage scheme. In the first stage, the
generator is used to predict the RBDP when historical data are
given. In the second stage, the discriminator decides whether
the RBDP is derived from real historical data or predicted
RBDP. In this way, the prediction error superposition problem
can be well solved.

The main contributions of this study are as follows:
1) Traditional RUL prediction method uses one-step

prediction. In this paper, a iterative multi-step ahead
RUL prediction method based on multi-step time series
prediction is proposed, which is more suitable for real
application of RUL prediction. Based on the observation
and analysis of the prediction error superposition
problem, a novel deep adversarial LSTM-based
prognostics framework for bearing RUL prediction is
developed to reduce the effect of error propagation in
iterative multi-step ahead RUL prediction.

2) In order to validate the efficacy of the proposed



framework, a deep adversarial LSTM prognostics model
is proposed in the experiment stage. Firstly, a LSTM
network is used to generate RBDP based on the
available measured data. The AE then discriminates
whether the inputted RBDP belongs to the measured
data or the predicted RBDP, and the two against each
other. The experimental results show that the proposed
model works well for RUL prediction.

3) Two practical case studies are carried out based on two
real datasets: the first dataset for accelerated degradation
tests of rolling element bearings and the second one for
the public PRONOSTIA bearing. Detailed analysis
results are reported.

The remaining parts of this paper are summarized as follows.
The related work is presented in Section II. In Section III, a
novel deep adversarial LSTM approach is provided for RUL
prediction of rolling bearings. Detailed analysis and
comparisons of experimental results are shown in Section IV.
At last, the main conclusions and future work are given in
Section V.

II. THE PROPOSED ADVERSARIAL LEARNING ARCHITECTURE
FOR PREDICTION ERROR SUPERPOSITION PROBLEM

A. Prediction Error Superposition Problem
As mentioned earlier, many data-driven RUL prediction

methods have been reported in [12]-[15]. This work considers
data-driven RUL prediction method and takes into account the
superposition problem of prediction errors in this stage.
1) Problem Analysis of Time Series Prediction

For rolling bearing, the degradation process (i.e. normal
status becomes malfunctioning) is essentially a time series.
Therefore, one-step time-series prediction can be interpreted as:
given a time-series sample set X, where 1 2 3{ , , ,......, } nX x x x x ,
using ˆnx to represent a predicted value, the process of making
one-step time-series prediction is shown as follows:
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where the symbol ‘AB’ means value B is predicted from
value A. Specifically, A denotes the measured data and B
denotes the predicted value from the measured RBDP. Unlike
one-step time-series prediction, iterative multi-step ahead RUL
prediction can be expressed as:
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The prediction error superposition problem is clearly
reflected in (2). For graphical illustration, it is also depicted in
Fig. 1. Obviously, there is a prediction error
in 1 2 3 1 ˆ{ , , ,......, } n nx x x x x , because usually ˆn nx x . With ˆnx

Fig. 1. An illustration of prediction error superposition.

being used to predict the next point, the result would be that the
prediction error would become larger and larger after many
steps. Such an error propagation phenomenon ubiquitously
exists in time series prediction.
2) Problem Definition

Let 
1 2

{ , ,..., ,..., }
m n

X x x x x be a time series consisting of n

samples. Suppose that the first half, T
1 2

{ , ,..., }
m

x x x , is
used as the training set to train the model, and the second half,

 P
1 2

{ , ,..., }
m m n
x x x , is used as the prediction set to assess

the performance. Let  m
i ¡T and jP denote the i-th

m-dimensional training sample and the j-th prediction sample,
respectively. This study aims at minimizing the prediction error
superposition problem. This is equivalent to maximizing the
conditional probability of P

j
when the training sample iT is

given. The above conditional probability can be defined as
follows:
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This problem is similar to natural language processing (NLP)
and video captioning (VC). A major difference is that NLP and
VC use T to predict the whole P , but in RUL prediction, only
one point is predicted each time and finally superimposed to
form the entire RBDP.

B. A Solution to the Prediction Error Superposition Problem
In order to overcome the error propagation issue, in this

section, the adversarial learning architecture-based LSTM is
presented to generate RUL prediction under the influence of the
GAN. The structure of the adversarial learning for predicting
RUL of rolling bearings is shown in Fig. 2. Specifically, the
adversarial learning architecture-based LSTM (named
LSTM-GAN) is made up of two parts: the generator ( denoted
by G) and the discriminator (denoted by D). The G gives the
guidelines that generate a series of the prediction values given a
short training set T . The D compresses the input sequence and
outputs the corresponding label, indicating whether the
generated prediction values are correct and reasonable and
meet the forecast requirements.

The objective function of the designed architecture is



Fig. 2. An adversarial learning architecture.

Fig. 3. The proposed adversarial learning architecture-based LSTM for bearing RUL prediction.  , 1,......, T T T n represents the training set,

 , 1,......, IFT IFT IFTT T T n means the prediction part, and IFT is the incipient failure threshold. Meanwhile, the notation 'Horiz. Vib.’ means the horizon vibration,
and the steps of the training process given in Fig. 3, that is, ①→②→③→④→⑤→②...→⑤ ..., give the entire iteration and adversarial training process.

introduced as follows. For a given training set T , the
conditional probability ofP can be expressed as:


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In this study, a number of internal parameters are considered
to minimize the prediction error superposition. The conditional
probability can be used to obtain optional parameters as
follows:
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where is a vector of the parameters (weight, bias, etc.) of the
designed model. For D, the main goal is to find the proper
discriminator that can be used to process the input sequence and
map input features to the output domain ( ) [0,1]PD ,
where ( )D is a function indicating that the probability
that P comes from real RBDP, rather than from the generative
model G. Then, the objective function of D can be integrated
into a loss using the following equation:
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where m represents the quantity of input samples.
( )iy and ( )

i
D P represent the true and discriminative labels,

respectively. The main goal of training process is to minimize
the log likelihood, which can be represented as follows:
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III. THE PROPOSED ADVERSARIAL LEARNING
ARCHITECTURE-BASED LSTM PROGNOSTICS FRAMEWORK

FOR RUL PREDICTION

A solution to the prediction error propagation problem is
proposed in this section. A graphical illustration of the
proposed solution is shown in Fig. 3, where the generator G
(LSTM) and discriminator D (AE) form the main framework of
the adversarial learning architecture. The LSTM network uses a
prediction-overlay-prediction method to generate the relevant
RBDP. Meanwhile, the AE network, as the discriminator, is



used for assessing whether the generated time series in
sequence is correct. More detailed explanations for Fig. 3 are
given below.

A. Generative Model Based on LSTM
Traditional recurrent neural network (RNN) models [31], [32]

aim to capture complex temporal dynamical behavior by
mapping the samples to the nodes directionally connected into a
ring and exhibiting dynamic time behavior by its internal state:

1

0

( )
( )



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 
t h t h t h

t h t

h f W x h b
o f h b

(8)

where hW and h are the weight parameters, b represents the
bias parameters, and f is the activation function such as tanh;

tx is the input sequence, ¡M
th is the hidden layer state which

is obtained by weighting the input sequence through the hidden
unit, and to means the output sequence at the t moment.

The RNN has achieved great success in text generation and
speech recognition. However, due to the exploding and
vanishing gradient problem, it is difficult to deal with long
distance dependence problem. The LSTM network [33] has
been proven to avoid gradient disappearance and exploding
problem. This is because that it combines a memory cell and a
forget gate to help the network learn long-range temporal
dependencies, while the forget gate can remove invalid hidden
states and update them with new information in a timely
manner. The basic structure of the LSTM network, consisting
of a memory cell and several control gates, is illustrated in Fig.
4. Let tx , tc , and th represent the time-series input, cell state,
and the hidden layer state at the tmoment, respectively. Given a
time series 1 2 3{ , , ,......, } TX x x x x , two sequences will be
calculated by the LSTM network: the hidden state
sequence 1 2 3{ , , ,......, }t Th h h h h , and the memory cell
sequence 1 2 3{ , , ,......, }t Tc c c c c . Formally, the forward
propagation algorithm of the LSTM network is expressed as:
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Fig. 4. The basic structure of LSTM.

Fig. 5. The auto-encoder processor of input sequence in discriminative model.

where the symbol represents point-wise product and the W is
matrix used in the LSTM weight parameters. Finally, s and
tanh are sigmoid and hyperbolic tangent activation functions,
respectively.

B. Discriminative Model Based on Auto-Encoder
Typically, the AE consists of a three-layer neural network,

which together forms the encoding layer and decoding layer
[34]-[36]. The encoding layer compresses the original input
sequence into the representative features by reducing the
number of neurons. Afterwards, the representative features are
converted by the decoder into a reconstructed sequence with the
same dimension as the input sequence. The main purpose of AE
is to rebuild the input sequence at the decoding layer; it is
mainly achieved by optimizing the loss value between the
reconstruction sequence and the input sequence. The general
architecture of the AE is illustrated in Fig. 5.

The AE maps the input sequence nx to the representative
feature space ( ) ry r n by the activation function ( )f x and
AE network parameters, which can be defined as

( ) y f Wx b (10)
where W is the weight parameters with the r n dimensions,
and b means the bias parameters. Correspondingly, the
decoding part is to restore the representative features y to the
same dimension as the input sequence by using:

ˆˆˆ ( )x f Wy b= + (11)

where Ŵ represents the weight parameters of decoding part
with n r dimensions, and b̂ means the bias parameters of
decoding part. Then, the training of the entire AE network
updatesW , Ŵ , b , and b̂ through the following loss function:
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where  ,  W b ,  ˆˆ ˆ ,  W b , the symbol L represents the

formula such as 2( , ) || ||  x x x xL , and m is the number of
samples involved in the input sequence.

C. Representative Features Classifier
The structure of the multiple hidden layers enables AE to



extract good representative features. These features can be used
to implement a multi-classification task using multi-classifier
such as softmax [37], [38]. Given an input sequence

withm samples,  


( )

1

m
i

i
x , where ( )i nx , involving k types of

labels, that is  ( ) 1,2,......,iy k , , and  1,2, ,i m , the main

function of softmax is to estimate the probability that each
sample belongs to each category, and takes the category with
the highest probability as the class of the sample. This
probability is given by:
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where   ( ) 1,2,......,i
i j
y k .   

1 2
, ,......,

k are the model

parameters with k types of labels, and 
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1/
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l
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hypothesis function to regularize the probability distribution.
The loss function of softmax model can be expressed as:






 



 
   
 
 




( )

( )

( )

1 1
1

1
1{ }log

T i
j

T i
j

xm k
i

J xki j
l

e
y j

m e
L (14)

where the symbol ‘1{}’ represents the indicator function in
which 1{a true statement}=1 and 1{a false statement}=0. In AE
network, the softmax regression is placed at the end of the
structure to classify the representative features of the AE
extracted by minimizing

J
L .

D. Optimization Solution
In this study, a novel adversarial learning architecture-based

LSTM is investigated for rolling bearing RUL prediction, and
the stochastic gradient descent (SGD) algorithm is selected to
search the optimal parameters. The main process is briefly
listed in Algorithm 1 below.

IV. EXPERIMENT TESTS

In this section, the proposed LSTM-GAN method is applied
to bearing RUL prediction. The results of one-step time-series
prediction and iterative multi-step ahead RUL prediction are
calculated based on two real datasets, that is, a series of bearing
degradation data [8], and the IEEE PHM 2012 PRONOSTIA
dataset [39]. In this paper, two forecasting methods, namely,
one-step time-series prediction method and iterative multi-step
ahead RUL prediction, are considered. For the former, a sliding
window scheme is adopted to train the predictive model that is
later used. This means that the model will use historical data to
predict the next observation. For the latter, the main idea is to
directly predict the remaining useful life based on the training
data, which is more challenging than the one-step prediction
method.

Algorithm 1: The adversarial learning algorithm-based LSTM
prognostics model for bearing RUL prediction.
Input: The training set 

1 2
{ , ,..., }

m
x x xT and the

RBDP 
1 2

{ , ,..., ,..., }
m n

X x x x x for discriminative model D to
output ( ) [0,1]PD .
Output: The prediction set  

1 2
{ , ,..., }

m m n
x x xP .

1.1: Set the LSTM parameters:
 activation =''relu', loss='mean squared error', optimizer='sgd',

epochs=10000, batchsize=64,
 #hidden layer =1,
 #nodes=20 per hidden layer ;
1.2: Set the AE discriminator:
 Trade-off parameter for the weight decay term 0.001  ;

2: Obtain the predicted vectors   1 _
 

P Tn

i m trained LSTM ;
3: Optimize the generative model G using SGD on the predicted

vector   1 
P n

i m only; optimize the discriminative model D using

SGD on the predicted vector   1 
P n

i m and the

RBDP 
1 2

{ , ,..., ,..., }
m n

X x x x x ; the stochastic gradient of two
optimization processes can be written as follow:













 


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1

1

1
( )

1
 

[log log(1 ( ( )))]

[log(1 ( ( )))]       

d

g

m

i
m

i

DD
m

m

G

D G

T P

P
(15)

4: This process is repeated until the AE input features
vector  1 

P n

i m meets prediction performance requirement.
Gradient-based updates can be implemented using any standard
based gradient learning rules.

A. Dataset Description
In this section, the IEEE PHM 2012 dataset is used to

validate the proposed deep adversarial learning prognostics
framework with two prediction methods. The dataset was
collected using a laboratory experimental platform
(PRONOSTIA) that can accelerate the degradation of bearings
under constant and/or variable operating conditions, and collect
online health monitoring data (including vibration, temperature,
rotating speed, and load force). This experimental platform can
complete bearing degradation within a few hours to provide
real experimental data and characterize the degradation of the
ball bearing throughout its useful life. A view of the equipment
is shown in Fig. 6. For vibration signals (horizontal and

Fig. 6. The PRONOSTIA experimental platform [39].



Fig. 7. An illustration of acquisition parameters for vibration signals.

Fig. 8. Test platform of the accelerated degradation of bearing [8].

vertical), the sampling frequency is 25.6 kHz, so 25,600
samples are recorded per second. In this study, a total of 1560
samples are considered (see Fig. 7). These samples contain
information on three working conditions: 1800 rpm and 4000 N,
1650 rpm and 4200 N, and 1500 rpm and 5000 N. More details
are shown in Table I. Another dataset was collected from the
measured equipment as shown in Fig. 8. The sampling
frequency is the same as that of the IEEE PHM 2012 dataset. In
this study, a total of 32,768 samples (i.e. 1.28 s) are used to
verify the performance of the iterative multi-step ahead RUL
prediction model. Three working conditions are shown in Table
II.

TABLE I
DATASETS OF IEEE 2012 PHM PROGNOSTIC CHALLENGE

Datasets Operating Conditions
Condition 1 Condition 2 Condition 3

Learning set Bearing 1-1 Bearing 2-1 Bearing 3-1
Bearing 1-2 Bearing 2-2 Bearing 3-2

Test set

Bearing 1-3 Bearing 2-3 Bearing 3-3
Bearing 1-4 Bearing 2-4
Bearing 1-5 Bearing 2-5
Bearing 1-6 Bearing 2-6
Bearing 1-7 Bearing 2-7

TABLE II
BEARING TESTS UNDER DIFFERENT WORKING CONDITIONS

Operating
Conditions

Radial force
(N)

Rotating speed
(rpm) Bearing dataset

Condition 1 1200 2100
Bearing 1-1 Bearing 1-2
Bearing 1-3 Bearing 1-4
Bearing 1-5

Condition 2 1100 2250
Bearing 2-1 Bearing 2-2
Bearing 2-3 Bearing 2-4
Bearing 2-5

Condition 3 1000 2400
Bearing 3-1 Bearing 3-2
Bearing 3-3 Bearing 3-4
Bearing 3-5

B. Implementation Details
In this paper, the bearing degradation data and the IEEE

PHM 2012 PRONOSTIA dataset are considered to test the
performance of the proposed adversarial learning scheme (i.e.
LSTM-GAN), where multiple RUL prediction tasks are
performed. These tasks include both one-step prediction and
iterative multi-step ahead RUL prediction. The structure
parameters of LSTM-GAN under two situations are given in
Table III. For comparison purposes, six state-of-the-art RUL
prediction methods are used in the experiments. For one-step
time-series prediction, both conventional machine learning and
deep learning methods, including SVR [18], radical basis
function neural network (RBF) [40], and LSTM [33] are
employed. For iterative multi-step ahead RUL prediction, the
back-propagation neural network (BP) is used as a reference
method. Meanwhile, two DBN-based methods, namely,
DBN+SVR and DBN+BP are also used for verification. More
specifically, the experimental settings and details of these
methods are summarized as follows.

TABLE III
STRUCTURE PARAMETERS OF LSTM-GAN

Bearing degradation data IEEE PHM 2012 PRONOSTIA dataset
Parameter Value Parameter Value

LSTM structure parameters
Epochs 10000 Epochs 20000

Dropout  0.1 Dropout  0.2
Inputs size 20 Inputs size 20
Hidden layer 2 Hidden layer 2

AE structure parameters
Epochs 10000 Epochs 22000

Learning rate  1×10-3 Learning rate  5×10-4

Hidden layer 1 Hidden layer 1

1) For SVR, radical basis function was used and the
experiments were carried out using LIBSVM. For SVM,
the running mode is set to e-SVR, meaning that the
model optimization goal is to achieve a minimum value
of root mean square error (RMSE).

2) For RBF, the activation function of the hidden layer is
Gaussian function, where the number of hidden layers is
1, the numbers of input and output are 20 and 1,
respectively.

3) For BP, the number of hidden layers is 1, the number of
hidden nodes is 140, and the learning rate is 0.01.

4) For LSTM, the network has a double-layer, and each
hidden layer has 50 nodes. The activation function is
ReLU, the loss function is defined as the mean squared
error (MSE), and the training algorithm is SGD.

5) For DBN+SVR and DBN+BP, the DBN has a four-layer
structure, where the two hyper-parameters are learning
rate and weight decay, which are set to 0.01 and 0.0008,
respectively.

6) For LSTM-GAN, the details about the parameters are
shown in Table III. LSTM network is used as a
generator, and AE+softmax is used as a discriminator
for adversarial training. The LSTM network has a
double-layer structure and it is consistent with the above
method 4); the input size of AE is the predicted RUL
points of the generator.



The experiments for the above four methods are
implemented in MATLAB 2016, while the last two methods
are implemented with PyCharm and Keras. The main purpose
of parameter optimization is to select the best model parameters
based on the analysis of regression prediction results. For all the
test methods, the model parameters are optimized as follows.
Initially, the model parameters are roughly determined. The
roughly determined parameters are then refined in the reduced
area. Finally, the regression prediction is used to analyze the
best parameters for network training.

C. Case 1: One-Step Time-Series Prediction
In this stage, the IEEE PHM 2012 dataset is used to test the

proposed method (named LSTM-GAN) with one-step
time-series prediction method. Five rolling bearing degradation
process indicated as bearing 1, bearing 2, bearing 3, bearing 4,
and bearing 5 under working condition 1 as test targets, and the
row horizontal and vertical vibration of bearing is shown in Fig.
9. The row horizontal vibration, as the prediction target, is
preprocessed and converted to root mean square curve (RMS),
and the RMS curves from bearings 1-5 are shown in Fig. 10. An
LSTM-GAN model, consisting of the LSTM and AE networks,
is proposed for the five bearing samples. The number of input
layer neurons is 50, and the number of neurons in the output
layer of the LSTM network is 1, which is the predicted
operating health state. Therefore, the AE network is only used
to distinguish the source of the features, which is simply set to
one layer. In the study, the first half of the RMS curves is used
for training and the second half is used to predict the
degradation process. The set points with the first point to be
predicted are 1800, 1000, 2250, 1800, and 1600 from bearing 1

(a) (b)
Fig. 9. Whole lifetime vibration signals of bearing 1 from (a) horizontal
direction and (b) vertical direction.

Fig. 10. The root mean square curve (RMS) of the frequency features for
bearings 1-5.

to bearing 5 respectively. Finally, for comparison purpose,
three existing methods, namely, SVR, RBF, and the proposed
method without using the adversarial part (i.e. LSTM) are also
applied to the same training and test data. The experimental
results are depicted in Fig. 11, where it can be seen that the
LSTM-GAN performs better than SVR and RBF in the average
RMSE value, but its superiority over LSTM is not obvious.
This is because LSTM has an outstanding ability to learn
long-distance dependence, and the prediction error does not
accumulate in the one-step time-series prediction mode. In
addition, to make it easier to compare the predictive
performance of each method on different bearings, we calculate
the value of root mean square error (RMSE) based on the
difference between the predicted and actual values. In
particular, RMSE is computed as follows:

2

1

1
�( )

m

i i
i

RMSE y y
m 

  (16)

wherem is the number of samples included in the test dataset,

i
y and �

i
y are the predicted value and actual value,

respectively. The RMSE values of different methods are
shown in the Table IV, from which it can be seen that the
proposed method has the smallest average RMSE for the
five bearings. However, in terms of training time, due to the
deep structure of LSTM-GAN and the large number of
iterations, the time complexity of the proposed method is far
greater than other the machine learning methods. Therefore,
this is where we need to improve in future work. For
iterative multi-step ahead RUL prediction, however,
LSTM-GAN shows a better performance than LSTM.

TABLE IV
THE RMSE VALUES OF ONE-STEP TIME SERIES PREDICTION WITH DIFFERENT

METHODS

Bearing
Method

SVR RBF LSTM LSTM-GAN

1 0.9606 0.0042 0.0111 0.0037

2 0.5406 0.7036 0.4861 0.1427

3 0.9895 0.0130 0.0170 0.0137

4 0.0094 0.0314 0.0383 0.0159

5 0.0278 0.0695 0.0340 0.0104

Average 0.5056 0.1651 0.1165 0.0373

Time (s) 3.4718 2.8573 185.9691 1765.5118

D. Case 2: Iterative multi-step ahead RUL Prediction
In this section, the bearing degradation data are used to test

the LSTM-GAN with iterative multi-step ahead RUL
prediction method. Normally, several statistical features need
to be obtained from the experimental data to observe the overall
trend of the data, such as RMS value, Kurtosis, and mean value
[41]. Following [24], these statistical features are used to make
RUL prediction for bearings; a graphical illustration of these
statistical features are shown in Fig. 12. Note that the inclusion
of these statistical features in the input vector to the network
may bring more complex tasks to the LSTM-GAN model,



Fig. 11. One-step time-series prediction results of four the methods (SVR, SVM, LSTM, and LSTM-GAN ) for bearings 1-5.

Fig. 12. An illustration of the basic statistics for Bearing 1 and Bearing 2.

Fig. 13. Iterative multi-step ahead RUL estimation for Bearing 1 using six methods (starting at 0.25 incipient failure threshold). (a) The proposed method
(LSTM-GAN). (b) SVR and LSTM. (c) BP, DBN+SVR, and DBN+BP.



Fig. 14. Iterative multi-step ahead RUL estimation for Bearing 2 using six methods (starting at 0.5 incipient failure threshold). (a) The proposed method
(LSTM-GAN). (b) SVR and LSTM. (c) BP, DBN+SVR, and DBN+BP.

TABLE V
A COMPARISON OF DIFFERENT METHODS FOR ITERATIVE MULTI-STEP AHEAD RUL PREDICTION

Testing dataset Current time
(s)

Actual RUL
(s)

SVR RUL
(s)

LSTM RUL
(s)

BP RUL
(s)

DBN+SVR RUL
(s)

DBN+BP RUL
(s)

LSTM-GAN RUL
(s)

Bearing 1 237950 2390 620 1920 290 3080 980 2400
Bearing 2 10200 3310 3750 1130 420 1680 480 3500

Score 0.0338 0.2983 0.0498 0.1163 0.0926 0.5971
MAE 1012.5 1325 2715 1160 2120 50

NRMSE 0.9755 0.5533 0.8863 0.4393 0.7845 0.0456
Time (s) 1.4583 12.6650 20.4371 22.1538 278.7295 1818.7975

which is not desirable for the LSTM-GAN network. As a
trade-off, it is better to infer the RUL by using a single
statistical feature. Therefore, the RMS values of Bearing 3-1
(named Bearing 1) and Bearing 1-4 (named Bearing 2) are used
as the statistical features. This is more difficult for the method
using multi-statistical features. Two shallow LSTM-GAN
networks are constructed and used to predict the RUL of the
two bearings, separately. The parameters of the LSTM-GAN
are updated using the training samples. Two sets of testing
samples, relating to each of the operating conditions, have
different incipient failure threshold (i.e. 0.5 and 0.25). Finally,
for comparison purpose, five existing methods, namely, SVR,
BP, DBN+SVR, DBN+BP, and LSTM, are applied to the same
training and test data. Fig. 13 and Fig. 14 show a comparison of
the RUL estimation results and the upper and lower bounds of
the 95% confidence interval. The 95% confidence interval is
calculated by:

 ci
sx x z
n

(17)

where cix is the value of the upper and lower bounds of the
confidence interval, z is the standard deviation, s is the
deviation of the sample, and n is the sample size.

Comparing Fig. 13(a), (b), and (c), the LSTM-GAN is
significantly better than the five compared methods.
Particularly, it is interesting to notice the obvious difference
between LSTM-GAN and LSTM, which shows that the
proposed method can effectively correct the prediction curve
and reduce the propagation of prediction errors. The same
observation can be noticed in Fig. 14. The LSTM-GAN
approach provides much better results than the five compared
methods. Note that initially the compared methods produce
good prediction results, but with the continuous degradation

process, these compared methods gradually deviate from the
expected trajectory. Finally, all the compared methods have
poor performance in the iterative multi-step ahead RUL
prediction.

In order to comprehensively assess the performance of the
proposed approach, the following score function is employed to
calculate the accuracy of RUL prediction [39]:
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with i
Er being the percent error on experiment i , which is

defined by:


 (%) 100i i
i

i

ActRUL RUL
Er

ActRUL
(20)

where i
ActRUL and 

i
RUL represent the actual RUL and the

estimated RUL for the i-th test bearing, respectively. In
addition to the score function, the common performance
metrics such as mean absolute error (MAE) and normalized
root mean square error (NRMSE) are also used for further
comparison. MAE and NRMSE are calculated as:
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The RUL estimation results for the two bearings are depicted
in Table V. Compared with traditional SVR, LSTM, BP,
DBN+SVR, and DBN+BP, the enhanced LSTM-GAN RUL
prediction method generates small fluctuation in RUL
prediction and small prediction error, and the LSTM-GAN gets
the highest score among all the methods. Especially, for
iterative multi-step ahead RUL prediction, the traditional RUL
prediction methods fail since they do not compensate for the
prediction error superposition problem. In contrast, the
LSTM-GAN shows good performance in iterative multi-step
ahead RUL prediction. The comparison results further verify
the effectiveness of the LSTM-GAN for improved iterative
multi-step ahead RUL prediction of bearings. Finally, the time
complexity of all methods is listed in Table V. It can be
observed from Table V that the time complexity of the iterative
multi-step ahead prediction approach is similar to the case of
one-step time series prediction (shown in Table IV). The
training time used by LSTM-GAN is by far longer than the
other methods. Therefore, the use of multi-GPU parallel
computing to accelerate model training and improve the
real-time performance of the method is key point to be
investigated in our future work.

V. CONCLUSION

In this study, a deep adversarial learning prognostics
approach based on the LSTM network and GAN was proposed
for solving the prediction error superposition problem.
Specifically, a LSTM-GAN structure was designed, taking
advantages of both the LSTM network and GAN. One of the
advantages of the proposed LSTM-GAN is that it is able to
learn more representative features including the common
statistic features, and therefore improves the RUL prediction
accuracy. The proposed deep adversarial LSTM prognostics
framework provides a reliable RUL prediction strategy in
prognostics and health management of mechatronics equipment.
However, the improved accuracy is achieved at the expense of
taking more time on training the LSTM-GAN network.
Therefore, part of the future work will be to investigate and
design new implementation algorithms to accelerate the
training speed of the proposed network and meanwhile to
further improve its overall performance for rolling bearing
RUL prediction.

REFERENCES

[1] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault
diagnosis of electrical motors—A review,” IEEE Trans. Energy
Convers.,vol. 20, no. 4, pp. 719-729, Dec. 2005.

[2] P. Zhang, Y. Du, T. G. Habetler, and B. Lu, “A survey of condition
monitoring and protection methods for medium-voltage induction
motors,” IEEE Trans. Ind. Electron., vol. 47, no. 1, pp. 34-46, Jan./Feb.
2011.

[3] Y. N. Qian, R. Q. Yan, and S. J. Hu, “Bearing degradation evaluation
using recurrence quantification analysis and Kalman filter,” IEEE Trans.
Instrum. Meas., vol. 63, no. 11, pp. 2599-2610, Nov. 2014.

[4] F. P. G. Márquez, A. M. Tobias, J. M. P. Pérez, and M. Papaelias,
“Condition monitoring of wind turbines: Techniques and methods,”
Renewable Energy, vol. 46, pp. 169-178, 2012.

[5] A. Malhi, R. Q. Yan, and R. X. Gao, “Prognosis of defect propagation
based on recurrent neural networks,” IEEE Trans. Instrum. Meas., vol. 60,
no. 3, pp. 703-711, Mar. 2011.

[6] R. K. Singleton, E. G. Strangas, and S. Aviyente, “The use of bearing
currents and vibrations in lifetime estimation of bearings,” IEEE Trans.
Ind. Inform., vol. 13, no. 3, pp. 1301-1309, Jun. 2017.

[7] N. P. Li, Y. G. Lei, J. Lin, and S. X. Ding, “An improved exponential
model for predicting remaining useful life of rolling element bearings,”
IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7762-7773, Dec. 2015.

[8] Y. G. Le. (2019). XJTU-SY Bearing Datasets. [Online]. Available:
https://www.mediafire.com/folder/m3sij67rizpb4/XJTU#0m0g59yk1pm
h5.

[9] D. T. Liu, J. B. Zhou, H. T. Liao, Y. Peng, and X. Y. Peng, “A health
indicator extraction and optimization framework for lithium-ion battery
degradation modeling and prognostics,” IEEE Trans. Syst., Man, Cybern.:
Syst., vo. 45, no. 6, pp. 915-928, Jun. 2015.

[10] Z. G. Tian and H. T. Liao, “Condition based maintenance optimization for
multi-component systems using proportional hazards model,” Rel. Eng.
Syst. Safety, vol. 96, no. 5, pp. 581-589, May 2011.

[11] H. Tischmacher, I. Tsoumas, and S. Gattermann, “Probability model for
discharge activities in bearings of converter-fed electric motors,” in Proc.
Int. Conf. Elect. Mach., 2014, pp. 1818-1824.

[12] J. Deutsch and D. He, “Using deep learning-based approach to predict
remaining useful life of rotating components,” IEEE Trans. Syst., Man,
Cybern.: Syst., vo. 48 , no. 1, pp. 11-20, Jan. 2018.

[13] K. Javed, R. Gouriveau, and N. Zerhouni, “A new multivariate approach
for prognostics based on extreme learning machine and fuzzy clustering,”
IEEE Trans. Cybern., vol. 45, no. 12, pp. 2626-2639, Dec. 2015.

[14] F. D. Maio, K. L. Tsui, and E. Zio, “Combining relevance vector
machines and exponential regression for bearing residual life estimation,”
Mech. Syst. Signal Process., vol. 31, pp. 405-427, Aug. 2012.

[15] J. Zhu, N. Chen, and W. W. Peng, “Estimation of bearing remaining
useful life based on multiscale convolutional neural network,” IEEE
Trans. Ind. Electron., vol. 66, no. 4, pp. 3208-3216, Apr. 2019.

[16] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief
networks ensemble for remaining useful life estimation in prognostics,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306-2318,
Oct. 2017.

[17] L. Guo, N. P. Li, F. Jia, Y. G. Lei, and J. Lin, “A recurrent neural network
based health indicator for remaining useful life prediction of bearings,”
Neurocomputing, vol. 240, pp. 98-109, May 2017.

[18] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiechand,
and N. Zerhouni, “Direct remaining useful life estimation based on
support vector regression,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp.
2276-2285, Mar. 2017.

[19] A. Soualhi, K. Medjaher, and N. Zerhouni, “Bearing health monitoring
based on Hilbert–Huang transform, support vector machine, and
regression,” IEEE Trans. Instrum. Meas.,vol. 64, no. 1, pp. 52-62, Jan.
2015.

[20] T. H. Loutas, D. Roulias, and G. Georgoulas, “Remaining useful life
estimation in rolling bearings utilizing data-driven probabilistic e-support
vectors regression,” IEEE Trans. Rel., vol. 62, no. 4, pp. 821-832, Dec.
2013.

[21] C. Q. Shen, F. Hu, F. Liu, A. Zhang, and F. R. Kong, “Quantitative
recognition of rolling element bearing fault through an intelligent model
based on support vector regression,” in Proc. 2013 Fourth International
Conference on Intelligent Control and Information Processing, Beijing,
China, Jun. 2013, pp. 842-847.

[22] T. Benkedjouh, K. Medjaher, N. Zerhouni, and S. Rechakc, “Remaining
useful life estimation based on nonlinear feature reduction and support
vector regression,” Engineering Applications of Artificial Intelligence,
vol. 26, no. 7, pp. 1751-1760, Aug. 2013.

[23] J. Gokulachandran and K. Mohandas, “Comparative study of two soft
computing techniques for the prediction of remaining useful life of
cutting tools,” Journal of Intelligent Manufacturing, vol. 26, no. 2, pp.
255-268, Apr. 2015.

[24] M. Xia, T. Li, T. X. Shu, J. F. Wan, C. W. de Silva, and Z. R. Wang, “A
two-stage approach for the remaining useful life prediction of bearings



using deep neural networks,” IEEE Trans. Ind. Inform., vol. 15, no. 6, pp.
3703-3711, Jun. 2019.

[25] C. Sun, M. Ma, Z. B. Zhao , S. H. Tian, R. Q Yan, and X. F. Chen, “Deep
transfer learning based on sparse autoencoder for remaining useful life
prediction of tool in manufacturing,” IEEE Trans. Ind. Inform., vol. 15,
no. 4, pp. 2416-2425, Apr. 2019.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, May 2015.

[27] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” in
Proc. NIPS, pp. 2672-2680, Jun. 2014.

[28] E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, “Adversarial discriminative
domain adaptation,” in Proc. IEEE Conference CVPR, pp. 2962-2971,
July. 2017.

[29] K. Seeliger, U. Güçlü, L. Ambrogioni, Y. Güçlütürk, and M. A. J. van
Gerven, “Generative adversarial networks for reconstructing natural
images from brain activity,” Neuro. Image., vol. 181, pp. 775-785, Nov.
2018.

[30] B. Dai, D. Lin, R. Urtasun, and S. Fidler. (2017). “Towards diverse and
natural image descriptions via a conditional GAN.” [Online].
Available:https://arxiv.org/abs/1703.06029.

[31] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent neural
network model for time-varying matrix inversion,” IEEE Trans. Neural
Netw.,vol. 16, no. 6, pp. 1477-1490, Nov. 2005.

[32] Y. N. Zhang, D. C Jiang, J. Wang, “A recurrent neural network for
solving Sylvester equation with time-varying coefficients,” IEEE Trans.
Neural Netw., vol. 13, no. 5, pp. 1053-1063, Sep. 2002.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[34] R. Thirukovalluru, S. Dixit, R. K. Sevakula, N. K. Verma, and A. Salour,
“Generating feature sets for fault diagnosis using denoising stacked
auto-encoder,” in Proc. IEEE Conference ICPHM, pp. 1-7, Aug. 2016.

[35] H. D. Shao, H. K. Jiang, H. W. Zhao, and F. Wang, “A novel deep
autoencoder feature learning method for rotating machineryfault
diagnosis,” Mechanical Systems and Signal Processing., vol. 95, pp.
187-204, Oct. 2017.

[36] Z. H. Liu, B. L. Lu, H. L. Wei, X. H. Liu, and L. Chen, “Fault diagnosis
for electromechanical drivetrains using a joint distribution optimal deep
domain adaptation approach,” IEEE sensor J., vol. 19, no. 24, pp.
12261-12270, Dec. 2019.

[37] L. Wen, L. Gao, and X. Li, “A new deep transfer learning based on sparse
auto-encoder for fault diagnosis,” IEEE Trans. Syst., Man, Cybern.: Syst.,
vol. 49, no. 1, pp. 136-144, Jan. 2019.

[38] C. Kandaswamy, et al., “Improving transfer learning accuracy by reusing
stacked denoising autoencoders,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., San Diego, USA, Oct. 2014, pp. 1380-1387.

[39] P. Nectoux, et al., “Pronostia: An experimental platform for bearings
accelerated degradation tests,” in Proc. IEEE Int. Conf. Prognostics
Health Manage., 2012, pp. 1-8.

[40] X. K. Zhang, F. Q. Sun, and X. Y. Li, “A degradation interval prediction
method based on RBF neural network,” in Proc. 2014 10th International
Conference on Reliability, Maintainability and Safety, Guangzhou, China,
Aug. 2014, pp. 310-315.

[41] R. Zhao, D. Z Wang, R. Q Yan, K. Z. Mao, F. Shen, and J. J Wang,
“Machine health monitoring using local feature-based gated recurrent
unit networks,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1539-1548,
Feb. 2018.

Bi-Liang Lu received the B.Eng. degree in
electrical engineering and automation, the
M.Sc. degree in automatic control and
electrical engineering from the Hunan
university of science and technology,
Xiangtan, China, in 2017 and 2020,
respectively.

His current research interests include
deep learning algorithm design, and

condition monitoring and fault diagnosis for electric power
equipment.

Zhao-Hua Liu (M’16) received the M.Sc.
degree in computer science and
engineering, and the Ph.D. degree in
automatic control and electrical
engineering from the Hunan University,
China, in 2010 and 2012, respectively. He
worked as a visiting researcher in the
Department of Automatic Control and
Systems Engineering at the University of

Sheffield, United Kingdom, from 2015 to 2016.
He is currently an Associate Professor with the School of

Information and Electrical Engineering, Hunan University of
Science and Technology, Xiangtan, China. His current research
interests include artificial intelligence and machine learning
algorithm design, parameter estimation and control of
permanent-magnet synchronous machine drives, and condition
monitoring and fault diagnosis for electric power equipment.

Dr. Liu has published a monograph in the field of Biological
immune system inspired hybrid intelligent algorithm and its
applications, and published more than 30 research papers in
refereed journals and conferences, including IEEE
TRANSACTIONS/JOURNAL/MAGAZINE. He is a regular
reviewer for several international journals and conferences.

Hua-Liang Wei received the Ph.D. degree
in automatic control from the University of
Sheffield, Sheffield, U.K., in 2004.

He is currently a senior lecturer with the
Department of Automatic Control and
Systems Engineering, the University of
Sheffield, Sheffield, UK. His research
focuses on evolutionary algorithms,

identification and modelling for complex nonlinear systems,
applications and developments of signal processing, system
identification and data modelling to control engineering.

Lei Chen received the M.S. degree in
computer science and engineering, and the
Ph.D. degree in automatic control and
electrical engineering from the Hunan
University, China, in 2012 and 2017,
respectively.

He is currently a Lecturer with the
School of Information and Electrical
Engineering, Hunan University of Science

and Technology, Xiangtan, China. His current research
interests include deep learning, network representation learning,
information security of industrial control system and big data
analysis.



Hongqiang Zhang received the B.S., M.S.
and Ph.D. degrees in control science from
Hunan University of Science and
Technology in 2001, Hunan University
(HNU) in 2004 and HNU in 2016,
respectively.

He is currently a Lecturer with the
School of Information and Electrical
Engineering, Hunan University of Science

and Technology, Xiangtan, China. His research interests are
swarm robotics system, swarm intelligence, optimization, and
intelligent control.

Xiao-Hua Li received the B.Eng. degree
in computer science and technology from
Hunan University of Science and
Engineering, Yong zhou, China, in 2007
and the M.Sc. degree in computer science
from Hunan University, Changsha, China,
in 2010. Currently, She is currently a
lecturer in the School of Information and
Electrical Engineering, Hunan University

of Science and Technology, Xiangtan, China. Her interests are
in evolutionary computation.


	OLE_LINK1
	PointTmp
	I.INTRODUCTION
	II.THE PROPOSED ADVERSARIAL LEARNING ARCHITECTURE FOR
	A.Prediction Error Superposition Problem
	1)Problem Analysis of Time Series Prediction
	2)Problem Definition

	B.A Solution to the Prediction Error Superposition P

	III.THE PROPOSED ADVERSARIAL LEARNING ARCHITECTURE-BAS
	A.Generative Model Based on LSTM
	B.Discriminative Model Based on Auto-Encoder
	C.Representative Features Classifier
	D.Optimization Solution

	IV.EXPERIMENT TESTS
	A.Dataset Description
	B.Implementation Details
	C.Case 1: One-Step Time-Series Prediction
	D.Case 2: Iterative multi-step ahead RUL Prediction

	V.CONCLUSION
	REFERENCES

