

This is a repository copy of *Hippocampal sequencing mechanisms are disrupted in a maternal immune activation model of schizophrenia risk*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/176585/

Version: Accepted Version

Article:

Speers, L., Cheyne, K., Cavani, E. et al. (3 more authors) (2021) Hippocampal sequencing mechanisms are disrupted in a maternal immune activation model of schizophrenia risk. Journal of Neuroscience, 41 (32). pp. 6954-6965. ISSN 0270-6474

https://doi.org/10.1523/JNEUROSCI.0730-21.2021

© 2021 The Authors. This is an author-produced version of a paper subsequently published in Journal of Neuroscience. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Research Articles: Neurobiology of Disease

Hippocampal sequencing mechanisms are disrupted in a maternal immune activation model of schizophrenia risk

https://doi.org/10.1523/JNEUROSCI.0730-21.2021

Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.0730-21.2021

Received: 6 April 2021 Revised: 7 June 2021 Accepted: 4 July 2021

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2021 the authors

2	model of schizophre	nia risk
3		
4	Authors	
5	Lucinda J. Sp	eers ¹ , Kirsten R. Cheyne ¹ , Elena Cavani ^{1,2} , Tara Hayward ¹ , Robert
6	Schmidt ³ , David K. E	Bilkey ^{1*}
7	¹ Psychology Dept., C	tago Univ. Dunedin, New Zealand, ² University of Tübingen, Tübingen,
8	Germany, ³ Psycholog	gy Dept., Univ. of Sheffield., Sheffield, United Kingdom.
9		
10	Contact information:	Professor David Bilkey, Department of Psychology, University of
11	Otago, Dunedin 9054	, New Zealand. Email: <u>david.bilkey@otago.ac.nz</u>
12		
13	Number of pages: 33	
14	Number of figures: 7	
15	Number of words:	Abstract – 159
16		Introduction – 646
17		Discussion – 1500
18		
19		
20	Declaration of interes	its
21	The authors declare n	o competing financial interests.

Hippocampal sequencing mechanisms are disrupted in a maternal immune activation

22

1

23 Acknowledgements

- 24 Support was provided through funding from the Health Research Council of New Zealand
- 25 grant number 19/044.

Abstract

28	Episodic memory requires information to be stored and recalled in sequential order, and these
29	processes are disrupted in schizophrenia. Hippocampal phase precession and theta sequences
30	are thought to provide a biological mechanism for sequential ordering of experience at
31	timescales suitable for plasticity. These phenomena have not previously been examined in
32	any models of schizophrenia risk. Here, we examine these phenomena in a maternal immune
33	activation (MIA) rodent model. We show that while individual pyramidal cells in the CA1
34	region continue to precess normally in MIA animals, the starting phase of precession as an
35	animal enters a new place field is considerably more variable in MIA animals than in
36	controls. A critical consequence of this change is a disorganization of the ordered
37	representation of experience via theta sequences. These results provide the first evidence of a
38	biological-level mechanism that, if it occurs in schizophrenia, may explain aspects of
39	disorganized sequential processing that contribute to the cognitive symptoms of the disorder.
40	
41	

Significance statement

Hippocampal phase precession and theta sequences have been proposed as biophysical 45 mechanisms by which the sequential structure of cognition might be ordered. Disturbances of 46 47 sequential processing have frequently been observed in schizophrenia. Here we show for the first time that phase precession and theta sequences are disrupted in a maternal immune 48 activation model of schizophrenia risk. This is a result of greater variability in the starting 49 phase of precession, indicating that the mechanisms that coordinate precession at the 50 assembly level are disrupted. We propose that this disturbance in phase precession underlies 51 some of the disorganized cognitive symptoms that occur in schizophrenia. These findings 52 could have important preclinical significance for the identification and treatment of 53

54 schizophrenia risk factors.

55	The hippocampus is known to be involved in memory-related processes where
56	information is encoded, stored and recalled sequentially, including spatial navigation
57	(O'keefe & Nadel, 1978), episodic memory (Tulving & Markowitsch, 1998), and thinking
58	about the future (Schacter et al., 2007). Hippocampal phase precession has been proposed to
59	underlie the sequential organization of information (Buzsáki & Tingley, 2018; Dragoi &
60	Buzsáki, 2006; Jaramillo & Kempter, 2017; Wikenheiser & Redish, 2015). Phase precession
61	describes the phenomenon whereby the firing of a hippocampal 'place cell' precesses
62	systematically from later to earlier phases of the underlying local field potential (LFP) theta
63	oscillation as the animal advances across the cell's 'place field' (Huxter et al., 2003; Tingley
64	& Buzsáki, 2018) (O'Keefe & Recce, 1993; Skaggs et al., 1996). Phase precession has also
65	recently been confirmed in humans (Qasim et al., 2020).
66	At the network level, an emergent property of phase precession occurs when a
67	population of cells with overlapping place fields are co-active (Figure 1). Within a single
68	theta cycle (~120ms), these cells tend to fire in a 'theta sequence' (Foster & Wilson, 2007),
69	thereby reproducing the ordered spatial arrangement of their place fields within a timescale
70	that is appropriate for the induction of synaptic plasticity (Dan & Poo, 2004; Skaggs et al.,
71	1996). Theta sequences may therefore provide a biological mechanism for sequential memory
72	encoding and storage (Dragoi & Buzsáki, 2006; Jaramillo & Kempter, 2017), as well as event
73	prediction (Foster & Wilson, 2007; Lisman & Redish, 2009; Wikenheiser & Redish, 2015).
74	Coherent theta sequences depend on the coordinated activity of cell assemblies (Dragoi &
75	Buzsáki, 2006; Itskov et al., 2008; Middleton & McHugh, 2016), so that co-active cells have
76	both a similar degree of precession over space and time, and a similar starting phase as the
77	animal enters a new firing field (Feng et al., 2015; Schmidt et al., 2009). A failure of this
78	coordination could disrupt theta sequences, thereby disturbing some of the cellular
79	mechanisms that underlie sequential memory and predictive processes.

80Figure 1 here.....

- 81
- 82

Structural, biochemical, and functional abnormalities of the hippocampus have 83 previously been observed in several neurodevelopmental disorders, including schizophrenia 84 (Harrison, 2004; Heckers & Konradi, 2002; Li et al., 2019). Such disturbances likely 85 contribute to several cognitive symptoms associated with schizophrenia, including the 86 disorganization of sensory and contextual information, memory and imagination 87 88 (D'Argembeau et al., 2008; Hardy-Baylé et al., 2003). Furthermore, sequential processing deficits that may have a hippocampal component are well documented in schizophrenia 89 (Eichenbaum, 2017; Lisman & Buzsáki, 2008; Meck et al., 2013), including disturbed 90 91 judgement of temporal order and duration (Ciullo et al., 2016; Thoenes & Oberfeld, 2017), and impaired sequence learning (Pedersen et al., 2008; Siegert et al., 2008). Similar deficits 92 93 have also been observed in first-degree relatives and other at-risk individuals during the 94 prodromal phase (Dickinson et al., 2007), and they are independent of other cognitive impairments (Ciullo et al., 2016), suggesting that they may be a primary feature of the 95 disorder. It is possible, therefore, that dysfunction in hippocampal phase precession and theta 96 97 sequences could underlie some of the sequencing and disorganization symptoms observed in schizophrenia (Lisman & Buzsáki, 2008). To our knowledge however, no previous studies 98 have systematically investigated theta sequences and phase precession in any models of the 99 100 disorder. Here we examined phase precession and theta sequences in the maternal immune 101

activation (MIA) model of schizophrenia risk. The MIA model is built on epidemiological
evidence suggesting that exposure to viruses or other pathogens during the gestation period is
an etiological risk factor for the development of schizophrenia or autism spectrum disorder

(Adams et al., 1993; Brown & Meyer, 2018). Several studies have confirmed that MIA
offspring manifest many of the neurobiological, cognitive and behavioural symptoms of
schizophrenia, including irregularities of hippocampal structure and neural transmission,
reduced sensorimotor gating, decreased behavioural flexibility, and memory deficits (Brown
& Meyer, 2018; Meyer et al., 2005; Wolff & Bilkey, 2010; Zuckerman & Weiner, 2005).

110

111 Materials and methods

112 ANIMALS AND EXPERIMENTAL DESIGN

113 All subjects were generated using the MIA intervention as we have described previously (Dickerson et al., 2010; Wolff & Bilkey, 2015). Female Sprague Dawley rats (~3 114 months old) were time-mated with GD1 considered to be the first day after copulation. On 115 116 GD 15, pregnant rats were briefly anesthetized with isoflurane (5%; Bayer) and administered either a single injection of polyinosinic:polycytidylic acid (poly I:C; Sigma-Aldrich) 4.0 117 mg/kg, i.v. dissolved in 0.9% saline (Baxter), or an equivalent saline injection 1 ml/kg. Poly 118 119 I:C and saline treatments were always performed in pairs on the same day. All dams and pups were housed in open cages prior to weaning. After birth, litters were culled to a maximum of 120 6 male pups and, post-weaning, were housed in littermate groups of 2-3 in individually 121 122 ventilated cages (IVC). Only male offspring were used for experimental purposes due to resource limitations. At this stage all pups were randomly allocated a litter number. The 123 housing room was maintained at a normal 12-h light/dark cycle, and temperature controlled 124 125 to 20-22°C. Immature rats were provided with access to food and water ad libitum, and after 3 months were food deprived to no less than 85% of their free-feeding weight in preparation 126 for the experimental procedure. Water was available ad libitum throughout the entire 127 128 experimental procedure. All rats weighed between 400 and 650 grams at the time of surgery.

129

130 APPARATUS AND TRAINING

The apparatus consisted of a rectangular wooden circuit measuring 900 by 800mm 131 (Figure 2a). All arms were 100mm wide with 270mm high side walls. The entire apparatus 132 was painted in matte black and was devoid of visual cues. A video camera was mounted to 133 the ceiling of the recording room to track the animals' position, which was captured from 3 134 infrared LED lights attached to the acquisition system's head stage. All experiments were 135 performed in a darkened environment with some ambient light from the recording computer 136 and a small lamp aimed away from the apparatus into one corner of the room. 137 The mature male offspring (3-12 months) were trained over a period of 5 to 15 days. 138 Animals were randomly selected according to their litter number, with a maximum of two 139 rats per litter. On days 1-5 rats were habituated to the recording room, apparatus and food 140 reward, and were allowed to free-forage for Coco Pops (Kellogg Company) scattered 141 throughout the apparatus. Following successful habituation, whereby rats actively explored 142 143 the maze and consumed the food reward, the placement of Coco Pops was gradually restricted, first to the top 2 corners of the track and in the centre of the reward arm, and then 144 to the reward arm only. During this period, rats were trained to run in a clockwise direction 145

and were turned back to the correct direction with a paddle when necessary. Coco-pops

(approx. 6 per reward delivery) were delivered manually by the experimenter. Training was
considered completed when rats consistently ran in a clockwise direction for the food reward
over a twenty-minute session.

150

151 SURGICAL PROCEDURES

All experimental protocols were approved by the Otago University Animal Ethics
Committee and conducted in accordance with New Zealand animal welfare legislation.
Following successful training, animals were anesthetized with 5% isoflurane (Merial New

155	Zealand) in oxygen and maintained at 1.5 to 2.5% throughout surgery. After animals were
156	deeply anesthetized, they were given a subcutaneous injection of Atropine (1mg/kg) to ease
157	their breathing, as well as the analgesics Carprofen (1mg/kg) and Temgesic (buprenorphine;
158	0.1mL), and a prophylactic antibiotic, Amphoprim (trimethoprim and sulfamethazine,
159	0.2mL). Rats were then mounted on a stereotaxic apparatus (David Kopf Instruments) above
160	a heating pad, and a lubricating eye gel (Visine) was applied. The scalp was shaved and
161	sterilized with Betadine (Povidone-iodine), followed by a subcutaneous injection in the scalp
162	of the local anesthetic Lopaine (lignocaine hydrochloride 20mg mL ⁻¹ ; 0.1mL diluted in
163	0.4mL of saline). After exposing the skull, an opening was drilled above the left hemisphere
164	dorsal hippocampus, and a custom built, 8 channel microdrive containing 2 moveable tetrode
165	bundles of equal length was targeted to the CA1 subregion at -3.8mm AP from bregma, -
166	2.5mm ML from the midline, and lowered just above the pyramidal cell layer (1.8mm from
167	dura; Figure 2b). Electrodes consisted of 25µm nichrome, heavy formvar insulated wire
168	(Stablohm 675 HFV NATRL; California Fine Wire Company), and had been gold
169	electroplated until impedences were reduced to ~ $200 - 300 \text{ k}\Omega$ (NanoZ, Neuralynx).
170	Microdrives were secured to the skull with jewellers' screws and dental cement, and a ground
171	wire was secured to an additional screw placed above the right hemisphere. Post-surgery rats
172	received a secondary dose of Amphoprim immediately upon waking, and then an additional
173	dose of Carprofen 24 hours later. Rats were provided with ad libitum food and water post-
174	surgery and were given 8 days to recover.
175	

176 EXPERIMENTAL PROCEDURE AND ELECTROPHYSIOLOGICAL

177 RECORDINGS

Following recovery, rats were again food deprived to no less than 85% of their free-feeding weight. Post-operative training was carried out to ensure that the animals could still

180	perform the task adequately. Rats were then attached to a multichannel data acquisition
181	system (DacqUSB; Axona Ltd), and single unit data was closely monitored as tetrodes were
182	slowly lowered (~40µm per day) towards the dorsal CA1 pyramidal cell layer until well-
183	isolated single units were identified. Extracellular unit activity was first passed through an
184	AC-coupled unity gain amplifier before passing through to the recording system. Single unit
185	data was bandpass filtered between 600 and 6000 Hz, and sampled at a rate of 48 kHz with
186	24-bit resolution. For each tetrode, one electrode with minimal spiking activity was selected
187	as a reference. Action potential thresholds were set at a minimum of $70 - 80 \mu\text{V}$ and recorded
188	for a 1 ms window whenever the spiking amplitude met this threshold. All spike events were
189	time-stamped relative to the beginning of the recording. LFP data was simultaneously
190	recorded from electrodes that has active place cells and were referenced to ground. LFP data
191	was filtered at 500 Hz (with notch filtering selective for activity at 50 Hz) with a gain of
192	~500, and sampled at 48 kHz. The animal's location was determined from 3 infrared LEDs
193	mounted on the animal's headstage and recorded by a camera located above the chamber.
194	Positional data was analysed with a sampling rate of 50 Hz and then converted into x and y
195	coordinates by the recording system. Once well-isolated single units were identified, tetrodes
196	were not lowered any further for the duration of the experiment. Rats ran no more than one
197	session per day, for $\sim 60 - 80$ laps per session. Single unit, position and LFP data was saved
198	for later analysis. All recordings with at least 1 putative place cell were included in the final
199	dataset on the condition that there was a minimum of 4 separate recordings from that
200	particular animal.

202 ISOLATION OF SINGLE UNITS

For each recording, single units were identified manually offline using purpose
designed cluster cutting software (Plexon Offline Sorter, Version 3), primarily via the peak-

to-valley distance and principal components analysis of the waveforms. Putative place cells were isolated if they had an average firing rate <5 Hz, a peak to trough spike width of ~400 μ s, and a complex pattern of bursting activity identified from the autocorrelation of spike times (Figure 2c). All cells that did not meet these criteria were excluded from further analysis. Sorted data was then exported to MATLAB (version R2019a, MathWorks), and analysis of single unit, position and LFP data was carried out in MATLAB with customwritten scripts.

212

213

ANALYSIS OF PLACE CELL PROPERTIES

The rectangular track was linearized so that the starting location was the lower left 214 corner (figure 2a). Place fields were identified by dividing the track floor into 1 cm long bins 215 216 and creating an occupancy map from the position tracking data based on the amount of time the rat spent in each bin. Spikes were binned similarly for each single unit by identifying the 217 218 number of spikes that occurred within each bin. Element-wise division was then used between the spike map and the occupancy map to create a firing mate map where each bin 219 contained the firing rate for a cell. Firing rate maps were smoothed with a 10 cm wide 220 moving window. Place fields were then detected automatically by detecting regions of at least 221 222 10cm in length that had a firing rate of at least twice the mean firing rate for the cell (Porter et al., 2018). If more than two place fields were detected for a cell, only the largest was 223 analysed. Following this, each place field map was analysed separately to determine place 224 225 field length and mean infield firing rate. Where place fields wrapped around the start-end position of the linearized maze they were linearly shifted prior to firing rate analysis. 226 Spatial information content provides a measure of how informative a spike from a cell 227 228 is regarding the animal's current location within an environment. Place cells with a higher

229 information value therefore provide a more reliable prediction of current location than cells

230 with a lower information value (Skaggs et al., 1993). The formula for information content,

231 measured in bits per spike is:

Information =
$$\sum_{i=1}^{N} p_i \frac{\lambda_i}{\lambda} \log 2 \frac{\lambda_i}{\lambda}$$

where the environment is divided into *N* distinct bins (i = 1, ..., N), p_I denotes the occupancy probability of bin *i*, λ_i is the mean firing rate for bin *i*, and λ is the overall mean firing rate of the cell.

Correlations of theta frequency and speed were generated for each recording from every tetrode that had single unit activity. This process involved estimating instantaneous values for theta frequency from the Hilbert transform of LFP filtered between 6 and 10 Hz. Estimates of instantaneous speed were determined by monitoring the animals change in position over 500 ms time windows. Speed and theta frequency data were then sampled at one second intervals and correlated. Samples where speed was below 5 cm/s were excluded from the analysis.

242

243 ANALYSIS OF LFP PROPERTIES

Sampling of local field potentials (LFPs) occurred from either the same electrode from which unit data was detected or one in the same bundle. LFP activity was sampled at 4800Hz. To determine theta waveform shape, the LFP was bandpass filtered between 6-10Hz and a phase profile was determined using the Hilbert transform. A sample waveform of 200 ms duration was subsequently captured whenever the phase data indicated a trough had been reached. These samples were then averaged, as were the phase profiles.

250

251 PHASE PRECESSION ANALYSIS

252	For all phase precession analyses, the phase reference was always to the LFP signal
253	taken from the CA1 pyramidal cell layer, and 0° corresponds to the trough of the oscillation.
254	An EEG amplitude threshold was also applied to discard spikes recorded where theta was of
255	very low amplitude. This threshold was set at 0.25 of one standard deviation of the amplitude
256	envelope generated by the Hilbert transform from the theta-filtered LFP of each recording.
257	On average it removed approximately 8% of spikes from the dataset. For all spikes that
258	occurred within a place field, spike phase was determined by matching the animal's position
259	within the place field to the instantaneous phase of the 6-10 Hz theta rhythm, and then
260	analysed using procedures described previously (Kempter et al., 2012). This involves using
261	circular-linear regression to provide a robust estimate of the slope and phase offset of the
262	regression line, and a correlation coefficient for circular-linear data analogous to the Pearson
263	product-moment correlation coefficient for linear-linear data. The fits were constrained to
264	have a slope of no more than -2 and +1 theta cycles per place field transverse. Phase
265	precession analysis was conducted by pooling spiking data from all passes through the place
266	field within a given recording session. Because theta states are associated with locomotion
267	(Vanderwolf, 1969), phase precession analysis was only performed on data where the animal
268	was running at least 5 cm/s.

270

ANALYSIS OF THETA SEQUENCES

For this analysis recordings where at least three cells had been recorded simultaneously were identified. The place fields of these cells were then displayed on a 20 by 20 pixel matrix and the centre marked manually. Here the centre was defined as the bin with the highest firing rate that was closest to the centre of place field mass. For cells with multiple place fields, the largest place field was always selected except in cases where this cell was situated directly in the reward region. In such cases, the next largest place field located in a non-

277 reward location was selected. Cells with a single place field located in the reward area were 278 included if the place field covered regions adjacent to reward, but were excluded if they were restricted to reward area only (such cells had place fields that were smaller than average, and 279 were not common). This was to ensure that analysis of cell spiking unrelated to the theta 280 281 rhythm, such as that which occurs during epochs of consummation, when theta oscillations are absent or weak, was minimized. Place field location around the track was then converted 282 to polar coordinates so that the distance between place fields could be represented in angular 283 format. Ripple events (140-200 Hz) were detected in the LFP and any spikes that occurred 284 285 during these events were discarded. The time between every spike generated by each of the cells in the recording was determined, and where that time interval was within a set window 286 (e.g. 40 ms), the data were correlated with the angular distance between the place fields of the 287 288 two cells using a circular-linear correlation. The use of a circular representation helped to resolve the difficulty of determining whether a place field is ahead of or behind another in a 289 290 topologically circular apparatus.

291

292 HISTOLOGY

Following completion of experiments, rats were anaesthetised with 5% isoflurane in 293 294 oxygen, and a 2mA direct current was passed through each electrode for approximately 1 second to lesion the site of the electrode tip. Rats were then euthanized with an overdose of 295 isoflurane and transcardially perfused, first with 120 ml of 0.9% saline, and then 120 ml of 296 297 10% formalin in saline. Brains were then carefully extracted from the skull after removal of the Microdrive, and stored in 10 % formalin in saline. One week prior to sectioning, brains 298 were transferred first to 10% formalin in H_2O for 24 hours, and then to a 10% formalin/30% 299 300 sucrose solution for approximately 3-7 days, until the brain sunk to the bottom of the sucrose solution. Dehydrated brains were then sectioned into 60 µm coronal slices with a cryostat 301

302 (Leica CM1950). Sections were then mounted on slides and stained with a thionine acetate
303 Nissl stain (Santa Cruz Biotechnology, Inc. After slides were dry (min. 24 hours) electrode
304 placement was imaged with a local power (1.5x) digital microscope (Leica Biosystems, LLC)
305 to verify electrode placement (Figure 2b).

306

307 STATISTICAL ANALYSES

For all statistical analyses, we performed the following procedure. First, raw data were 308 transformed to a lognormal distribution if appropriate. All data (either in raw form or the log 309 310 transform) were then checked for assumptions of normality and equality of variances. These checks were performed in GraphPad Prism 8.1.1 (GraphPad Software, Inc., San Diego, CA, 311 USA), using the d'Agostino & Pearson test for normality, and the F test to compare 312 313 variances. If data did not meet the assumptions for normality based on the d'Agostino & Pearson test, visual inspection of histograms and QQ plots was performed, and extreme 314 315 outliers were removed using the Graphpad function for removal of outliers. All data that failed to meet assumptions of normality based on this procedure were then analysed using the 316 appropriate non-parametric test. Details about the specific tests used are provided in the 317 results section, and in Table 1. For normally distributed data with unequal variances, Welch's 318 319 t-test was used instead of a student's t-test. All t-tests were two-tailed. Data with a normal distribution are presented as mean \pm SEM unless explicitly stated otherwise in the figure 320 legends. For all data that did not meet normality assumptions, the median is depicted instead. 321 Significance levels were defined as p < .05. Additional information about significance levels 322 is provided in the figures as: * p < .05, ** p < .01, *** p < .001. 323

Additional circular statistics (to compare group differences in the intercept of the circular correlation of phase and position, and to generate the MVL for animal by animal and litter by litter analyses) were performed in Oriana 4 (Kovach Computing Services, Inc.,

327	Anglesey, UK). Group differences for angular variance (defined as 1-MVL) were performed
328	using the variance ratio F-test, found at https://www.statskingdom.com/220VarF2.html
329	
330	Figure 2 here
331	
332	Results
333	MIA results in increased firing rates, but basic place field properties and theta
334	dynamics are largely unchanged
335	A total of 327 place cells from 9 MIA animals and 222 place cells from 8 CTL animals
336	were recorded from the dorsal CA1 region of the hippocampus as animals ran around a
337	rectangular track for a food reward (refer to methods). The firing rate of cells recorded from
338	MIA animals was significantly higher than for control cells, including both the mean firing
339	rate (Mann Whitney U = 26557, p < .001) and the infield firing rate (U = 30118, p < .001;
340	Figure 3a). The increased firing rates in the MIA group did not appear to be due to
341	differences in running speed, as mean speed through the non-reward arms was not
342	significantly different between groups (Mann Whitney U = 76689, $p = .283$; Figure 3b). The
343	MIA intervention had no significant effect on place field length (t (547) = 1.79 , p = $.075$),
344	although there was a trend towards slightly larger place fields among MIA cells Figure 3c).
345	There was also no significant group difference for the information content measure of place
346	field specificity (Mann Whitney U = 76475, $p = .314$, Figure 3d). A comparison of the local
347	field potential (LFP) activity, recorded from the electrodes at which place cells were located,
348	showed that the frequency of theta oscillations was marginally, but significantly, lower in the
349	CTL group (Welch's $t(131.1) = 4.09$, $p < .001$; Figure 3f). Inspection of LFP waveforms
350	revealed that CTL and MIA theta oscillations were of near identical shape, although CTL
351	waves have a marginally, but significantly, higher amplitude (Mann Whitney U =64494, p

<.001; Figure 3h). Importantly, the phase profile of the theta waveform, as generated by the
Hilbert transform, was virtually identical across the two groups (Figure 3i). However, only
CTL recordings demonstrated evidence of theta frequency fluctuations that were significantly
correlated with speed, as measured by a comparison of r values generated for each recording
(Mann Whitney U + 2669, p <.001; figure 3j).

- 357
- 358Figure 3 here.....

359

360 Individual cells continue to precess normally following the MIA manipulation 361 Phase precession was characterised as animals moved through the place fields of putative pyramidal cells. When data from all cells from each of the groups were examined, there was 362 no significant difference between the MIA and CTL cells for the majority of phase precession 363 properties. This included the r value of the circular-linear correlation of phase and position, 364 the p value of that correlation, and the slope of the regression line (Table 1). These results 365 indicated that the MIA intervention did not alter the ability of individual cells to precess, and 366 that this precession had a similar structure and slope across the place field when compared to 367 phase precession in CTL cells (see Figure 4 for example plots). Since these data included all 368 cells, regardless of whether they had significant phase precession (circular-linear correlation 369 p < 0.05) or not, we also examined these characteristics in the subset of cells that had a 370 significant p-value for the circular-linear correlation (s = significant subset). This subset 371 accounted for 50% of all CTL cells (n = 112) and 44% of MIA cells (n = 145). These 372 proportions were not significantly different to expected values (chi-square, p = .159). Again, 373 374 we found no significant differences for any of the phase precession measures described 375 above, confirming that individual cells continue to precess normally following an MIA

intervention (Table 1, lower half), irrespective of whether the whole population of cells, or

377 just the significantly precessing cells were analysed.

378

379	Figure 4 here
-----	---------------

380

Starting phase of precession is more variable in the MIA group 381 While individual MIA cells appeared to display unimpaired phase precession, a clear 382 383 between-group difference was observed for the intercept of the regression line of the circularlinear correlation, a measure that quantifies the starting phase of precession as the animal 384 enters the place field (Figure 5a). While the mean intercepts were similar between groups 385 386 $(CLT = 56.54^{\circ}, MIA = 60.58^{\circ}, where 0^{\circ} denotes the trough of the theta oscillation at the cell$ layer, Watson Williams F (1, 547) = 0.15, p = .694), the variance in starting phase angle was 387 considerably lower for CTL cells, as evidenced by a longer mean vector length (MVL: CTL = 388 389 .30, MIA = .13) and higher concentration (CTL = .62, MIA = .26). This difference between groups was confirmed in three separate analyses: First, we performed a Mardia Watson 390 391 Wheeler test (a nonparametric test for circular data that considers differences in either the 392 mean or variance), which returned a significant result (W = 7.27, p = .026). As further verification that this difference emerges specifically from the variance, we then performed a 393 394 variance ratio F-test on angular variance, which returned a significant result (F = .66, p 395 <.001). We also computed the difference from the group mean angle for each individual cell 396 and then compared between groups. Again the result was significant (Mann Whitney U =397 31516, p = .009), indicating that MIA cells have a higher variance in starting phase as they 398 begin to precess through a place field (Figure 5b). Although the starting phase variance was 399 significantly greater in the MIA group, both groups had a non-uniform distribution of this

400	measure that was significantly different from zero, indicating that, despite the variance, the
401	MIA group still demonstrated a preferred starting phase (CTL Rayleigh Z = $19.44 \text{ p} \le .001$;
402	MIA Z = 5.59, $p = .004$). As before, we re-examined these differences using the subset of
403	cells with significant phase-location correlations (p-value < .05). Again, MIA cells had a
404	smaller MVL (CTL = $.42$, MIA = $.24$) and a lower concentration (CTL = $.92$, MIA = $.49$;
405	Figure 5c), although again, the intercept distribution was significantly different from zero in
406	both groups, (CTL Rayleigh Z = 19.44, $p = .001$; MIA Z = 8.11, $p < .001$). The result of the
407	Mardia-Watson Wheeler test was significant (W =7.09, $p = .029$), as was the variance ratio F-
408	test (F = .58, p = .003) and the group difference from mean angle (U = 6785, p = .024; Figure
409	5d), confirming that circular variance remained higher in the MIA group. These results were
410	not dependant on either the increased firing rates observed in MIA cells, as correlations
411	between the difference from mean intercept angle and either infield firing rate or mean firing
412	rate were non-significant for both groups (infield firing rates: CTL $r = .00$, $p = .95$; MIA $r =$
413	.03, p = .591; mean firing rates: CTL r =01, p = .892; MIA r = .06, p = .28).
414	To ensure that these results were not driven by aberrant recordings from a small
415	proportion of the MIA animals, we also tested for starting phase variance on a between-
416	animal basis (Figure 5e). The mean vector length (MVL) of the starting phase for CTL cells,
417	calculated on a per animal basis was .57, much greater than that for MIA animals (.29, t (15)
418	= 3.43, p = .004). Again, these results were upheld following the removal of cells with weak
419	(p>0.05) phase precession (MVL CTL = .63; MIA = .37, t (15) = 3.01, p = .009; Figure 5f).
420	Similarly, when calculated across the litters from which each animal came from, the mean
421	vector length of starting phase in MIA litters $(.28, n = 8)$ was significantly smaller than that
422	of control litters (.59, $n = 5$, t (11) = 4.13, $p = .002$; Figure 5g), indicating that these results
423	are consistent across both individual animals and litter groups.

124	The finding that cells from MIA animals show greater variability in phase precession
425	starting phase, while other measures of the phenomenon, particularly the regression fit,
126	remain intact, indicates that the variability does not occur on a moment-to-moment basis. One
427	possibility is that individual MIA cells have particular preferred starting phases, which are
128	stable over time for that cell and can co-occur simultaneously alongside other cells with
129	widely different starting phases. An alternative possibility is that the population of MIA cells
430	could all have a similar starting phase at a particular time period, but this starting phase could
431	shift coherently for the population between one recording session and the next, which should
132	not disrupt theta sequences. To examine this possibility, we determined the MVL across cells
433	for each individual recording that had a minimum of three simultaneously recorded cells. The
134	results showed a shorter MVL for MIA cells (.53) compared to CTL cells (.65; t (82) =2.41, p
435	=.018), indicating that starting phase was significantly more variable across simultaneously
436	recorded MIA cells. This demonstrated that the phenomenon was not a result of recording to
437	recording phase shifts across a coherent population (Figure 5h).
438	
139	Figure 5 here
140	
141	Theta sequences are disrupted in the MIA group
142	One outcome of coordinated phase precession across a population of cells is a theta
143	sequence, the phenomenon by which the firing of several place cells recapitulates their
144	relative locations during a single theta cycle (Foster & Wilson, 2007; Skaggs et al., 1996). A

- 445 possible effect of the increased variance of starting phase in MIA cells is a disturbance of the
- 446 ordered temporal/spatial structure of theta sequences (Feng et al., 2015; Schmidt et al., 2009).
- 447 To test for this, we examined the correlations between the spike time difference of
- simultaneously recorded cell pairs and the distance between their respective place fields. If

149	theta sequences are intact, this correlation should be positive, indicating that the difference in
450	firing time between individual place cells tends to be greater within the theta cycle when the
451	individual cell's place fields are further apart. Because theta sequences are a circular
452	phenomenon and because the running track was topologically circular it becomes difficult to
453	determine lead/lag relationships at greater times and distances. For these reasons we limited
154	our analysis to spike pairs from different cells that occurred within a portion of the theta cycle
455	over a time window of 40 ms. This time period reflects the upper limits at which spike-time
456	dependent plasticity (STDP) occurs (Dan & Poo, 2004), a plasticity phenomenon that has
457	been linked theoretically to theta sequences (Mehta et al., 2002). It is also within the temporal
458	window of sharp-wave ripple replay/preplay events and so spikes that occurred during ripples
459	in the LFP were discarded to exclude this phenomenon. As predicted, we found a significant
460	positive circular-linear correlation between the time difference between spike pairs and the
461	distance between place fields in CTL cells ($r = .11$, $p < .001$; figure 6). In contrast, for MIA
462	cells there was no correlation (r =.01, p = .447). The difference between the MIA and CTL
463	correlation coefficients was significant when tested using Fisher's r to z transformation (z =
164	5.94, p < .001), confirming that theta sequences are disrupted in the MIA group. These results
465	cannot be explained by group differences in place field distance, as the mean distance of CTL
166	fields $(86 \pm 5.6^{\circ})$ was not statistically different to the MIA mean distance $(82.7 \pm 4.4, t (208))$
467	= .59, $p = .553$). With a 40 ms analysis window the slope of the time/distance relationship in
468	CTL cells was 44 degrees across the period, which corresponds to around 130 degrees in a
169	120ms theta cycle. This is lower than might be expected, as on average precession occurred
470	over 220 degrees of the theta cycle in our data, however when the duration of the analysis
471	window was reduced to 30 ms the CTL slope was 56 degrees (224 degrees across a 120 ms
472	theta cycle). In contrast the slope for the MIA data fit was virtually flat (-1.3 degrees/30ms
173	and -3.8 degrees/40ms; -5 degrees/cycle and -11 degrees/cycle respectively (figure 6).

474Figure 6 here.....

475

476 Discussion

Our control data are consistent with previous studies showing that as an animal enters a 477 CA1 place field, the cell's firing will initially occur just after the trough of the local theta 478 cycle (Dragoi & Buzsáki, 2006; O'Keefe & Recce, 1993; Skaggs et al., 1996). In contrast, 479 the MIA intervention produces greater variance in this starting phase, such that individual 480 cells are more likely to begin firing at different phases of the theta cycle. This effect occurs 481 without changes to other phase precession properties of individual cells, such as the 482 robustness of precession and the phase/distance relationship (slope). This MIA-induced 483 change was observed both at the level of the pooled data set, and after filtering for the subset 484 of cells that showed the strongest phase precession. Incoherent starting phase was also 485 observed in the MIA group when data were analysed on either an animal by animal or litter 486 by litter basis. These disturbances also occurred independently of any group differences in 487 place field size, information content, or mean speed through the non-reward arms. 488 Furthermore, it was not related to differences in firing rate. There was no also evidence to 489 490 suggest the small between-group differences we observed in theta amplitude and frequency were a factor, as the phase profile of theta was maintained across time and phase-location 491 correlations were preserved. 492

Positive correlations of theta frequency and speed have been observed previously (Geisler et al., 2007), and our CTL data are consistent with these findings. This relationship was not apparent in the MIA group. This disruption is unlikely to account for the increased variability in starting phase observed in this group as phase precession does not appear to be affected by running speed (Huxter et al., 2003). Rather, given that theta frequency has been shown to predict speed via a hippocampal-lateral septum pathway (Bender et al., 2015), this may reflect disturbed transmission of theta sequences to downstream structures (Tingley &
Buzsáki, 2018).

One potential explanation for the increased variance in starting phase is that electrode 501 depth was more variable in the MIA group, as previous reports have demonstrated that theta 502 phase varies with electrode depth across the stratum radiatum of CA1 (Buzsáki et al., 1985; 503 Lubenov & Siapas, 2009). This explanation is unlikely however given that we observed no 504 systematic differences in electrode placement after histology, and both cells and LFPs were 505 always recorded from the same depth. Furthermore, starting phase variation in MIA animals 506 507 could be observed across cells that were simultaneously recorded from the same tetrode bundle. 508

Theta sequences are phase precession-related phenomena whereby individual cells 509 contribute to a population-based representation of the local ordering of place fields within a 510 theta cycle. One predicted consequence of increased variability in the starting phase of 511 512 precession is that theta sequences will be disrupted, such that the organised structure of spatial locations or experience will be reconstructed in a disorganised manner during the theta 513 514 sequence (Figure 7). Our data support this prediction, showing that in MIA animals there is a 515 disruption in the temporal relationship between cell pair firing during a theta cycle and the 516 spatial distance between the place fields of the cell pairs.

517

519

While it was initially assumed that theta sequences were an inevitable consequence of phase precession (Skaggs et al., 1996), recent findings suggest that they can be dissociated (Dragoi & Buzsáki, 2006; Feng et al., 2015; Foster & Wilson, 2007; Itskov et al., 2008). Our data provide additional evidence that theta sequences require additional network coherence

524	above and beyond the precession of individual cells, including a consistent starting phase as
525	animals enter a new place field. Inhibitory interneurons may play an important role in this
526	process (Chadwick et al., 2016; Kamondi et al., 1998; Losonczy et al., 2010; Magee, 2001;
527	Maurer et al., 2006; Nicola & Clopath, 2019; Royer et al., 2012). GABAergic systems are
528	known to be disturbed in both schizophrenia patients (Akbarian & Huang, 2006), and in MIA
529	animal models of the disorder (Corradini et al., 2018; Dickerson et al., 2014), including
530	specific disruptions to PV expressing interneurons (Gonzalez-Burgos et al., 2015; Lodge et
531	al., 2009; Steullet et al., 2017). These changes could underlie the increased starting phase
532	variability demonstrated in this study, and are also consistent with the elevated firing rates
533	observed in the MIA group.
534	In rodents, theta sequences are necessary for maintaining internally generated place
535	fields when external cues are held constant (Wang et al., 2015), and for non-spatial event
536	sequencing (Terada et al., 2017), suggesting that they may play a larger role in sequential

537 processing beyond spatial cognition. Theta sequences have also been associated with goal

538 planning and prediction (Gupta et al., 2012; Wikenheiser & Redish, 2015) and phase

539 precession has been associated with non-spatial forms of sequential processing in both

rodents (Pastalkova et al., 2008; Royer et al., 2012) and humans (Heusser et al., 2016; Qasim

541 et al., 2020). In humans the hippocampus is involved in both episodic memory processes and

thinking about the future (Schacter et al., 2007), and theta sequences may therefore have a

543 fundamental role in these processes (Buzsáki & Tingley, 2018; Jaramillo & Kempter, 2017;

544 Terada et al., 2017; Wang et al., 2015). In support of this hypothesis, the developmental

545 emergence of theta sequences coincides with the maturation of hippocampal memory

546 (Muessig et al., 2019), and increases in hippocampal theta power have been observed in

547 humans undertaking sequential planning tasks (Kaplan et al., 2020).

548	The disrupted theta sequences observed after a MIA intervention could therefore
549	contribute to episodic and relational memory impairments. Although MIA-induced memory
550	deficits are not always apparent in simple memory tasks, they frequently emerge as task
551	complexity increases, including tasks that involve a working memory or reversal component
552	(Bitanihirwe et al., 2010; Savanthrapadian et al., 2013; Wolff et al., 2011). To date no MIA
553	study has explicitly examined sequential memory, although a recent study has demonstrated
554	that MIA animals display deficits in temporal perception (Deane et al., 2017). In contrast,
555	impairments in temporal processing and sequential ordering are well documented in
556	individuals with schizophrenia, their first-degree relatives, and other at-risk individuals
557	(Ciullo et al., 2016; Thoenes & Oberfeld, 2017). For example, a recent meta-analysis has
558	confirmed that patients with schizophrenia have more variable, and therefore less precise,
559	judgement of temporal order than healthy control participants (Thoenes & Oberfeld, 2017).
560	This lack of precision when making temporal judgements may reflect a fundamental
561	disorganization in the encoding and storage of events as they occur across time and space,
562	such that the sequential order of information becomes scrambled or unstable. Disordered
563	sequential processing could also have additional effects on a wide range of cognitive
564	processes that require sequential ordering, including episodic memory, speech production,
565	goal planning, and flexible decision-making processes. These cognitive processes are all
566	disturbed in schizophrenia (Barch & Ceaser, 2012). It has also been suggested that
567	disorganized temporal processing may be a potential trait marker of the disorder, with
568	underlying relevance to several classic symptoms (Andreasen et al., 1999). For example,
569	disordered sequences could contribute to erroneous connections being made between
570	externally generated stimuli and internally generated thoughts and actions, resulting in
571	misattributions of agency and control, as well as other forms of delusion and paranoia
572	(Andreasen et al., 1999; Thoenes & Oberfeld, 2017).

573	One further consequence of increased variability in the starting phase of precession is
574	that sequential spiking would not be clustered as tightly within each individual theta cycle,
575	particularly if individual cells precess less than 360° (Schmidt et al., 2009). Thus, the
576	clustering of spikes within a single theta cycle is likely to be more dispersed following an
577	MIA intervention, potentially contributing to the erroneous association of spikes across
578	successive theta cycles. For example, spikes which represent the end of an earlier sequence
579	might be misattributed as early spikes in the next cycle (see Figure 7). This may have
580	important consequences in terms of how experience is segmented into "chunks," (Gupta et
581	al., 2012), and as a result MIA animals may have difficulty processing discrete units of
582	information that are updated continuously across successive theta cycles. One proposed
583	analogy for this phenomenon is a series of sentences without punctuation marks, and this lack
584	of "punctuation" may contribute to the confused order of thoughts that occurs in
585	schizophrenia (Lisman & Buzsáki, 2008). Furthermore, such blurring of event boundaries is
586	likely to have profound implications for memory and learning (Lisman & Buzsáki, 2008), as
587	current evidence suggests that the ability to successfully parse events into meaningful
588	segments predicts performance on numerous tasks (Richmond et al., 2017). Consistent with
589	these findings, individuals with schizophrenia appear to have event segmentation deficits at
590	both perceptual (Coffman et al., 2016) and high-order levels (Zalla et al., 2004).
591	In summary, our results demonstrate that the coherent activity of individually
592	precessing cells is compromised following an MIA intervention, resulting in disordered theta
593	sequences. This finding provides a potential biological-level mechanism that may explain
594	some aspects of disorganized temporal processing in schizophrenia and underlie some of the
595	core features of the disorder, particularly the disruption of episodic memory and planning
596	processes.

598 599	Adams, W., Kendell, R., Hare, E., & Munk-Jørgensen, P. (1993). Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia: An analysis of Scottish,					
600	English, and Danish data. The British Journal of Psychiatry, 163(4), 522-534.					
601	Akbarian, S., & Huang, HS. (2006). Molecular and cellular mechanisms of altered GAD1/GAD67					
602	expression in schizophrenia and related disorders. Brain Research Reviews, 52(2), 293-304.					
603	Andreasen, N. C., Nopoulos, P., O'Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining					
604	the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. <i>Biological</i>					
605	psychiatry, 46(7), 908-920.					
606	Barch, D. M., & Ceaser, A. (2012). Cognition in schizonhrenia: core psychological and neural					
607	mechanisms. Trends in coanitive sciences. 16(1), 27-34.					
608	Bender, F., Gorbati, M., Cadavieco, M. C., Denisova, N., Gao, X., Holman, C., Korotkova, T., &					
609	Ponomarenko. A. (2015). Theta oscillations regulate the speed of locomotion via a					
610	hippocampus to lateral septum pathway. <i>Nature communications</i> . 6(1), 1-11.					
611	Bitanihirwe, B. K., Peleg-Raibstein, D., Mouttet, F., Feldon, J., & Meyer, U. (2010). Late prenatal					
612	immune activation in mice leads to behavioral and neurochemical abnormalities relevant to					
613	the negative symptoms of schizonbrenia <i>Neuronsychonbarmacology</i> 35(12) 2462					
614	Brown A S & Mever II (2018) Maternal immune activation and neuronsychiatric illness: a					
615	translational research perspective. American Journal of Psychiatry, 175(11), 1073-1083					
616	Buzsáki G. Bannelsberger, P. & Kellényi I. (1985). Denth profiles of hippocampal rhythmic slow					
617	activity ('theta rhythm') depend on behaviour. <i>Electroencenhalography and clinical</i>					
618	neuronhysiology 61(1) 77-88					
619	Buzsáki G & Tingley D (2018) Space and time: The hippocampus as a sequence generator <i>Trends</i>					
620	in cognitive sciences 22(10) 853-869					
621	Chadwick A van Rossum M C & Nolan M E (2016) Elevible theta sequence compression					
622	mediated via phase precessing interneurons. <i>Flife</i> , 5, e20349					
623	Ciullo V Spalletta G Caltagirone C Jorge R E & Piras E (2016) Evolicit time deficit in					
624	schizonbrenia: systematic review and meta-analysis indicate it is primary and not domain					
625	specific Schizophrenia hulletin 12(2) 505-518					
626	Coffman B A Haigh S M Murphy T K & Salishury D E (2016) Event-related notentials					
627	demonstrate deficits in acoustic segmentation in schizonhrenia. Schizonhrenia research					
628						
629	Corradini I Focchi E Rasile M Morini R Desiato G Tomasoni R Lizier M Ghirardini F					
630	Esce R & Morone D (2018) Maternal immune activation delays excitatory-to-inhibitory					
631	gamma-aminohutyric acid switch in offsnring <i>Biological psychiatry</i> 83(8) 680-691					
632	D'Argembergin A. Raffard S. & Van der Linden M. (2008). Remembering the pact and imagining the					
633	future in schizonbrania, Journal of abnormal psychology, 117(1), 247					
634	Dan V & Doo M -m (2004) Snike timing-dependent plasticity of neural circuits Neuron 44(1) 23-					
625	20					
636	So. Doano A. R. Millar I. Bilkov D. K. & Ward P. D. (2017) Maternal immuno activation in rate					
627	produces temporal percention impairments in adult offenring analogous to those observed					
620	in schizonbronia. <i>DiaS and 12(11)</i> o0197710					
620	Dickorson D. Overeem K. Wolff A. Williams I. Abraham W. & Bilkey D. (2014) Association of					
640	aberrant neural synchrony and altered GAD67 expression following exposure to maternal					
640	immuno activation, a rick factor for schizophronia. Translational neuchiatry, 4(7), o419					
642	Dickorson D. D. Wolff A. P. & Bilkov, D. K. (2010) Apparent long range neural synchrony in a					
642	maternal immuna activation animal model of echizonheronia. Journal of Neuroscience, 20/27					
043 644	maternal immune activation animal model of schizophrenia. Journal of iveuroscience, 30(37), 12424, 12421					
044 645	12424-12431. Dickinson D. Ramson M. E. & Cold I. M. (2007) Quartaching the chuicus a mote credutic					
645	or comparison of digit symbol coding tacks and other cognitive measures in achievenesis					
040	compansion of aight symbol coung tasks and other cognitive measures in schizophrenia.					

647 Archives of general psychiatry, 64(5), 532-542.

650	Eichenbaum, H. (2017). On the integration of space, time, and memory. <i>Neuron, 95</i> (5), 1007-1018.				
651	Feng, T., Silva, D., & Foster, D. J. (2015). Dissociation between the experience-dependent				
652	development of hippocampal theta sequences and single-trial phase precession. Journal of				
653	Neuroscience, 35(12), 4890-4902.				
654	Foster, D. J., & Wilson, M. A. (2007). Hippocampal theta sequences. Hippocampus, 17(11), 1093-				
655	1099.				
656	Geisler, C., Robbe, D., Zugaro, M., Sirota, A., & Buzsáki, G. (2007). Hippocampal place cell assemblies				
657	are speed-controlled oscillators. Proceedings of the National Academy of Sciences, 104(19),				
658	8149-8154.				
659	Gonzalez-Burgos, G., Cho, R. Y., & Lewis, D. A. (2015). Alterations in cortical network oscillations and				
660	parvalbumin neurons in schizophrenia. Biological psychiatry, 77(12), 1031-1040.				
661	Gupta, A. S., Van Der Meer, M. A., Touretzky, D. S., & Redish, A. D. (2012). Segmentation of spatial				
662	experience by hippocampal theta sequences. <i>Nature neuroscience</i> , 15(7), 1032.				
663	Hardy-Baylé, MC., Sarfati, Y., & Passerieux, C. (2003). The cognitive basis of disorganization				
664	symptomatology in schizophrenia and its clinical correlates: toward a pathogenetic approach				
665	to disorganization. Schizophrenia bulletin, 29(3), 459-471.				
666	Harrison, P. J. (2004). The hippocampus in schizophrenia: a review of the neuropathological evidence				
667	and its pathophysiological implications. Psychopharmacology, 174(1), 151-162.				
668	Heckers, S., & Konradi, C. (2002). Hippocampal neurons in schizophrenia. Journal of neural				
669	transmission, 109(5), 891-905.				
670	Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported				
671	by a theta–gamma phase code. <i>Nature neuroscience, 19</i> (10), 1374.				
672	Huxter, J., Burgess, N., & O'Keefe, J. (2003). Independent rate and temporal coding in hippocampal				
673	pyramidal cells. Nature, 425(6960), 828-832.				
674	Itskov, V., Pastalkova, E., Mizuseki, K., Buzsaki, G., & Harris, K. D. (2008). Theta-mediated dynamics of				
675	spatial information in hippocampus. Journal of Neuroscience, 28(23), 5959-5964.				
676	Jaramillo, J., & Kempter, R. (2017). Phase precession: a neural code underlying episodic memory?				
677	Current opinion in neurobiology, 43, 130-138.				
678	Kamondi, A., Acsády, L., Wang, X. J., & Buzsáki, G. (1998). Theta oscillations in somata and dendrites				
679	of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action				
680	potentials. Hippocampus, 8(3), 244-261.				
681	Kaplan, R., Tauste Campo, A., Bush, D., King, J., Principe, A., Koster, R., Ley Nacher, M., Rocamora, R.,				
682	& Friston, K. J. (2020). Human hippocampal theta oscillations reflect sequential				
683	dependencies during spatial planning. Cognitive neuroscience, 11(3), 122-131.				
684	Kempter, R., Leibold, C., Buzsáki, G., Diba, K., & Schmidt, R. (2012). Quantifying circular–linear				
685	associations: Hippocampal phase precession. Journal of neuroscience methods, 207(1), 113-				
686	124.				
687	Li, Y., Shen, M., Stockton, M. E., & Zhao, X. (2019). Hippocampal deficits in neurodevelopmental				
688	disorders. Neurobiology of learning and memory, 165, 106945.				
689	Lisman, J., & Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma				
690	and theta oscillations. Schizophrenia bulletin, 34(5), 974-980.				
691	Lisman, J., & Redish, A. D. (2009). Prediction, sequences and the hippocampus. Philosophical				
692	Transactions of the Royal Society B: Biological Sciences, 364(1521), 1193-1201.				
693	Lodge, D. J., Behrens, M. M., & Grace, A. A. (2009). A loss of parvalbumin-containing interneurons is				
694	associated with diminished oscillatory activity in an animal model of schizophrenia. Journal				
695	of Neuroscience, 29(8), 2344-2354.				
696	Losonczy, A., Zemelman, B. V., Vaziri, A., & Magee, J. C. (2010). Network mechanisms of theta				
697	related neuronal activity in hippocampal CA1 pyramidal neurons. Nature neuroscience,				

Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell

assemblies. Neuron, 50(1), 145-157.

698 *13*(8), 967-972.

699	Lubenov, E. V., & Siapas, A. G. (2009). Hippocampal theta oscillations are travelling waves. <i>Nature,</i>				
700	459(7246), 534.				
701	Magee, J. C. (2001). Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal				
702	neurons. Journal of neurophysiology, 86(1), 528-532.				
703	Maurer, A. P., Cowen, S. L., Burke, S. N., Barnes, C. A., & Michaughton, B. L. (2006). Phase precession				
704	in hippocampai interneurons showing strong functional coupling to individual pyramidal				
705	cells. Journal of Neuroscience, 26(52), 13485-13492.				
706	Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory—A				
707	retrospective analysis. Benavioral neuroscience, 127(5), 642.				
708	Menta, M., Lee, A., & Wilson, M. (2002). Role of experience and oscillations in transforming a rate				
709	code into a temporal code. <i>Nature, 417</i> (6890), 741.				
710	Never, O., Feldon, J., Schediowski, M., & Fee, B. K. (2005). Towards an infinituno-precipitated				
711					
712	29(0), 913-947. Middleten S. L. & Malluch T. L. (2016). Silensing CA2 discursts temporal adding in the CA1				
713	widdleton, S. J., & Wichugh, T. J. (2016). Silencing CA3 disrupts temporal coding in the CA1				
714	ensemble. Nature neuroscience, 19(7), 945.				
715	hippocompal replay and theta converses during pact patal development. Current Biology				
710					
710	25(5), 654-640. 6654.				
710	comproscible learning in the binnecompus. Nature neuroscience, 22(7), 1169, 1191				
720	O'keefe L & Nadel L (1978) The hippocampus as a cognitive man. Ovford: Clarendon Press				
720	O'Keefe J. & Recce M. J. (1993). Phase relationship between hippocampal place units and the EEG				
721	theta rhythm Hinnocampus 2(3) 317-330				
722	Pastalkova F Itskov V Amarasingham A & Buzsáki G (2008) Internally generated cell assembly				
723	sequences in the rat hinnocampus <i>Science</i> 321(5894) 1322-1327				
725	Paxinos, G., & Watson, C. (2006). The rat brain in stereotaxic coordinates: hard cover edition:				
726	Elsevier.				
727	Pedersen, A., Siegmund, A., Ohrmann, P., Rist, F., Rothermundt, M., Suslow, T., & Arolt, V. (2008).				
728	Reduced implicit and explicit sequence learning in first-episode schizophrenia.				
729	Neuropsychologia, 46(1), 186-195.				
730	Porter, B. S., Schmidt, R., & Bilkey, D. K. (2018). Hippocampal place cell encoding of sloping terrain.				
731	Hippocampus, 28(11), 767-782.				
732	Qasim, S. E., Fried, I., & Jacobs, J. (2020). Phase precession in the human hippocampus and				
733	entorhinal cortex. bioRxiv.				
734	Richmond, L. L., Gold, D. A., & Zacks, J. M. (2017). Event perception: Translations and applications.				
735	Journal of Applied Research in Memory and Cognition, 6(2), 111-120.				
736	Royer, S., Zemelman, B. V., Losonczy, A., Kim, J., Chance, F., Magee, J. C., & Buzsáki, G. (2012).				
737	Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic				
738	inhibition. Nature neuroscience, 15(5), 769.				
739	Savanthrapadian, S., Wolff, A. R., Logan, B. J., Eckert, M. J., Bilkey, D. K., & Abraham, W. C. (2013).				
740	Enhanced hippocampal neuronal excitability and LTP persistence associated with reduced				
741	behavioral flexibility in the maternal immune activation model of schizophrenia.				
742	Hippocampus, 23(12), 1395-1409.				
743	Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future:				
744	the prospective brain. Nature Reviews Neuroscience, 8(9), 657.				
745	Schmidt, R., Diba, K., Leibold, C., Schmitz, D., Buzsáki, G., & Kempter, R. (2009). Single-trial phase				
746	precession in the hippocampus. <i>Journal of Neuroscience, 29</i> (42), 13232-13241.				
747	Siegert, R. J., Weatherall, M., & Bell, E. M. (2008). Is implicit sequence learning impaired in				

749	Skaggs, W. E., McNaughton, B. L., & Gothard, K. M. (1993). An information-theoretic approach to
750	acciphering the hippocampal code. Paper presented at the Advances in neural information
751	processing systems.
752	Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in
753	hippocampal neuronal populations and the compression of temporal sequences.
754	Hippocampus, 6(2), 149-172.
755	Steullet, P., Cabungcal, J., Coyle, J., Didriksen, M., Gill, K., Grace, A., Hensch, T., LaMantia, A.,
756	Lindemann, L., & Maynard, T. (2017). Oxidative stress-driven parvalbumin interneuron
757	impairment as a common mechanism in models of schizophrenia. Molecular psychiatry,
758	<i>22</i> (7), 936-943.
759	Terada, S., Sakurai, Y., Nakahara, H., & Fujisawa, S. (2017). Temporal and rate coding for discrete
760	event sequences in the hippocampus. <i>Neuron, 94</i> (6), 1248-1262. e1244.
761	Thoenes, S., & Oberfeld, D. (2017). Meta-analysis of time perception and temporal processing in
762	schizophrenia: Differential effects on precision and accuracy. Clinical psychology review, 54,
763	44-64.
764	Tingley, D., & Buzsáki, G. (2018). Transformation of a Spatial Map across the Hippocampal-Lateral
765	Septal Circuit. Neuron.
766	Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus.
767	Hippocampus, 8(3), 198-204.
768	Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat.
769	Electroencephalography and clinical neurophysiology, 26(4), 407-418.
770	Wang, Y., Romani, S., Lustig, B., Leonardo, A., & Pastalkova, E. (2015). Theta sequences are essential
771	for internally generated hippocampal firing fields. <i>Nature neuroscience</i> , 18(2), 282.
772	Wikenheiser, A. M., & Redish, A. D. (2015). Hippocampal theta sequences reflect current goals.
773	Nature neuroscience, 18(2), 289.
774	Wolff, A. R., & Bilkey, D. K. (2010). The maternal immune activation (MIA) model of schizophrenia
775	produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects
776	are not associated with maternal weight loss. <i>Behavioural brain research, 213</i> (2), 323-327.
777	Wolff, A. R., & Bilkey, D. K. (2015). Prenatal immune activation alters hippocampal place cell firing
778	characteristics in adult animals. Brain. behavior. and immunity. 48. 232-243.
779	Wolff, A. R., Chevne, K. R., & Bilkey, D. K. (2011). Behavioural deficits associated with maternal
780	immune activation in the rat model of schizophrenia. <i>Behavioural brain research</i> . 225(1).
781	382-387.
782	Zalla, T., Verlut, I., Franck, N., Puzenat, D., & Sirigu, A. (2004), Perception of dynamic action in
783	patients with schizophrenia. <i>Psychiatry research</i> , 128(1), 39-51.
784	Zuckerman, L., & Weiner, I. (2005). Maternal immune activation leads to behavioral and
785	pharmacological changes in the adult offspring. <i>Journal of psychiatric research</i> , 39(3), 311-
786	323.
,00	
787	

789	Figure 1. Schematic diagram of place cells, phase precession and theta sequences. (a)
790	Canonical place field defined by firing rate. (b) Example of a place field defined by its phase
791	code. Note that cell spiking begins at a later phase of the theta cycle and precesses to an
792	earlier phase as the animal moves through the field. The range of phase precession across the
793	place field is also lower than 360°. (c) Illustration of how the phase of firing of a single cell
794	advances across several theta cycles as an animal moves from left to right through a place
795	field as in b. (d) When an animal is in a particular location along a track (top) there will be a
796	number of place cells active, all with overlapping place fields (A-E; middle). Vertical black
797	lines delineate the position of the animal in each of the place fields and the resultant phase of
798	the theta cycle that the cell fires in. As a result, cells A-E fire in an ordered sequence across a
799	theta cycle where the order matches their relative spatial relationship (bottom). Note that the
800	generation of this ordered sequence depends on the starting phase and the slope of precession
801	being coherent across all cells A-E.

803 Figure 2. Experimental procedures. (a) Diagram of the rectangular track. Rats were 804 pre-trained to run in a clockwise direction for a food reward delivered at the centre of the 805 bottom arm. (b) Diagram of the hippocampus showing the target area for surgical 806 implantation, and an example photograph of histology demonstrating electrode placement in 807 the pyramidal cell layer of CA1 (top). Below is a diagram of tetrode recording locations for both groups, with CTL locations shown in black, and MIA locations in red. Modified image 808 809 is originally from Paxinos and Watson (2006). (c) Examples of cluster cutting of three separate cells for CTL and MIA recordings (on left), and an example of a place field (shown 810 here before linearization of the track). The X denotes the reward area. 811

812

animals. (a) Mean firing rates of single units across the entire track and inside the place field. 814 Black bars denote the median. (b) Mean speed across the 3 non-reward arms. (c) Place field 815 length. Bars denote mean and standard error. (d) Information content in bits per spike. Bars 816 denote median. (e) Example of filtered and raw EEG recordings. (f) Theta frequency in Hz. 817 (g) Average (+ sem) waveform shape for all LFP data, bandpass filtered between 6-10Hz and 818 with samples triggered from the trough. (h) LFP amplitude. Bars denote median. (i) Average 819 phase profile of the theta waveform as in g, as determined from Hilbert transform. (j) Median 820 821 r value of the linear correlation of theta frequency and speed for each recording. Significance levels for all images: * p < .05, ** p < .01, *** p < .001. 822

Figure 3. Basic properties of single units and LFP oscillations in MIA and CTL

823

813

Figure 4. Example plots of phase precession showing (a) cell firing phase relative to position across the 3 non-reward arms of the track. Track is linearized, and zero on the x-axis corresponds to the bottom left corner in figure 2A. Animal is moving left to right in these and other diagrams. Firing phase is duplicated across two theta cycles on the y axis for clarity. (b) Data as displayed in b, normalised to each place field for analysis. The red line denotes the line of best-fit for the circular-linear regression.

830

Figure 5. Precession starting phase is more variable in MIA cells. (a) Circular histograms of intercept values for both groups, where all cells with a place field are included in the analysis. Red bars denote the mean angle with 95% confidence intervals. Between group differences are based on the variance ratio F test. (b) Violin plots showing the distance from the mean angle for each individual cell. (c and d) As for a and b respectively, except only cells with significant phase precession (circular linear correlation p < .05) are included

(s = significant subset). (e) Mean vector length on an animal-by-animal basis. (f) As for e, but
only including cells that have significant phase precession. (g) Mean vector length on a litterby-litter basis. (h) Mean vector length calculated across cells recorded simultaneously in a
single recording (three cells minimum).

841

842

843 Figure 6. Significant positive circular-linear correlations occur between angular 844 distance between place fields and the time between spikes in the CTL group, demonstrating that theta sequences are intact. In contrast, no such relationship was observed for the MIA 845 846 group. The distance between place field centres in a clockwise direction (cw) is shown on the y axis as a circular measure, repeated for two cycles for clarity. Time between spike pairs is 847 shown on the x axis for three different maximum time windows. In each example, the line of 848 849 best fit, is projected out to 120 ms (\sim 1 theta cycle) to demonstrate how much phase shift 850 might occur across a full cycle. Dashed blue lines are included to aid visualization of this 851 phase shift.

852

853 Figure 7. The effect of the MIA manipulation on starting phase and theta sequences. A cartoon of CTL data is displayed on the left as for figure 1b and d where coherent starting 854 855 phase and slope allow cells A-E to fire in an ordered sequence within a theta cycle that 856 matches the relative spatial ordering of the place cells' fields (bottom). Variance in starting 857 phase, as occurs in the MIA animals (right), would, however, disrupt this replay sequence 858 despite MIA cells still displaying phase precession. Note that as a consequence of the 859 variable starting phase the disorganized theta sequence (bottom) is more dispersed across the 860 theta cycle in MIA animals.

Table 1. Measures of phase precession (circular-linear correlation) in hippocampal place
cells following an MIA intervention. Upper data includes all cells. Lower data is from the
subset of cells that displayed significant (p<0.05) phase precession.

	Mean ± SEM		Test (df)	Result	Sig.
All cells	CTL	MIA			
	(<i>n</i> = 222)	(<i>n</i> = 327)			
Correlation	$10 \pm .02$	$10 \pm .02$	t test (547)	t = .36	p = .717
p-value	$.22 \pm .02$	$.24 \pm .02$	Mann Whitney	U = 34438	p = .308
Slope	-219.30 ± 15.24	222.62 ± 14.35	Welch's t test	t =.16	p = .876
			(513.1)		
Cells (s) for	CTL	MIA			
p-value < 0.05	(n = 112)	(n = 145)			
Correlation (s)	15 ± 0.03	18 ± 0.02	Mann Whitney	U = 7992	p = .829
p-value (s)	$.01 \pm .00$	$.007 \pm .00$	Mann Whitney	U = 7671	p = .447
Slope (s)	-267.44 ± 20.65	-307.687 ± 19.61	t-test (255)	t = 1.41	p = .161

g

ст́∟

MİA

0.0

d

