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Abstract

Here, an ultra-fast protection scheme that is dedicated to depletion-mode (d-mode) devices

is proposed. The key to the d-mode device gate drive design is the negative supply and

overcurrent protection, due to the safety concern for d-mode devices when a failure hap-

pens in power conversion applications. This work evaluates specific requirement of d-mode

devices, such as the isolated negative power supply and short-circuit protection. Normally-

on d-mode GaN devices have lower on-resistance and minimal dead time in comparison

with enhancement-mode (e-mode) GaN devices, which can further reduce the switching

loss and conduction loss. Both simulation and experimental verification are conducted in

this work to evaluate the performance of the proposed protection scheme. The proposed

desaturation scheme can wipe out the overcurrent event within 341 ns. Furthermore, the

proposed negative power supply scheme can sustain its output for 60.5 ms, providing suf-

ficient action time for the control unit to isolate the converter.

1 INTRODUCTION

Wide bandgap (WBG) technologies such as Gallium Nitride

(GaN) or Silicon Carbide (SiC) as emerging candidates to

achieve the higher switching frequency and higher efficiency

than Silicon (Si) counterparts in power converters. GaN-based

solutions enable a device with lower on-resistance and the

smaller switching loss in comparison to that of Si for compa-

rable current and voltage capabilities [1–3]. Furthermore, the

inherent bidirectional current flow capability of GaN devices

guarantees the interests of GaN for those applications, which

require bidirectional switching operation, such as motor drives,

EV chargers and server power supplies [4].

GaN devices can be classified into two types in terms of

the gate structure: depletion-mode (d-mode) and enhancement-

mode (e-mode). Due to the safety concern for most power con-

version applications and complex gate drivers, the e-mode GaN

device is more favourable. Lateral GaN high electron mobility

transistors (HEMTs) are inherent d-mode devices. To enable

the normally-off operation, several approaches have been devel-

oped, which include recessed-gate, Fluorine implantation and p-

GaN gate [5–11]. Moreover, the cascode structure which con-

sists of one low-voltage Si MOSFET and one high-voltage GaN
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HEMT has been proposed as a compromised option to achieve

normally-off operation [12–14].

In comparison with e-mode GaN devices, d-mode GaN

devices have lower on-resistance because the 2D electron gas

(2DEG) is induced at GaN/AlGaN interface. In addition, the

2DEG does not have to be disrupted and re-created to turn on

the device [15]. Therefore, it is worth developing and explor-

ing d-mode GaN devices to fully enable all advantages that

GaN brings. As aforementioned, the gate driver design poses

difficulty towards the use of the d-mode GaN device. Several

gate drive schemes with protection for normally-on device have

been studied in [16–19], where the response time that is nec-

essary to wipe out the fault condition is not faster enough to

cope with the extremely fast WBG devices. This work proposes

a gate driver design for normally-on GaN devices with effec-

tive protection in terms of the failure of negative gate voltage

supply and the overcurrent/short-circuit event. Furthermore,

GaN devices can exhibit the bidirectional current flow capa-

bility. In this work, both the desaturation and negative power

supply protection circuits are applied to a 1.2 kV polarisation

super-junction (PSJ) GaN FET [20, 21]. Since 1.2 kV PSJ GaN

FETs have a limited current rating of 8A, a 650 V/85 A SiC

JFET (UJ3N065025K3S) is used to validate the desaturation

IET Power Electron. 2021;1–9. wileyonlinelibrary.com/iet-pel 1
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FIGURE 1 The schematic of bidirectional switching (BDS) module using

(a) GaN-based; (b) IGBT-based

protection scheme for the higher current operation. Both sim-

ulated and experimental verification are conducted in this work

to evaluate the proposed protection scheme.

2 BIDIRECTIONAL SWITCHING
MODULE USING GAN-BASED DEVICES

Different from traditional IGBT-based bidirectional switch-

ing modules, GaN devices are capable of bidirectional current

flowing, which allows the elimination of external diodes. Fig-

ure 1 shows traditional IGBT-based and GaN-based bidirec-

tional switching (BDS) module. The benefits of replacing IGBT

with GaN FET for low voltage, high frequency applications

can be concluded as following: First, the use of GaN FET can

reduce the conduction loss owing to lower specific on-resistance

compared to that of Si IGBT for given voltage rating and the

absence of offset voltage; second, more efficient switching can

be obtained due to GaN device is majority carrier device; last

but not the least, it eliminates the antiparallel diode and there-

fore further reduces the loss caused by diode forward voltage

drop [22].

As depicted in Figure 1, GaN-based switching module has

no external free-wheeling diode. For example, when Vgs,1 is ON

while Vgs,2 is OFF, current can still flow from the top toward

the bottom.

3 PROTECTION SCHEME FOR
NORMALLY-ON WBG DEVICES

The proposed protection circuit is implemented in a single-

phase (1-Φ) half-bridge as depicted in Figure 2, which is part of

the low side switches of a three-phase (3-Φ) buck-boost inverter

for industrial motor drives as shown in Figure 3 [21]. The GaN-

based bidirectional module is constructed by two discrete GaN

HEMT in source-to-source connection as Sa,1 and Sa,2 or Sb,1

and Sb,2 in Figure 3.

The proposed protection scheme consists of two parts: one

is used to protect the device from short-circuit and overcurrent

events, namely the desaturation scheme; another one is aimed to

protect the negative voltage fail, so-called negative power supply

FIGURE 2 The implementation of the protection circuit for GaN-based

bidirectional switching (BDS) module

FIGURE 3 The schematic of three-phase buck-boost current source

inverter (CSI) systems [23]

protection scheme. This negative power supply is used to pro-

vide negative voltage for both the desaturation circuit and the

gate drive circuit. The proposed desaturation circuit and nega-

tive power supply protection circuit are illustrated in Figure 4

and Figure 5 respectively. As the gate signals injected to Sx,1 and

Sx,2 are not identical, separation of desaturation circuit for each

switching device within one BDS module is desired.

With respect to the desaturation circuit, during normal oper-

ation, the comparator (COMPdesat ) sends a logic ‘0′ signal to

the opto-coupler. The opto-coupler in response sends inverted

logic 1 as an ENABLE (EN) signal to the gate driver of the

device. As a result, the device will follow the gate driving signal

(Vgs_EN ) to turn on or off. Thanks to the combination of Com-

plementary Metal-oxide-semiconductor (CMOS) module and

MOSFET (Scomp,desat ), the comparison between Vre f and Vdesat

via the comparator (COMPdesat ) only occur when the Device

Under Test (DUT) is ON. It is worth pointing out that the Vgs_iso

injected to CMOS module is controlled by another isolated gate

driver IC while it has identical shape of Vgs_EN during normal

operation. When the device is in the OFF state, the MOSFET

(Scomp,desat ) is turned on and thereby the Vdesat is pulled down to

−Vss which is below Vre f . The high voltage diode Dsense with low

voltage drop and fast recovery feature is aimed to monitor the
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FIGURE 4 The proposed desaturation circuit for depletion-mode GaN

device of (a) circuit diagram; (b) implementation block diagram

drain current of the DUT. Rdesat and Cdesat perform as a low pass

RC filter to stabilize the Vdesat from noise. Vre f is set by the volt-

age divider constructed by two resistors, namely Rre f 1,desat and

Rre f 2,desat . This reference voltage determines the limit of drain

current (Id _max ), and is used to compare with Vdesat . Thus, the

comparator (COMPdesast )in the desaturation circuit will produce

a fault signal to opto-coupler and eventually pull-down the gate-

to-source signal of the DUT. The most important objective in

this desaturation circuit is the response time between Vgs_EN

and Vdesat . For instance, when Vgs_EN has been pulled down to

−Vss by gate driving signal, while the MOSFET (Scomp,desat ) is

still turned-off, the Vdeast is now equal to +VCC . This results

in a fault triggering of the desaturation circuit. This time is

defined by Vdesat rising to the steady-state level at a time con-

stant. Where R is formed by Rdesat and RDsense,on, and C is formed

by Cdesat and the output capacitance of Scomp,desat . Furthermore,

by employing different resistor value in CMOS configuration

can amend the turn-on and turn-off time of the MOSFET

(Scomp,desat ). The desired synchronisation of Vgs_EN and Vdesat

can be achieved by the MOSFET (Scomp,desat ) with ultra-fast turn-

on transition. The effectiveness of synchronisation of these

two signals is the main limitation of the proposed desatura-

tion scheme since it has direct impact on the response time.

The value of Vdesat during normal operation can be expressed as

Equation (1).

Vdesat =
Rsat

Rsat + Rdesat

(

Vds,on +VD,sense

)

+
Rdesat

Rsat + Rdesat
VCC

(1)

FIGURE 5 The proposed negative power supply protection scheme for

GaN-based bidirectional switching module (a) circuit diagram; (b)

implementation block diagram

The detailed operation of the desaturation circuit can be

described as follows. When overcurrent events take place, the

Vdesat will rise above Vre f . Then a fault signal (logic 1) will be

triggered by comparator (COMPdesat ), since the IN+ of the com-

parator is now greater than IN-. This fault signal is received

by the opto-coupler, and the opto-coupler sends logic ‘0′ sig-

nal toward the gate driver of the device to turn off the device

via an AND gate IC. It is necessary to emphasise that every

BDS module protection circuit including both desaturation cir-

cuit and negative power supply protection circuit only require

one AND gate IC as BDS module is two-source connected.

When the desaturation circuit is activated, the MOSFET (Sdesat )

will be triggered ON as well. Once this MOSFET is turned-on,

the gate driving signal of the device will be pulled down towards

−VSS to turn the device off.

Negative power supply protection circuit is designed to pro-

tect the desaturation circuit as well as provide the negative

gate voltage for gate driver. When the negative voltage sup-

ply used for desaturation circuit and gate driver fail. The gate

driver is unable to turn-off the d-mode bidirectional switching

module anymore, and hence it cannot generate desired nega-

tive bias to switch-off the device. The detailed circuit of this

negative power supply protection as illustrated in Figure 5, and

the operation of the proposed negative power supply protec-

tion scheme can be described as follows. During normal oper-

ation, the MOSFET (Sg fp) stays in OFF state. It is because the

reservoir capacitor (Cstore) is charged to −VSS via discharging

diode (Ddisc ), and hereby the gate-to-source voltage is about

zero during normal operation. Another comparator (COMPg fp)

with collector output is employed to monitor the state of the
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FIGURE 6 (a) Fault signal triggered by Ti F28027F; (b) experimental

circuit; (c) top view of the practical PCB

negative power supply (−VSS ). As shown in Figure 6(a), the

−VSS is connected to the positive input (IN+) of the com-

parator (COMPg fp). An adjustable potential divider formed by

two resistors is used to set the reference voltage and is con-

nected to the negative input of the comparator (COMPg fp),

and this reference voltage (−Vre f ,g fp) is below 0V. Since IN+
is lower than IN- in normal operation, the comparator sends

FIGURE 7 IDS vs. VDS characteristics and selected forward operation

points of (a) PSJ GaN FET; (b) SiC JFET [24]

logic 0 toward the opto-coupler. Hence, the opto-coupler out-

puts logic ‘1′ to the AND gate. As shown in Figure 6(b), each

AND gate IC can in charge of two devices or one bidirectional

switching module. If both devices in a bidirectional switch-

ing module work, in accordance with the truth table of AND

logic, the AND gate IC will send logic 1 as ENABLE sig-

nal toward gate driver of the dc-link switch and thereby con-

necting the converter to the high voltage power supply. Com-

pared to [18], the proposed protection circuit realises lower

number of components at a cost of increased power supply

due to additional protection power supply (−VSS ,p). Thanks to

the two-source-connected method, each bidirectional switch-

ing module consisting of two discrete devices as in this work

only will require the same number of power supply as a single

device.

To resolve the current commutation issue in such a one-phase

half bridge converter, a current driven multi-step commutation

strategy is used in this work [25]. The normal operation of this

one-phase half bridge is shown in Figure 8(a), and zoom-in view

of switching node voltage (Vna) versus DC-link current (Idc ) as

indicated in Figure 2 during switching transitions as well as Vgs

signals driven by multi-step commutation strategy are drawn in

Figures 8(b) and 8(c) respectively.
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FIGURE 8 The normal operation of one-phase half-bridge using 2-S connected bidirectional switching module @400 V/10 A (a) Vna and Idc versus time; (b)

zoom-in view of switching transition; (c) Vgs pattern of commutation strategy

The key components and parameters used in proposed desat-

uration and negative power supply protection scheme are shown

in Tables 1 and 2. The experimental set-up is shown in Figure 9.

When the negative power supply (−VSS ) fail, the gate volt-

age of the MOSFET (Sg fp) rises towards zero. This leads to

the gate-to-source voltage of the MOSFET (Sg fp) become pos-

itive and therefore MOSFET (Sg fp) turns on. The Vgs of the

DUT will be pulled down to negative value (−Vss), which is the

voltage across the capacitor (Cstore ). In the meantime, as −VSS

fail, the IN+ of comparator (COMPg fp)become higher than IN-

(−Vre f ,g fp). Consequently, the opto-coupler receives a logic 1

signal from the comparator, and it sends an inverted output

(logic 0) signal to AND gate IC. Eventually, the dc-link con-

trol switch will be turned off and isolate the converter from the

high voltage power supply.

4 SIMULATION AND EXPERIMENTAL
VERIFICATION

The circuit as shown in Figure 2 is constructed in Cadence

Orcad, which is a SPICE-based simulation tool and used to

access the performance of the proposed protection scheme.

The overall simulation can be divided into the following parts,
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TABLE 1 Key components in proposed protection scheme

Component Model

±Vss∕ ±Vss, p voltage regulator ISA2415

+Vcc∕ +Vopto voltage regulator ITQ2405SA

Dch∕Ddisc∕Ddesat , gate ES1A

Dsense BY203-20S

Cstore EEEFT1V561AP

COMPdesat ∕COMPg fp LM311

Opto-coupler ACPL-H61L

SCMOS ,p∕SCMOS ,n IRF5305/IRLR2905

Scomp,desat ∕Sdesat ∕Sg fp IPD220N06L3

DC-link switch IXBF20N360

DC-link switch gate driver IX3120

DUT/desat gate driver Si8271

TABLE 2 Key parameters in proposed protection scheme

Parameter/unit Value

Rdesat /Ω 100

Rsat /Ω 220

Cdesat /F 1500p

Rp,Rn/ Ω 1

Rcom, desat / Ω 500

Ropto, desat / Ω 100

Cstore/F 560u

Rg fp, re f 1∕Rg fp, re f 2/Ω 600/300

Rcom, g fp/Ω 500

Ropto, g fp/Ω 100

+Vcc∕ +Vopto/V +5

±Vss∕ ±Vss, p/V ±15

FIGURE 9 Set-up for experimental verification

TABLE 3 Critical values of desaturation circuit

Objective/unit PSJ GaN FET SiC JFET

Rre f 1, desat / Ω 200 300

Rre f 2, desat / Ω 1000 1000

Id _limit / A 13 60

Vre f /V 4.167 3.846

∆Vdesat /V 2.48 2.02

Response time (tr )/ns 321 290

Detect time (tdetect )/ns 20 40.6

namely, desaturation circuit and negative power supply protec-

tion circuit implementation. The experimental verification set

up as illustrated in Figure 6(b), which consists of a high-voltage

DC source, an inductive load and two optional freewheeling

SiC diodes (GB10MPS17-247). It is necessary to point out that

the optional freewheeling diodes are implemented for higher

current testing when SiC JFETs are used. The fault signal is

triggered by C2000 Piccolo LaunchPad evaluation board with

Ti F28027F as shown in Figure 6(a). Figure 7 depicts the IV

characteristics and selected forward operation points of the PSJ

GaN FET and SiC JFET used in this work, respectively. The

gate-source voltage for both PSJ GaN FET and SiC JFET is

varied from −VSS to 0 V, and [2 V, 13 A] and [1.4 V, 60 A] have

been respectively selected as operation points based on their IV

characteristics for PSJ GaN FET and SiC JFET.

4.1 Evaluation of desaturation circuit

To evaluate the performance of the proposed desaturation cir-

cuit, a fault signal is generated by the lower switching module

Sa in single-phase half bridge converter in Cadence, whereas the

upper switching module Sb is operating at 50 kHz. With regards

to experimental validation, this fault signal is triggered by the

upper device as shown in Figure 6(a). The maximum current

limit is set by two reference resistors (Rre f 1,desat and Rre f 2,desat )

as previously mentioned. In this work, the PSJ GaN FET based

converter is operating at 600 V/5 A, and Id _limit is set at 13

A; the SiC JFET-based converter is operating at 400 V/25 A,

and 60 A has been set as Id _limit , corresponding with 2 and

1.4 V drain-to-source voltage respectively according to their IV-

curve as depicted in Figure 7 at room temperature. According

to the Equation (1), the Vre f as “IN-” of the comparator is set

to 4.167 V of PSJ GaN FET and 3.846 V of SiC JFET. Table 3

shows critical values in desaturation scheme, including overcur-

rent limit (Id _limit ), reference voltage of the comparator (Vre f ),

change in sensing voltage when faults occur (∆Vdesat ). The

CMOS configuration ensures that the comparison of the com-

parator between Vdesat and Vre f only take place when DUT

is ON-state. When DUT is under normal operation, Vdesat is

below Vre f . The fault signal results in an increase of Vdesat , and

therefore a logic LOW signal is yielded by desaturation circuit

to turn-off the DUT. The triggering of fault signal leads to the
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FIGURE 10 Comparison of simulation and experimental result of proposed desaturation scheme (a) PSJ GaN FET drain current; (b) zoom-in view of PSJ

GaN FET drain current; (c) experimental PSJ GaN FET Vdesat; (d) SiC JFET drain current; (e) zoom-in view of SiC JFET drain current; (f) experimental SiC JFET

Vdesat

desaturation circuit stops gating signal due to −VSS is forcefully

applied to the gate-source terminal of the DUT.

The response time (tr ) of this desaturation circuit is the time

from the instant of the drain current exceeds the specified limi-

tation of the drain current (Id _limit ) to where the fault event is

cleared by the desaturation circuit. As shown in Figures 10(b)

and 10(e), the overcurrent event lasts for 341 ns of PSJ GaN

FET and 330.6 ns of SiC JFET. A maximum 38A drain current

is observed within the desaturation period for PSJ GaN FET.

With regards to SiC JFET, a maximum 92.1A drain current is

reached within this period. Meanwhile, Figure 10(c) shows the

proposed desaturation circuit only requires tens of nanoseconds

(tdetect ) upon the Id , limit setting and devices’ characteristics to

detect the fault event, which saves more than 2.9 µs in compar-

ison to the desaturation scheme proposed in [18]. Meanwhile,

the response time of the proposed desaturation circuit is much

lower than the 5us which is the common minimum require-

ment of short circuit capability for WBG device [18, 26]. As

a result, the proposed desaturation circuit is able to detect and

clear faults within 341 ns, which shows significant advancement

in comparison with that in [18].

4.2 Evaluation of negative power supply
protection

To evaluate the performance of proposed negative supply pro-

tection circuit scheme in Figure 5, the negative power supply of

the gate driver is eliminated by turning off the supporting gate

driver power supply when PSJ GaNFET is operated at 50 kHz

frequency. Figure 11 illustrates the response of negative power

supply protection circuit. Reaction time and time frame are the

two critical objectives for the proposed negative power supply

protection. The reaction time is defined by how quick the DUT

is switched-off by the negative power supply protection scheme.

The time frame describes the allowed time for the converter to

be isolated from its high-voltage source.

As shown in Figure 11(a), once negative voltage supply fail,

theVgs_EN of DUT will be pulled down accordingly towards

− −Vss within 0.12 µs. It is because the reservoir capacitor

(Cstore) is previously charged to − −Vss through the diode

(Ddisc) during normal operation. An EN signal simultaneously

generated by a negative power supply protection circuit which

is sent to gate driver IC of the DC-link switch. This EN signal

commands the dc-link switch to be turned off and isolates the

converter from its main source. The proposed negative supply

protection scheme keeps the converter in off-state for 60.5 ms

as illustrated in Figure 11(b).

5 CONCLUSION

A protection scheme for the bidirectional switching (BDS)

module formed by two discrete normally-on GaN devices is

proposed in this paper. The protection scheme consists of two

parts, namely, the desaturation circuit and the negative gate volt-

age protection. Cadence Orcad is used to evaluate the pro-

posed protection scheme under the simulation environment.
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FIGURE 11 The proposed negative power supply protection experimental result (a) time frame; (b) zoom-in view of Vgs and Vds

With respect to the performance of the proposed protection

scheme, the overcurrent event can be removed in 341 ns for

PSJ GaN FET at 600 V/5 A operation and 330.6 ns for SiC

JFET at 400 V/25 A operation. The negative gate voltage pro-

tection circuit is able to offer 60.5 ms time frame, which can be

easily adjusted by the capacitance of Cstore or the operation fre-

quency. The time frame provided by the negative gate voltage

protection circuit is aimed to offer a sufficient time for isolation

of a single-phase half bridge converter from the high DC supply

voltage.
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