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Abstract. Image registration aims to establish spatial correspondence
across pairs, or groups of images, and is a cornerstone of medical image
computing and computer-assisted-interventions. Currently, most deep
learning-based registration methods assume that the desired deformation
fields are globally smooth and continuous, which is not always valid for
real-world scenarios, especially in medical image registration (e.g. cardiac
imaging and abdominal imaging). Such a global constraint can lead to
artefacts and increased errors at discontinuous tissue interfaces. To tackle
this issue, we propose a weakly-supervised Deep Discontinuity-preserving
Image Registration network (DDIR), to obtain better registration perfor-
mance and realistic deformation fields. We demonstrate that our method
achieves significant improvements in registration accuracy and predicts
more realistic deformations, in registration experiments on cardiac mag-
netic resonance (MR) images from UK Biobank Imaging Study (UKBB),
than state-of-the-art approaches.

Keywords: Deep Learning · Image Registration · Cardiac Image Reg-
istration · Discontinuity-preserving Image Registration.

1 Introduction

Image registration is a fundamental component of several applications in medi-
cal imaging. Recent years have seen a shift from traditional iterative methods to
deep learning (DL)-based registration approaches. Although training DL-based
approaches is time-consuming, inference is rapid, involving just a single forward
pass through the network. Consequently, DL-based approaches offer substan-
tial acceleration for pair-/group-wise image registration relative to traditional
approaches, achieving near-real-time performance in certain applications.

Most existing DL-based registration methods constrain deformation fields to
be globally smooth and continuous, through various means [3, 4, 7]. However, this
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assumption is often violated in medical image registration applications, as tissue
boundaries are naturally discontinuous. This is especially pronounced in cardiac
or abdominal imaging, which involve large deformations of multiple tissue-types,
and organ motion/sliding at tissue boundaries. Variability in the physical prop-
erties of different tissue-types results in discontinuities at native tissue bound-
aries [6, 5]. Hence, enforcing deformation fields to be globally smooth can gener-
ate unrealistic deformations and lead increased errors near these boundaries.

Discontinuity-preserving image registration is an active area of research in
the context of traditional registration methods [15, 13, 11, 6]. For example, Hua
et al. [6] proposed a discontinuous registration approach that utilised enriched
B-spline basis functions at control points near discontinuous tissue boundaries,
achieving significant improvement in registration accuracy, relative to other ex-
isting discontinuity-preserving registration methods. In contrast, only one study
thus far has proposed a discontinuous DL-based image registration framework.
Ng et al.[10] proposed a custom discontinuity-preserving regulariser on the defor-
mation fields (used with a typical unsupervised registration network), to preserve
discontinuities, while ensuring local smoothness within specific regions. They for-
mulated a regularisation term based on the unsigned area of the parallelogram
spanned by two displacement vectors associated with moving image voxels. How-
ever, without additional boundary information for guidance, such a discontinuity
regularisation term alone is insufficient to preserve strong discontinuities in de-
formation fields.

This paper assumes that the desired deformation fields are locally smooth,
but discontinuities may exist between different regions/organs at tissue inter-
faces. Therefore, we generate distinct smooth deformation fields for different
regions of interest and compose them to obtain the final registration field, used
to warp the moving image. Such a locally-smooth and globally-discontinuous reg-
istration scheme is achieved using a novel Deep Discontinuity-preserving Image
Registration network, or DDIR. The contributions of this paper are two-fold:
(1) we designed a novel framework, DDIR for discontinuous DL-based image
registration. This is the first study to incorporate discontinuity in DL network
structure and training strategy, and not only in terms of a custom regulari-
sation term in the loss function. (2) Our proposed DDIR achieves significant
improvement in registration accuracy over state-of-the-art registration methods,
and preserves key cardiac morphological indices post-registration, not afforded
by the latter.

2 Method

Pair-wise image registration aims to establish spatial correspondence between
the moving image IM and fixed image IF and is formulated as,

φ(x) = x+ u(x), (1)

where, x represents voxels/pixels in the moving image IM , u(x) denotes the
displacement field, and φ(◦) represents the deformation function.
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To generate deformation fields that are locally smooth and discontinuous at
the boundaries of different organs/regions, we propose to generate deformation
fields for different sub-regions, and compose them to obtain the final deforma-
tion field. Sub-regions in the images to be registered must first be segmented
either manually or automatically. With short-axis (SAX) cardiac cine-magnetic
resonance (CMR) images, manual and automatic segmentation results for left
ventricle blood pool (LVBP), left ventricle myocardium (LVM) and right ven-
tricle (RV) are generally available in public data sets, large-scale imaging ini-
tiatives (e.g. UK Biobank) and from previous studies on automatic CMR seg-
mentation [2]. As the focus of this paper is on SAX-CMR image registration, we
explicitly model discontinuities along cardiac boundaries by splitting the images
into four sub-regions, namely, LVBP, LVM, RV, and background. These sub-
regions are subsequently used to train our DDIR approach and register CMR
images in manner that preserves discontinuities at their boundaries.
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Fig. 1. Schema of DDIR. The registration network applies four different channels ex-
tracting features from pairs of LVBP, LVM, RV and background. Based on them, we
obtain four sub-deformation fields for different regions. The final deformation field is
obtained by composing these four deformation fields with corresponding segmentation.
The cardiac MR images were reproduced by kind permission of UK Biobank ©.

Network Architecture. Most previous DL-based registration methods ap-
ply an encoder-decoder network (generally U-Net [12]) to extract feature maps
from the concatenated input moving image and fixed image. However, as shown
in Fig. 1, in DDIR the original moving image and fixed image (at 128×128×32)
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are divided into four image pairs, i.e. LVBP, LVM, RV and background, using
segmentation masks for the corresponding regions. In each of these pairs, vox-
els in corresponding regions are preserved while the rest are set at zero. Each
pair is concatenated and fed as input to a distinct U-Net block, which extracts
region-specific feature maps. These four U-Nets have the same architecture, in-
cluding four down-sampling layers and three corresponding up-sampling layers.
Using this multi-channel encoder-decoder structure, we obtain four sets of fea-
ture maps (64×64×16) corresponding to different sub-regions. We use the same
U-Net architecture (with identical hyper-parameters) in all DL-based registra-
tion approaches investigated in this study.

Discontinuity Composition. Using the region-specific feature maps
learned by the U-Nets, we first predict four different smooth deformation fields
(corresponding to each region) and then compose them to obtain the final de-
formation field, to preserve local smoothness and discontinuity at the interfaces.
Similar to previous papers [4, 7], we assume the transformation function (de-
noted as φz) is parametrised by stationary velocity fields (SVF) (zi, i ∈ [0, 3]),
which are sampled from a multivariate Gaussian distribution. With the predicted
feature map, we compute the mean µi and variance Σi of zi (using two differ-
ent convolution layers). Based on them, four SVFs (z0, z1, z2, z3) corresponding
to different regions (LVBP, LVM, RV and background) are sampled. With the
corresponding integration layer and up-sampling layer, we obtain four diffeomor-
phic deformation fields φz0 , φz1 , φz2 and φz3 . As before, we use region-specific
segmentation masks to extract each region of interest from the obtained de-
formation fields (setting the remaining voxels to zero) and compose them to
generate the final deformation field. Denoting the segmented regions of LVBP,
LVM, RV and background as SLV BP , SLVM , SRV and Sbackground respectively,
the composition can be formulated as,

φz = φz0 × SLV BP + φz1 × SLVM + φz2 × SRV + φz3 × Sbackground. (2)

Loss Function. The loss function includes two terms, a dissimilarity and
a regularisation term. The former is the distance between the warped moving
image and the fixed image, while, the latter constrains the estimated deforma-
tion fields to be locally smooth (i.e. within each region), to avoid unrealistic
deformations. The dissimilarity loss in DDIR captures the dissimilarity on both
images and segmentations. We use normalised cross-correlation (NCC) LNCC
to evaluate the similarity between the warped moving image and the fixed im-
age. As the region-wise segmentation masks are available, we also compute the
region-wise dice loss, denoted LDice as in [9].

To preserve discontinuity at the interfaces of the organs/regions while en-
suring local smoothness, a global smoothness constraint is not enforced on the
composed deformation field. The composition of different deformation fields pre-
serves discontinuities at interfaces, therefore, we only need to guarantee the de-
formation field of each sub-region smooth. This is achieved by regularising each
sub-deformation field. Following Voxelmorph-diff [4], we calculate the Kullback-
Leibler (KL) divergence between the approximate posterior qψ(z|IF ; IM ) and
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the prior p(z) (p(z) = N (z; 0, Σz)) of each velocity field z, formulated as,

R = KL(qψ(z|IF ; IM )||p(z|IF ; IM )),

LR =
1

4
(RLV BP +RLVM +RRV +Rbackground),

(3)

where R denotes the regularisation for each deformation field and LR is the
combined regularisation term. The qψ(z|IF ; IM ) = N(z;µz|IF ,IM , Σz|IF ,IM ) is a
multivariate normal, where, µz|IF ,IM and Σz|IF ,IM are the mean and variance of
the distribution, learned by convolution layers. The complete loss function used
to train the network is, Ltotal = λ0 ×LNCC + λ1 ×LDice + λ2 ×LR, where, λ0,
λ1 and λ2 are used to weight the importance of each loss term.

3 Experiments and Results

Data and Implementation. The registration performance of the proposed ap-
proach is evaluated on SAX-CMR images (spatial resolution at ∼ 1.8 × 1.8 ×
10mm3), available from UKBB. We chose images from 2,000 subjects at random,
and used images at end-diastole (ED) and end-systole (ES) for intra-subject
registration. Among these, 1,600 subjects’ data was chosen at random for train-
ing DDIR, equating to 3,200 image pairs (ED-to-ES or ES-to-ED registration).
Image pairs from the remaining 400 subjects were used for testing. All CMR
images were resampled to 1.50 × 1.50 × 3.15mm3 using bi-cubic interpolation,
and cropped to a size of 128×128×32 (with zero-padding for images with fewer
than 32 slices). The region-wise segmentation masks for all CMR images were
obtained automatically using the segmentation method proposed in [2]. DDIR
was implemented using Python and Keras on a Tesla M60 GPU machine. The
Adam optimiser was used for training, with a learning rate of 1e− 4. The batch
size was set to 2, and the hyper-parameters λ0, λ1 and λ2 were set to 20, 200, 0.1
(determined empirically), respectively. The source code will be publicly available
on the Github 6.

Quantitative Comparison and Analysis. To demonstrate the superior-
ity of our approach, we compare DDIR with both traditional registration and
DL-based registration methods. For the former, we choose Symmetric Normal-
isation (SyN) registration (3 resolution level, with 100 iterations in each sam-
pling level) in ANTS [1], Demons (Fast Symmetric Forces Demons [14] with
800 iterations and standard deviations 1.0) in SimpleITK and B-spline registra-
tion (max iteration step is 2000, sampling 6000 random points per iteration)
in SimpleElastix [8], for comparison. For the latter, DDIR is compared with
Voxelmorph-diff [4]. As DDIR uses segmentation masks during training and in-
ference, it is a weakly-supervised registration method. For fair comparison, we
build three weakly-supervised versions of Voxelmorph - VM-Dice, VM(img+seg)
and VM-Dice(img+seg). VM-Dice uses a Dice loss LDice term and binary car-
diac segmentation masks for the fixed and moving images during training, but

6 https://github.com/cistib/DDIR
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does not require the latter for inference. In VM(img+seg), we concatenate the
fixed and moving images with their corresponding multi-class masks (i.e. dis-
tinct labels for each region) and use these to train the network. While, VM-
Dice(img+seg) is a combination of the previous two methods. We did not com-
pare with the DL-based discontinuity-preserving method proposed in [10], as
there is no corresponding source code publicly available. This strategy to reg-
ister different sub-regions and compose corresponding deformation fields is also
applicable to the aforementioned networks. Hence, we also apply this strategy
during inference, for trained Voxelmorph-diff and VM-Dice models (as they only
require sub-images as input on the inference), for comparison with DDIR. These
are denoted Voxelmorph-diff(compose) and VM-Dice(compose). These two ap-
proaches are different to DDIR as the composition of sub-deformation fields is
not learned end-to-end during training (as in DDIR).

To demonstrate the advantage of incorporating discontinuity in the DL-based
registration network, we also build a baseline for DDIR, DDIR(baseline), where
the predicted feature maps from the four different channels are concatenated
and used to compute a single diffeomorphic deformation field (instead of four
sub-deformation fields, as in DDIR).

Qualitative Results. Registration results obtained using DDIR and the
other methods investigated are assessed visually in Fig. 2. Here, the moving and
fixed images are shown in the first column. The corresponding warped moving
images, deformation fields, and Jacobian determinants (rows 1-3) obtained fol-
lowing registration using SyN, B-spline, Voxelmorph-diff, DDIR(baseline) and
DDIR, are shown in columns 2-6. The warped moving images obtained by both
traditional registration methods distinctly different to fixed image, although the
B-spline result appears visually more similar than obtained by SyN. All warped
moving images obtained using DL-based methods look more similar to the fixed
image, than the former. The deformation fields and their corresponding Jacobian
determinants estimated using each approach indicate that distinct boundaries
for the left and right ventricle are retained using DDIR, not afforded by the rest.

Table 1. Quantitative comparison between DDIR and state-of-the-art methods using
the DS of LVBP, LVM, RV and average Dice (denoted as Avg. DS) and HD. Statistically
significant improvements in registration accuracy (DS and HD) are highlighted in bold.
Besides, LVEDV and LVMM indices with no significant difference from the reference
are also highlighted in bold.

Methods LVBP DS (%) LVM DS (%) RV DS (%) Avg. DS (%) HD (mm) LVEDV LVMM

before Reg 57.68± 6.21 30.88± 8.68 55.13± 7.51 47.90± 6.33 12.91± 2.48 143.76± 32.13 83.67± 21.06
B-spline 74.44± 11.50 68.06± 7.20 61.76± 12.05 68.09± 8.76 13.72± 3.57 131.14± 40.64 81.11± 22.60
Demons 80.29± 10.00 69.96± 5.50 64.86± 9.67 71.70± 6.96 13.06± 3.12 138.00± 34.15 80.00± 21.25
SyN 70.92± 9.36 57.88± 10.59 60.30± 8.35 63.03± 8.29 12.98± 2.68 120.09± 41.83 83.12± 21.20

Voxelmorph-diff 81.73± 8.71 72.04± 4.65 65.73± 9.62 73.16± 6.26 12.96± 3.14 137.16± 32.59 78.65± 21.68
VM-Dice 82.28± 8.75 72.53± 4.59 66.30± 9.67 73.70± 6.28 13.00± 3.24 139.58± 32.79 78.98± 21.57
VM(img+seg) 82.54± 8.50 72.66± 4.80 66.69± 9.64 73.96± 6.28 12.68± 3.21 138.29± 33.00 80.83± 21.62
VM-Dice(img+seg) 81.97± 8.53 71.23± 4.79 70.20± 12.05 74.47± 6.79 11.28± 4.35 144.33 ± 32.93 80.17± 22.02

Voxelmorph-diff(compose) 78.82± 6.38 67.41± 8.80 75.10± 6.97 73.78± 6.10 11.74± 3.08 119.30± 38.71 91.39± 23.07
VM-Dice(compose) 79.59± 5.91 68.81± 7.81 77.93 ± 6.63 75.44± 5.36 11.14± 3.12 120.90± 38.14 94.89± 25.96

DDIR(baseline) 84.25± 8.63 75.02± 4.50 71.42± 10.32 76.90± 6.58 11.85± 3.38 141.73 ± 32.29 79.01± 21.40
DDIR 84.63± 8.07 75.27± 5.03 74.07± 8.73 77.99 ± 5.47 10.65 ± 3.51 141.84 ± 32.59 81.92 ± 21.86
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Quantitative Results. To quantitatively evaluate the performance of our
approach, we compare DDIR with previous methods using Dice score (DS) and
the Hausdorff Distance (HD). DS is computed for LVBP, LVM and RV. These
values and the average DS and HD across all regions are reported in Table 1.
Besides, to demonstrate the clinical value of DDIR, we also compute two clinical
indices, LV end-diastolic volume (LVEDV) and LV myocardial mass (LVMM).
The former is computed using ED segmentations, while the latter, is computed
using ED and ES segmentations, pre- and post-registration. Pre-registration,
LVEDV and LVMM are computed based on the moving and fixed segmenta-
tions (used as reference values). Post-registration, we compute them based on
the warped moving segmentation. Therefore, as we perform both ED-to-ES and
ES-to-ED registration for each subject, the LVMM values reported in Table 1
represent the average computed at both ED and ES, across all subjects. Thus
the closer LVEDV and LVMM (post-registration) are to the reference values, the
better the registration performance.

DL-based approaches outperform traditional registration methods in terms
of both DS and HD. The weakly-supervised variants of Voxelmorph-diff provide
improvements over Voxelmorph-diff, consistent with previous research[4]. Using
segmentation masks as additional input channels to the network (VM(img+seg))
yields better results than using them just to compute the loss and drive gradient
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Fig. 2. Visual comparison of deformation fields estimated using DDIR and state-of-
the-art methods. Left column: Moving and fixed images; Right column: corresponding
warped moving image (first row), deformation fields (second row) and Jacobian De-
terminant (last row). Colours in the Jacobian determinant images, from blue to red
represent the intensity from low to high. The cardiac MR images were reproduced by
kind permission of UK Biobank ©.
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updates (VM-Dice) (73.96% vs 73.70%). However, conversely the former requires
segmentation masks during inference, while the latter do not. The combination
of these two strategies (VM-Dice(img+seg)) further improves registration per-
formance (∼ 0.5% in terms of average DS). Composing sub-deformation fields
also improves registration accuracy of the trained networks, with Voxelmorph-
diff (compose) achieving 0.6% higher average DS than Voxelmorph-diff (73.78%
vs 73.16%), and VM-Dice (compose) achieving ∼ 1.7% higher average DS than
VM-Dice (75.44% vs 73.70%). We found that the DDIR(baseline) achieves ∼ 1%
higher average DS than VM-Dice(img+seg) (76.90% vs 75.93%), which high-
lights the advantage of using a multi-channel encoder-decoder network. Com-
pared with DDIR, we found that incorporating discontinuity further improves
the average DS (77.99% vs 76.90%). Correspondingly, DDIR also obtains the best
performance in terms of the DS for LVBP, LVM and HD, while its RV DS is lower
than VM-Dice(compose). We evaluated the statistical significance of these results
using paired t-tests and found that DDIR significantly outperforms Voxelmorph-
diff, VM-Dice, VM(img+seg) and VM-Dice(img+seg) on all DS and HD metrics
(P-value<0.05). DDIR also significantly outperforms DDIR(baseline) in terms of
average DS, RV DS and HD. Each sub-deformation field generated by DDIR are
smooth (without foldings). After composing, the discontinuity only exists at the
interface of different sub-regions, which demonstrates that DDIR can generate
locally-smooth but globally-discontinuous deformation fields.

The clinical indices, LVEDV and LVMM, show no significant differences (P-
value>0.05) post-registration using DDIR to the reference values, not afforded
by other approaches. This demonstrates the superiority and clinical value of
our method. To analyse the discontinuity on the deformation fields, we visualise
the deformation fields generated using DDIR and DDIR (baseline) (presented in
the supplementary material), where the discontinuity is observed for the former
along the LV and RV boundaries. To further demonstrate the robustness and
generalisability of our approach, we apply the models trained on UKBB data,
to the publicly available Automatic Cardiac Diagnosis Challenge (ACDC) data
set. The qualitative and quantitative results are included in the supplementary
material for brevity. As cardiac motion in ACDC images is not as pronounced
as in UKBB (in some cases, the images in ED are very similar to ES), only
marginal differences in registration performance are observed between DDIR and
the other composition-based methods in terms of DS and HD. However, as before,
DDIR outperforms Voxelmorph-diff and traditional state-of-the art methods.
Additionally, the clinical indices quantified (LVEDV, LVMM) post registration
using DDIR show no significant differences to the reference, not afforded by any
of the other methods investigated. This demonstrates the potential for applying
DDIR in real clinical scenarios.

4 Conclusion

We proposed a novel weakly-supervised discontinuity-preserving registration net-
work, DDIR, which significantly outperformed the state-of-the-art, in intra-
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patient CMR registration. DDIR preserves LV clinical indices post-registration,
not afforded by the other approaches. This makes it compelling as a tool for use
in clinical applications as it ensures that common diagnostic biomarkers for the
LV are preserved post-registration.
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