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Abstract Neutrophils are rapidly recruited to inflammatory sites where their coordinated

migration forms clusters, a process termed neutrophil swarming. The factors that modulate early

stages of neutrophil swarming are not fully understood, requiring the development of new in vivo

models. Using transgenic zebrafish larvae to study endogenous neutrophil migration in a tissue

damage model, we demonstrate that neutrophil swarming is a conserved process in zebrafish

immunity, sharing essential features with mammalian systems. We show that neutrophil swarms

initially develop around an individual pioneer neutrophil. We observed the violent release of

extracellular cytoplasmic and nuclear fragments by the pioneer and early swarming neutrophils. By

combining in vitro and in vivo approaches to study essential components of neutrophil extracellular

traps (NETs), we provide in-depth characterisation and high-resolution imaging of the composition

and morphology of these release events. Using a photoconversion approach to track neutrophils

within developing swarms, we identify that the fate of swarm-initiating pioneer neutrophils involves

extracellular chromatin release and that the key NET components gasdermin, neutrophil elastase,

and myeloperoxidase are required for the swarming process. Together our findings demonstrate

that release of cellular components by pioneer neutrophils is an initial step in neutrophil swarming

at sites of tissue injury.

Introduction
A robust inflammatory response against invading pathogens or endogenous danger signals requires

the coordination of multiple cellular and immune components. Neutrophils are one of the first res-

ponders to tissue inflammation and rapidly home to inflamed tissue within hours of injury. Within

inflamed tissue, neutrophils destroy pathogens (Urban et al., 2006) and clear wound debris

(Wang, 2018), ultimately leading to the restoration of tissue homeostasis. The anti-microbial reper-

toire of neutrophils can cause substantial secondary tissue damage and cell death; therefore, neutro-

phil recruitment to inflammatory sites must be tightly controlled.

Neutrophils are recruited to sites of inflammation through a series of well-defined molecular

events during which they are primed by pro-inflammatory signals including growth factors, inflamma-

tory cytokines, and chemoattractants (Ley et al., 2007; Woodfin et al., 2010; Nourshargh and

Alon, 2014). Neutrophils are capable of integrating host- and pathogen-derived environmental sig-

nals, resulting in their polarisation and migration towards the initiating inflammatory stimulus

(McDonald and Kubes, 2010). Within the interstitium, neutrophils can rapidly coordinate their

migration patterns towards sterile inflammation and infection to form clusters (Reátegui et al.,
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2017; Lämmermann et al., 2013; Ng et al., 2011; Chtanova et al., 2008; Peters et al., 2008;

Sun and Shi, 2016; Uderhardt et al., 2019). The parallels between these cellular behaviours and

migration patterns seen in insects have led to the use of the term ‘neutrophil swarming’.

A series of sequential phases leading to neutrophil swarm formation has been described in

murine models: the initial migration of ‘pioneer’ neutrophils close to the inflammatory site (scouting

phase) is followed by large-scale synchronised migration of neutrophils from more distant regions

(amplification phase) leading to neutrophil clustering (stabilisation phase) and eventual resolution

(Reátegui et al., 2017; Lämmermann et al., 2013; Ng et al., 2011; Chtanova et al., 2008). The ini-

tial arrest and death of early recruited pioneer neutrophils correlates with the onset of neutrophil

swarming (Lämmermann et al., 2013; Ng et al., 2011; Uderhardt et al., 2019) and is mediated by

lipid and protein chemoattractants including leukotriene B4 (LTB4) (Reátegui et al., 2017;

Lämmermann et al., 2013). In zebrafish, LTB4 is produced via arachidonic acid metabolism down-

stream of a sustained calcium wave induced upon neutrophil contact with damage-associated molec-

ular patterns (DAMPs) released by necrotic cells (Poplimont et al., 2020). Swarming neutrophils

propagate this local calcium ‘alarm signal’ through connexin-43, Cx43, which amplifies local chemo-

attractant release and directs migration of neutrophils to form swarms (Poplimont et al., 2020). The

precise nature of endogenous pioneer neutrophil behaviours and the mechanisms of swarming have

yet to be determined in vivo.

At sites of inflammation, neutrophil behaviour can be modulated by extracellular stimuli such as

proinflammatory cytokines, pathogens, toxic tissue constituents, and platelets (Iba et al., 2013). The

final fate of all neutrophils is death, but the mode of cell death can differ depending on stimuli and

can show unique macroscopic morphological changes (Galluzzi et al., 2018). Controlled cell death,

by apoptosis for example, does not cause surrounding tissue damage, whilst uncontrolled neutrophil

death, such as necrosis, results in the spilling of cellular contents containing DAMPs

(Poplimont et al., 2020; Labbé and Saleh, 2008). Neutrophils are able to produce extracellular

traps (NETs) into surrounding tissues, composed of DNA and histones embedded with granular and

cytoplasmic proteins, which are able to capture and kill pathogens extracellularly (Brinkmann et al.,

2004). Neutrophils release NETs following a series of intracellular changes, resulting in chromatin

decondensation, breakdown of the nuclear envelope, and mixing of DNA with granular and cyto-

plasmic proteins (Remijsen et al., 2011). The cellular uptake of propidium iodide and the expulsion

of intracellular components from pioneer neutrophils precede the onset of swarming in murine mod-

els (Uderhardt et al., 2019), suggesting that extracellular DNA release during cell death is

a possible mechanism of swarm initiation by pioneer cells. The processes of NET release and neutro-

phil swarming have been recently demonstrated to be linked, with swarming neutrophils releasing

NETs to restrict fungal growth of Candida albicans clusters on in vitro arrays (Hopke et al., 2020).

Further investigation of neutrophil swarming and NET release using in vivo models is required to dis-

sect the molecular mechanisms involved in complex tissue environments.

The zebrafish (Danio rerio) is a powerful model organism that has been extensively used to study

neutrophil function (Robertson et al., 2014; Loynes et al., 2018; Niethammer et al., 2009). The

optical transparency of zebrafish embryos and ease of generating fluorescent transgenic reporter

lines allow for the tracking of endogenous neutrophils from the time of injury (Renshaw et al.,

2006). In this study, we demonstrate using intravital imaging that a single pioneer neutrophil

becomes the focal point of migration for swarming neutrophils within damaged tissue. Prior to

swarming onset, the pioneer neutrophil adopts a rounded, non-motile morphology distinct from

other neutrophils within the inflamed tissue, but is not undergoing apoptosis. Pioneer and early

swarming neutrophils release intracellular components including chromatin, into tissues, reminiscent

of NET release. We show that neutrophil extracellular chromatin release in zebrafish shares key fea-

tures of mammalian NETs: they form in response to a range of chemical stimuli and share essential

structural features. Inhibition of NET components gasdermin D, neutrophil elastase, and myeloper-

oxidase is able to reduce the swarming process, indicating an important role for release of nuclear

contents from pioneer neutrophils in the swarming response.
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Results

Neutrophils swarm following injury and infection in vivo
We first investigated neutrophil mobilisation to injury and infectious stimuli. Neutrophil responses to

mechanical tissue injury were assessed by tailfin transection of 3 days post-fertilisation (dpf) larvae

from the TgBAC(mpx:GFP)i114 transgenic line (subsequently termed mpx:GFP) (Renshaw et al.,

2006). Neutrophil clusters were observed along the tailfin wound, reminiscent of neutrophil swarm-

ing events in mammalian systems (Figure 1A, Video 1). Infectious stimuli, such as Staphylococcus

aureus, a gram-positive bacterium, have been shown to cause a robust neutrophil swarming

response in mammalian models (Kamenyeva et al., 2015). To ascertain the neutrophil swarm

response to infection in the zebrafish, we injected S. aureus into the zebrafish otic vesicle. We

observed robust neutrophil recruitment (21 ± 2 neutrophils) and neutrophil clusters reminiscent of

mammalian neutrophil swarming to infection (Figure 1B, Video 2), which was not seen in larvae

injected with a PBS control (1 ± 0.3 neutrophils) (Figure 1—figure supplement 1A–B). These data

indicate that neutrophil clusters, reminiscent of swarming, are present in response to tissue damage

and infection in zebrafish.

Analysis of neutrophil migration patterns within the first 6 hr following tissue injury identified dif-

ferent behaviours of neutrophil clustering over time. In 14% of larva, short-lived, transient neutrophil

clusters, which formed and dissipated (stable for <1 hour) multiple times within the imaging period,

were observed (Figure 1—figure supplement 2, Video 3). In the majority of larva (50%), persistent

neutrophil clusters were observed, reminiscent of neutrophil swarming reported in mammalian sys-

tems (Reátegui et al., 2017; Lämmermann et al., 2013; Ng et al., 2011; Chtanova et al.,

2008; Figure 1C, Video 1). We defined a persistent swarm as the formation of a cluster that grew

by the coordinated migration of individual neutrophils and continued to grow for at least 1 hr

(Figure 1D). Persistent swarms began forming from 40 min post-injury (Figure 1—figure supple-

ment 3A) and remained stable for an average of 2.17 (±0.32) hr (Figure 1—figure supplement 3B).

The remaining 36% of larvae showed no evidence of swarming behaviour within the 6 hr imaging

period (Figure 1C, Video 3).

In mammalian neutrophil swarming, biphasic neutrophil responses are modulated by the lipid

LTB4 (Lämmermann et al., 2013). In the zebrafish tailfin model, two waves of neutrophil recruitment

were observed: the early migration of neutrophils proximal to the wound site between 0.5and 2 hpi,

followed by a later influx of neutrophils from more distant sites (Figure 1E). Biosynthesis of LTB4 in

zebrafish occurs through fatty acid metabolism of arachidonic acid, via intermediates found in mam-

malian systems, resulting in the production of LTB4 by the enzyme leukotriene A4 hydrolase

(LTA4H), encoded by the gene lta4h (Poplimont et al., 2020; Tobin et al., 2010;

Chatzopoulou et al., 2016). Zebrafish have three LTB4 receptors: the high affinity blt1 receptor and

two low affinity receptors blt2a and blt2b, of which neutrophils predominantly express blt1 (Fig-

ure 1—figure supplement 4A). We used the CRISPR-Cas9 system to knock down lta4h and blt1 loci

to investigate the requirement for LTB4 in the neutrophil response to a tailfin wound. High-resolu-

tion melt (HRM) analysis identified genomic lesions at each locus (Figure 1—figure supplement 4B).

Early neutrophil recruitment to the wound site at 3 hpi was similar between control (tyrosinase, a

well-defined CRISPR targeting pigment) (Isles et al., 2019a; Jao et al., 2013), blt1 and lta4h crRNA

injected larvae (Figure 1F), suggesting that LTB4 signalling is not required for early neutrophil

recruitment. However, by 6 hpi, neutrophil recruitment in blt1 and lta4h crRNA injected larvae was

significantly lower than control crRNA-injected larvae (Figure 1F), demonstrating a requirement for

LTB4 in the second phase of neutrophil recruitment in zebrafish, corroborating findings from mouse

(Lämmermann et al., 2013) and human (Reátegui et al., 2017).

Neutrophil swarms grow by large-scale migration of neutrophils towards early recruited pioneer

neutrophils, which release attractant signals, including LTB4 mediated by sustained calcium alarm

signals (Lämmermann et al., 2013; Ng et al., 2011; Chtanova et al., 2008; Poplimont et al.,

2020). We analysed the migration of neutrophils at sites of mechanical injury in the time period pre-

ceding swarm formation using our linear tailfin wound model. We identified that all swarms devel-

oped by highly directed neutrophil migration towards a single neutrophil rather than randomly

occurring at other points along the linear wound (Figure 2A). Tracking analysis showed that this indi-

vidual neutrophil was the focal point of migration (Figure 2B,C, Video 1). We termed this neutrophil

the ‘pioneer’ as it matched the behaviour of pioneer neutrophils described in murine models
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Figure 1. Neutrophil swarming occurs as part of the zebrafish inflammatory response. (A) Zebrafish neutrophils swarm at sites of tissue

damage. Representative image illustrating neutrophils swarming (arrowhead) at the wound site following tail fin transection in 3dpf mpx:GFP larvae.

Image was taken using 20� magnification on a TE2000U inverted microscope (Nikon). Time stamp shown is relative to the start of the imaging period

at 30 min post injury and is h:mm:ss. 3D reconstruction time course illustrating neutrophils swarming at the wound site (swarm centre is highlighted by

white asterisk). Imaging was performed using a 40� objective spinning disk confocal microscope (Perkin Elmer). Time stamps shown are relative to time

post-injury and are in hh:mm:ss. (B) Representative image illustrating neutrophil swarming (arrowhead) in otic vesicle infected with S. aureus (magenta).

Time stamps shown are hh:mm relative to time post infection. 3D reconstruction time course illustrating neutrophils swarming (swarm centre is

highlighted by white asterisk) within the otic vesicle of 2dpf mpx:GFP larvae injected with 2500 cfu S. aureus SH1000 pMV158mCherry. Imaging was

performed using a 20� objective spinning disk confocal microscope. Time stamps shown are hh:mm:ss relative to time post injection. (C) The

percentage of tailfin transected larvae that had no swarms, transient swarms, or persistent swarms after 6hpi. Data shown are from n = 14 larvae from

five biological replicates (Figure 1—source data 1). (D) Area of neutrophil swarms measured at hourly intervals during the 5 hr imaging period. Error

bars shown are mean ± SEM, n = 7 larvae with persistent swarms (Figure 1—source data 2). (E) Distance time plot demonstrating the early recruitment

of neutrophils proximal to the wound site (<350 mm) followed by the later recruitment of more distant neutrophils. Tracks are colour coded based on

their average speed (mm/min). (F) CRISPR/Cas9-mediated knockdown of LTB4 signalling reduces late neutrophil recruitment. Neutrophil counts at the

wound site in control tyr crRNA injected larvae (grey line), lta4h crRNA injected larvae (blue line), and blt1 crRNA injected larvae (green line) at 3 and

6 hpi. Error bars shown are mean ± SEM. Groups were analysed using a two-way ANOVA and adjusted using Sidak’s multi comparison test. **p<0.008

n = 45 accumulated from three biological repeats (Figure 1—source data 3).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Numerical data for the graph of Figure 1C.

Source data 2. Numerical data for the graph of Figure 1D.

Source data 3. Numerical data for the graph of Figure 1F.

Figure supplement 1. Neutrophil migration to the otic vesicle after Staphylococcus aureus infection.

Figure supplement 1—source data 1. Numerical data for the graph of Figure 1—figure supplement 1B.

Figure supplement 2. Transient neutrophil swarms at the tailfin wound.

Figure 1 continued on next page
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(Lämmermann et al., 2013; Ng et al., 2011; Lämmermann, 2016). Prior to swarming, pioneer neu-

trophils adopted a rounded, non-motile morphology, indicated by their higher circularity index and

lower displacement compared to nearest-neighbour neutrophils in the frame immediately preceding

the onset of swarming (Figure 2D,E).

The swarms which formed around endogenous pioneer neutrophils in zebrafish exhibit similar

defined patterns of neutrophil migration to those observed in mammalian swarming

(Video 4; Reátegui et al., 2017; Ng et al., 2011). During a scouting phase, neutrophils migrated to

the wound site prior to swarm formation over a period which lasted on average 88 ± 24 min (Fig-

ure 2—figure supplement 1A and analysis of data from Figure 2A). Within the scouting neutrophil

population, a single pioneer neutrophil adopted the distinct, rounded morphology at the wound

site. The initiation phase of swarming began when the pioneer neutrophil stopped migrating and

became rounded, marking the site of the swarm centre, and ended when the first neutrophil joined

the swarm, taking on average 36 ± 7 min (Figure 2—figure supplement 1B and analysis of data

from Figure 2A). During the aggregation phase, there was a directed migration of neutrophils

towards the pioneer to form and consolidate the swarm, for 183 ± 25 min, or until the end of the

imaging period (Figure 2—figure supplement 1B and analysis of data from Figure 2A).

To investigate whether the rounded, non-motile morphology was distinct to pioneers, or common

to all neutrophils upon arrival at the wound site, scouting neutrophils (including the pioneer neutro-

phil) were tracked and their migration patterns analysed for a set time period which covered the

scouting and initiation phase (Figure 2F). The speed, displacement, and meandering index of pio-

neer neutrophils were significantly reduced between the scouting and initiation phases. No differen-

ces in migration behaviours were observed in neighbouring scouting neutrophils, which migrated to

the wound site within the same time period (Figure 2G). These data demonstrate that endogenous

pioneer neutrophils adopt distinct morphology and migration patterns at the wound site, which is

not seen in other wound neutrophils.

Pioneer neutrophil membranes are intact prior to the onset of
swarming
Due to the rounding of pioneer neutrophils prior

to the onset of swarming, we hypothesised that

these cells may be undergoing a form of pro-

grammed cell death. We first investigated their

membrane permeability using the DNA interca-

lating agent, propidium iodide (PI). Pioneer neu-

trophils excluded PI in 100% of observed swarm

initiation events (Figure 3A–D, Video 5), demon-

strating that the plasma membranes of these

neutrophils were intact before swarming began.

At the same time, pioneer neutrophils were sur-

rounded by dense accumulations of extracellular

DNA and cellular debris, confirming that PI was

taken up by nearby material in these tissues

(Video 5). Apoptotic neutrophils can also exclude

PI; therefore, a Förster resonance energy

transfer (FRET)-based reporter for neutrophil

apoptosis (Tyas et al., 2000) was used to deter-

mine whether pioneer neutrophils were undergo-

ing apoptosis. Analysis of pioneer neutrophils

Figure 1 continued

Figure supplement 3. Characterisation of persistent neutrophil swarms.

Figure supplement 3—source data 1. Numerical data for the graph of Figure 1—figure supplement 3A.

Figure supplement 3—source data 2. Numerical data for the graph of Figure 1—figure supplement 3B.

Figure supplement 4. Expression of LTB4 signalling components in zebrafish neutrophils.

Video 1. A pioneer neutrophil stops migrating, rounds

up, and becomes the centre of a persistent swarm. A

280 min spinning disk confocal timelapse of a mpx:GFP

positive neutrophil (filled arrowhead) migrating at the

wound site, that stops migrating and adopts a rounded

shape (hollow arrowhead), before becoming the centre

of a nascent neutrophil swarm (asterisk).

https://elifesciences.org/articles/68755#video1
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prior to swarming in Tg(mpx:CFP-DEVD-YFP)

sh237 larvae (Robertson et al., 2016) identified

that despite the rounded, non-motile morphol-

ogy, a FRET signal was present during both the

scouting and initiation phases in all pioneer neu-

trophils studied (Figure 3E, Video 5, n = 6 neu-

trophils from five experimental repeats),

indicating that caspase cleavage did not occur

and that pioneer neutrophils were therefore not

apoptotic. Neutrophil apoptosis at this early time

point during the inflammatory response to the

tailfin wound was infrequent; however, on the

rare occasion when the neutrophil FRET signal

was lost (Figure 3F), it was not followed by a

swarming response (n = 2 neutrophils). To further

confirm that neutrophil apoptosis did not lead to

swarming, we assessed neutrophil swarms in the

presence of the pan-caspase inhibitor zVAD-fmk.

Caspase inhibition did not change the frequency

of swarm formation (Figure 3G), indicating that

apoptosis does not play a significant role in swarm formation. Taken together, these data demon-

strate that despite a rounded morphology, pioneer neutrophils exclude PI prior to swarming and are

not undergoing apoptosis.

Swarming neutrophils release cytoplasmic material in balloon-like
structures
During the aggregation phase of the swarming response in zebrafish, we identified neutrophil cellu-

lar fragments around developing clusters, reminiscent of mammalian neutrophil extracellular trap

(NET) release (van der Linden et al., 2017; Tanaka et al., 2014). Using confocal microscopy, we

identified that balloon-like structures, as well as smaller fragments of neutrophil debris, were

released from swarms (Figure 4A, Video 6). This violent release of neutrophil fragments, accompa-

nied by large cytoplasmic structures, has been associated with NET release in mammalian systems

(van der Linden et al., 2017; Tanaka et al., 2014). The cytoplasmic structures observed were larger

than the cell body of nearest neighbour neutrophils and the resultant debris (Figure 4B). Neutrophil

cytoplasmic fragments were produced following a series of striking morphological events: an initial

stretching and budding of neutrophil cytoplasm, followed by a violent, catapult-like release of the

cytoplasmic structure with eventual formation of associated debris (Figure 4C,D, Video 6).

We next determined whether the pioneer neutrophil itself could release these striking extracellu-

lar structures. Pioneer neutrophils were studied

within swarms using a photoconversion approach

in a zebrafish reporter line, in which the photo-

convertible protein Kaede was expressed specifi-

cally in neutrophils: TgBAC(mpx:GAL4-VP16)

sh256;Tg(UAS:kaede)s1999t (referred to as mpx:

Kaede) (Robertson et al., 2014; Elks et al.,

2011; Ellett et al., 2015). The first neutrophil

migrating towards the tailfin wound was photo-

converted in multiple larvae, with a small propor-

tion of these going on to become the pioneer of

a swarm. Photoconverted neutrophils that went

on to become the swarm focus released photo-

converted cytoplasmic balloons when they

stopped migrating and rounded up, showing that

pioneer neutrophils release extracellular material

into the surrounding tissue (Figure 4E,F). This

was confirmed by the cytoplasmic balloon

Video 2. Neutrophil swarm response to

Staphylococcus aureus. A 100 min spinning disk

confocal timelapse of neutrophils (mpx:GFP positive)

swarming (asterisk at centre) around Staphylococcus

aureus (SH1000 pMV158mCherry, red fluorescence)

infection in the otic vesicle.

https://elifesciences.org/articles/68755#video2

Video 3. Transient swarming and no swarming at a

tailfin wound. Spinning disk confocal timelapse

examples of zebrafish mpx:GFP larvae that form

transient swarms (white arrowheads) or no swarms at

the tailfin wound (to the righthand side of the video).

https://elifesciences.org/articles/68755#video3
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Figure 2. Neutrophil swarms develop around an endogenous pioneer neutrophil. (A) Reverse chronological time lapse sequence of a persistent

neutrophil swarm where one individual neutrophil is visible at the swarm centre (asterisk) prior to neutrophil clustering (arrowhead). Time stamps shown

are hh:mm:ss relative to injury time. (B) Chronological time lapse sequence of swarming neutrophils. The pioneer is marked with an arrowhead prior to

the addition of further neutrophils to the swarm (asterisk). The result of migration is the aggregation of neutrophils to form clusters. (C) Distance-time

plot (DTP) of individual cell migration paths of neutrophils at the wound relative to the pioneer neutrophil (blue plots are swarming neutrophils and

green plots are nearest neighbour wound neutrophils that do not participate in the swarm). Tracks are relative to pioneer neutrophil position; swarming

Figure 2 continued on next page
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structure becoming positive for propidium iodide over time, indicating the release of nuclear DNA

(Figure 4G–I, Video 6). Pioneer neutrophil balloon release occurred during the early phases of

swarm formation, suggesting that early swarming neutrophils expel DNA.

Zebrafish neutrophils release extracellular DNA after treatment with
known NET stimuli
To determine whether zebrafish NETs are regulated similar to those of mammalian neutrophils, we

purified zebrafish neutrophils from adult Tg(lyz:dsRed)nz50 kidneys and cultured them in vitro, stimu-

lating them with known NET inducers and observing NET production by observation of DNA release

using the nuclear dye SYTOX Green (Figure 5A). We used chemical stimuli (PMA and calcium iono-

phore [Cal]) as well as microbial stimuli (Candida albicans and S. aureus) and showed that all chemi-

cal and microbial stimuli resulted in the progressive accumulation of NETs over 120 min compared

to control (Figure 5B). These data indicate that zebrafish neutrophils can produce NET-like struc-

tures in response to a variety of stimuli in vitro.

Swarming neutrophils release chromatin
To study neutrophil chromatin release in vivo, we

generated a transgenic reporter line for neutro-

phil histone H2az2a (H2A), providing a cell-auton-

omous reporter of NET release. A genetic

construct containing the sequence for H2A with a

C-terminal fusion of the fluorescent protein

mCherry, driven by the neutrophil-specific lyz

promoter (Buchan et al., 2019; Hall et al.,

2007), was generated using Gateway cloning

(Figure 6A; Kwan et al., 2007). It was introduced

into the genome of mpx:GFP larvae by Tol2-

mediated transgenesis, and a double transgenic

stable line was generated: TgBAC(mpx:GFP)i114;

Tg(lyz:h2az2a-mCherry,cmlc2:GFP)sh530 (sh530

is subsequently referred to as H2A-mCherry). The

H2A-mcherry transgene was expressed by neu-

trophils in larvae (Figure 6B), colocalising with

the nuclear stain DAPI (Figure 6C). Construct

integration did not affect neutrophil migration to

sites of inflammation (Figure 6—figure

Figure 2 continued

neutrophils migrate to the pioneer neutrophil, whilst non-swarming neutrophils do not (n = 4 larvae) (Figure 2—source data 1). (D) Representative

image of pioneer and non-pioneer neutrophil morphology. Images were taken using a 40X objective lens on a spinning disk confocal microscope

(Perkin Elmer). Scale bars are 20 mm. Quantification of pioneer neutrophil migration pattern in the frames preceding swarming. The circularity index

(roundness) (E) (Figure 2—source data 2) and displacement (movement) (F) (Figure 2—source data 3) of pioneer neutrophils and wound neutrophils

migrating at the wound site in the same time period (n = 5 larvae, unpaired t-test where *p<0.05 and **p<0.01). (G) Neutrophils were tracked from 30

min post injury. Parameters to study the migration patterns of pioneer and wound neutrophils were compared in the scouting and initiation phases.

Neutrophil displacement (the linear distance each neutrophil travelled) (Figure 2—source data 4). Neutrophil speed (Figure 2—source data 5).

Neutrophil meandering index (the displacement divided by the total length of the neutrophil track) (Figure 2—source data 6). Error bars are mean ±

SEM. Groups were analysed using a two-way ANOVA and adjusted using Sidak’s multi comparison test. *p<0.05, **p<0.01, n =5 larvae.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data for the graph of Figure 2C.

Source data 2. Numerical data for the graph of Figure 2E.

Source data 3. Numerical data for the graph of Figure 2F.

Source data 4. Numerical data for the graph of Figure 2G (Displacement).

Source data 5. Numerical data for the graph of Figure 2G (Speed).

Source data 6. Numerical data for the graph of Figure 2G (Meandering index).

Figure supplement 1. Phases of neutrophil swarming in zebrafish.

Video 4. The scouting, initiation and aggregation

phases of neutrophil swarming. Spinning disk confocal

timelapse of mpx:GFP larva with the brightfield

overlaid image shows a developing swarm with

scouting, initiation and aggregation phases of

swarming labelled. The pioneer neutrophil is indicated

by a cell track.

https://elifesciences.org/articles/68755#video4
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Figure 3. Pioneer neutrophils are not undergoing apoptosis prior to swarming. (A–D) Pioneer neutrophils are not propidium iodide positive prior to

swarming. (A) Single slice image showing tail fin of injured mpx:GFP larva (bright field), stained with propidium iodide (white). Image shows

representative example of pioneer neutrophil at the wound site prior to the swarming response (green). (B) Representative 3D render of pioneer

neutrophil during the initiation phase. Left tile shows mpx:GFP pioneer neutrophil, middle tile shows propidium iodide staining, and right tile shows the

two merged. (C) Representative colocalisation analysis of pioneer neutrophils, where neutrophil signal (GFP) is on the x axis and propidium iodide

signal (mCherry) is on the y axis. (D) Pearson’s colocalisation coefficient for pioneer neutrophils (data shown are mean ± SEM, n = 4 larvae) (Figure 3—

source data 1). (E) Pioneer neutrophils are not apoptotic prior to swarming. 3 dpf mpx:FRET larvae were injured, and time lapse imaging was

performed from 30 min post-injury for 6 hr. Neutrophil signal from the acceptor (green) and nFRET (magenta) are shown to illustrate neutrophil

apoptosis. Representative example of a pioneer neutrophil and its nearest neighbour in the frames preceding neutrophil swarming. The initiation stage

is observed 58 min prior to swarming (rounded pioneer neutrophil, arrowhead). nFRET signal is intact at all stages of migration prior to swarming in

both the pioneer and nearest-neighbour non-pioneer neutrophil. Time stamps are mm:ss relative to the swarm start time (representative example of

Figure 3 continued on next page
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supplement 1A,B). We analysed swarming neutrophils in H2A-mCherry larvae and identified that

mCherry-positive material was released by swarming neutrophils in the cytoplasmic balloon struc-

tures (Figure 6D,E). In a manner analogous to mammalian NET release, the histone material

extruded from the nucleus and was released in a catapult-like manner (Figure 6D,E). Neutrophil

chromatin release was further confirmed using a second transgenic line Tg(mpx:H2Bcerulean-P2A-

mKO2CAAX)gl29 (Manley et al., 2020; Figure 6—figure supplement 1C). Neutrophil H2B histones

colocalised with SYTOX green and myeloperoxidase (another well-defined NET component in mam-

malian systems) in vivo following calcium ionophore stimulation (Figure 6—figure supplement 1D).

Together, these data demonstrate that zebrafish neutrophils exhibit co-ordinated release of NET

components, including histones and myeloperoxidase, in vivo and that NET release occurs in devel-

oping neutrophil swarms.

Inhibition of mediators of NET release decrease swarm frequency
Having identified that NETs are expelled by early swarming neutrophils, we next investigated mech-

anistic links between NET release and neutrophil swarming. DNA release in NET formation is medi-

ated by a series of molecular events that lead to chromosome decondensation and the creation of

pores in the nuclear/plasma membranes to allow release of nuclear material including chromatin. We

sought to pharmacologically or genetically perturbate mediators of NET formation to assess their

roles in swarming.

We first targeted gasdermin proteins that form pores in nuclear and plasma membranes to allow

lytic release of intracellular components during NET formation and other forms of lytic cell death

(e.g. pyroptosis) (Chen et al., 2018; Sollberger et al., 2018; Chen et al., 2021). To test the role of

DNA release through gasdermin pores, larvae were pre-treated with the pore blocking gasdermin

inhibitor LDC7559 prior to tissue injury. Treatment with LDC7559 reduced the percentage of larvae

with swarms compared to DMSO control treat-

ment (Figure 7A), suggesting that gasdermin

pore formation is an important step in the swarm-

ing process.

Neutrophil elastase is known to play a key role

in chromatin decondensation and NET release,

by cleaving histone proteins allowing their

release during NET formation

(Papayannopoulos et al., 2010). Neutrophil elas-

tase has also been reported to also cleave gas-

dermin D to facilitate pore formation

(Sollberger et al., 2018). We used the cell-per-

meable inhibitor of neutrophil elastase MeOSu-

AAPV-CMK (Saffarzadeh et al., 2012) to inhibit

NET release downstream of NE. Systemic injec-

tion of MeOSu-AAPV-CMK resulted in a reduc-

tion in the percentage of larvae with neutrophil

swarms at the injury site compared to DMSO

controls (Figure 7B). These data further suggest

a role for NET downstream of neutrophil elastase

Figure 3 continued

n = 6 neutrophils from five larvae). (F) Apoptotic neutrophils do not initiate swarming. Example of neutrophil apoptosis at the wound site demonstrated

by loss of FRET signal around 4 hr post-injury (arrowhead), followed by the absence of neutrophil cluster formation in the same tissue region by the end

of the imaging period. Time stamp is relative to injury time and is hh:mm:ss. (G) The percentage of larvae with neutrophil swarms at 3 hr post-injury

after Caspase inhibition by zVAD-fmk or vehicle control treatment. Data shown are from n = 228 larvae accumulated from five biological replicates

(Figure 3—source data 2). Paired data shows each individual experiment using the same batch of larvae over the treatment groups.

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data for the graph of Figure 3D.

Source data 2. Numerical data for the graph of Figure 2G.

Video 5. Pioneer neutrophils are not undergoing

apoptosis prior to swarming. The pioneer neutrophil

(mpx:GFP positive) is propidium iodide (PI, white)

negative, shown using a 3D confocal micrograph. The

pioneer neutrophil (asterisk) is Caspase FRET positive

in the Tg(mpx:CFP-DEVD-YFP)sh237 transgenic line

shown by spinning disk confocal timelapse with FRET.

https://elifesciences.org/articles/68755#video5
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Figure 4. Catapult release of DNA-containing, balloon-like structures by pioneer neutrophils. (A) 3D rendered time lapse sequence showing cell

fragments around swarming neutrophils (swarm: asterisk, cytoplasmic balloon-like structures: white arrowheads, cell debris: yellow arrowheads). Time

stamps are hh:mm:ss relative to injury time. Images were taken using a 40� objective lens on a Perkin-Elmer spinning disk confocal microscope. (B) The

area of cellular debris and cytoplasmic vacuoles detected during swarm aggregation were measured alongside three nearest neighbour neutrophils at

Figure 4 continued on next page
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activity in modulating the zebrafish swarming response.

Neutrophil-derived antimicrobial mechanisms, such as NADPH oxidase and myeloperoxidase

(MPO), have been implicated in neutrophil swarming in vitro (Hopke et al., 2020). Furthermore,

MPO is a component of NETs, and its enzymatic activity has been implicated in NET formation,

especially in studies involving stimulation by PMA, and can work synergistically with neutrophil elas-

tase to further aid chromatin decondensation (Papayannopoulos et al., 2010). The NADPH-oxidase

inhibitor diphenyleneiodonium chloride (DPI) did not reduce the percentage of larvae with swarms;

however, DPI greatly reduced neutrophil recruitment to the wound if pre-treated at 4 hr pre-wound

(Figure 7—figure supplement 1A); therefore, DPI was administered at 1 hpw to allow initial neutro-

phil recruitment to occur before DPI’s effect on swarming events could be assessed (Figure 7—fig-

ure supplement 1B). We used CRISPR-Cas9 technology to target and knockdown the myeloid-

specific peroxidase (mpx) promoter in zebrafish.

We injected double transgenic mpx:GFP; lyz:

nfsB-mcherry larvae with a crRNA targeting the

mpx promoter. Knockdown was confirmed by a

reduction in mpx:GFP expression compared to

tyr CRISPant controls (Figure 7C), while lyz:nfsB-

mcherry expression remained unchanged. Neu-

trophil swarms were subsequently assessed at

4 hpi by lyz:nfsB-mcherry expression. The per-

centage of larvae with swarms was reduced in

mpx knockdown larvae when compared to tyr

controls (Figure 7D), indicating a role for mpx in

neutrophil swarming.

Together, these data demonstrate that target-

ing NET formation using independent

approaches caused a reduction in neutrophil

swarming, highlighting important roles for Gas-

dermin D, neutrophil elastase, and myeloid-spe-

cific peroxidase-dependent NET release in

modulating the in vivo swarming response.

Figure 4 continued

the wound site (error bars are SEM. Groups were analysed using an ordinary one-way ANOVA with Tukey’s multiple comparison, p<0.0001. N = 5

larvae) (Figure 4—source data 1). (C, D) Timelapse microscopy of catapult cytoplasmic balloon (white arrowhead) release from a single pioneer

neutrophil (asterisk), leaving cell debris (yellow arrowhead). A plot of the areas of this event demonstrates that the cytoplasmic balloon grows as the cell

body decreases (Figure 4—source data 2). The fluorescence of the debris is lost over the course of the timelapse. (E) A photoconversion approach to

study pioneer neutrophils within developing clusters. 3 dpf mpx:Kaede larvae were injured and the neutrophil closest to the wound site was

photoconverted from green to red fluorescence at 10 min post-injury. Larvae where the red neutrophil became the swarm-initiating pioneer neutrophil

were analysed. Example time lapse of green wild-type swarming neutrophils which cluster around the magenta pioneer neutrophil. A swarm forms

around this pioneer (asterisk) while a cytoplasmic balloon is released from the pioneer between 48–58 min post injury (identifiable from the magenta,

white arrowhead). Time stamps are hh:mm:ss relative to time post injury. (F) A second example of a photoconverted pioneer neutrophil (asterisk)

releasing an extracellular balloon (white arrowhead) and leaving cell debris in and around the swarm (yellow arrowheads). (G) A single confocal Z slice

of propidium iodide staining (magenta) demonstrates that a pioneer neutrophil (asterisk), is PI negative until cytoplasmic balloon release (white

arrowhead) that becomes PI positive over time (yellow arrowhead) and loses its green fluorescence. (H) A neutrophil (asterisk) cytoplasmic balloon

(white arrowhead) becoming positive for propidium iodide. (I) Colocalisation of propidium iodide with neutrophil cytoplasmic fragments (Figure 4—

source data 3).

The online version of this article includes the following source data for figure 4:

Source data 1. Numerical data for the graph of Figure 4B.

Source data 2. Numerical data for the graph of Figure 4D.

Source data 3. Numerical data for the graph of Figure 4I.

Video 6. Catapult release of cytoplasmic balloon-like

structures by pioneer neutrophils. A spinning disk

confocal timelapse of a nick wound in the mpx:GFP

transgenic shows balloon-like structures (white

arrowheads) released from the developing swarm. In

the mpx:Kaede transgenic line the pioneer neutrophil

was photoconverted to red and red cytoplasmic

balloons were released at the wound (white

arrowheads). Cytoplasmic balloons released from the

swarming neutrophils become positive for propidium

iodide (PI, red) indicated by white arrowheads.

https://elifesciences.org/articles/68755#video6
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Figure 5. Zebrafish neutrophils release NETs in vitro. (A) Purification of adult zebrafish neutrophils for in vitro stimulation. Viable neutrophils were

purified from the kidneys of adult Tg(lyz:dsRed)nz50 adult zebrafish and separated by density gradient separation purification (i). Unstimulated lyz:

dsRed neutrophils were visualised using a haemocytometer (ii) and by May Grünwald-staining of cytospin preparations (iii). NET release was observed

using SYTOX green staining (example shown is after PMA treatment) (iv). (B) Morphological time course of NET release by Tg(lyz:dsRed)nz50 following

in vitro stimulation after no stimulation (control), calcium ionophore treatment, PMA treatment, Staphylococcus aureus infection, or Candida albicans

infection. Images shown are randomly selected fields of view. Neutrophils were detected by their transgenic dsRED signal (magenta) and the

Figure 5 continued on next page
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Discussion
In this study, we investigated neutrophil migration patterns in the context of inflammation and infec-

tion, demonstrating that neutrophil swarming behaviour is a part of zebrafish immunity. We focused

on neutrophil swarming in injury-induced inflammation, where the zebrafish model allowed us to

track endogenous neutrophils in an intact tissue damage model in vivo. Utilising the optical transpar-

ency of zebrafish larvae and a combination of transgenic reporter lines and fluorescent DNA interca-

lating agents, we identified that swarm-initiating, pioneer neutrophils release extracellular chromatin

from within swarms, building on a growing body of work that implicates a role for pioneer neutrophil

DNA release in the swarming response (Lämmermann et al., 2013; Ng et al., 2011;

Uderhardt et al., 2019; Byrd et al., 2013). Finally, we block NET forming components and demon-

strate a reduction in swarming events, drawing a mechanistic link between NET release and swarm

formation. These findings build on in vitro evidence that swarming neutrophils release NETs

(Hopke et al., 2020), and reveal a functional role for NET release in in vivo neutrophil swarming.

We used the visual transparency of the larval zebrafish model to precisely track neutrophils using

fluorescence microscopy over time, providing high-resolution in vivo characterisation of endogenous

neutrophil migration patterns in the context of swarming at sites of tissue injury. Within the inflamed

tailfin, we show that neutrophil swarms developed around an individual pioneer neutrophil, sharing

common behaviours with the pioneer neutrophils essential for swarm initiation in murine models

(Lämmermann et al., 2013; Uderhardt et al., 2019; Lämmermann, 2016). Due to the relatively

small number of neutrophils present in zebrafish larvae (~300), in comparison with the thousands (2–

5 � 104) (Ng et al., 2011) injected into the mouse ear, we could observe single-cell behaviours

enabling us to study endogenous pioneer neutrophils with optical clarity prior to the onset of swarm-

ing. Within inflamed or infected interstitial tissue, the initial arrest of a small number of ‘pioneer’ or

‘scouting’ neutrophils precedes a later influx of neutrophil migration (Lämmermann et al., 2013;

Chtanova et al., 2008; Uderhardt et al., 2019). We distinguish the pioneer neutrophil from other

scouting neutrophilsand propose that the pioneer neutrophil release extracellular DNA that pre-

cedes consolidation of swarm formation through an aggregation phase.

Neutrophil responses to tissue injury in mammalian systems are bi-phasic and are modulated in

part by the lipid LTB4, which acts as a signal-relay molecule to amplify initial signals produced at

inflammatory sites including formyl peptides (Afonso et al., 2012; Reátegui et al., 2017;

Lämmermann et al., 2013). We demonstrate that zebrafish neutrophil recruitment to tail fin inflam-

mation is also bi-phasic and requires intact lta4h and blt1. In recent findings, LTB4 biosynthesis is

increased by swarming neutrophils following a sustained calcium alarm signal during neutrophil

swarming, further demonstrating a conserved role of LTB4 in zebrafish (Poplimont et al., 2020).

We observed that pioneer neutrophils are surrounded by debris and extracellular DNA. This is

consistent with the recent identification that early swarming neutrophils sense DAMPs, including

ATP released by necrotic tissue, which causes a sustained calcium wave, translocation of 5-LO, and

subsequent metabolism of arachidonic acid to LTB4 (Poplimont et al., 2020). We demonstrate that

a caspase-3-sensitive FRET reporter fluorescence was intact during the swarm initiation phase and

caspase inhibition had no effect on swarming outcomes, suggesting that swarm initiating pioneer

neutrophils were not undergoing neutrophil apoptosis prior to swarming, despite adopting a charac-

teristic rounded morphology. Here we show that pioneer neutrophils are propidium iodide negative,

suggesting that the plasma membrane remains intact, something that has been difficult to conclu-

sively show in other models (Lämmermann et al., 2013; Uderhardt et al., 2019). Interestingly, the

distinct release of large balloon-like structures, which become positive for propidium iodide, have

been recently identified in zebrafish models of laser-induced tissue injury (Poplimont et al., 2020),

as well as mechanical tissue injury (Manley et al., 2020). Our data build on this observation, identify-

ing that extracellular DNA is released from pioneer and scouting neutrophils during early swarming,

in a catapult-like fashion reminiscent of mammalian NET release.

Figure 5 continued

extracellular DNA of NETs was detected using SYTOX (green). Graphs display total magenta and green pixel values. Data are mean � SD for 10

random fields of view/timepoint.
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Figure 6. Neutrophils release histones early in swarm formation. (A) Schematic of the lyz:H2A.mCherry construct made by Gateway cloning, which

includes the neutrophil specific promoter (lyz), and the histone H2A gene fused to the fluorescent protein mCherry flanked by Tol2 arms to aid

transgenesis. (B, C) Representative image of the stable TgBAC(mpx:GFP)i114;Tg(lyz:H2A.mCherry)sh530 transgenic line. (B) Image shows the caudal

haematopoietic tissue of a 3 dpf sh530 larvae, where the H2A mCherry transgene is expressed in neutrophils. (C) 40� confocal image of the transgenic

line, showing neutrophil histones labelled by the transgene. (D) Representative example of NET release from swarming neutrophils from six larvae.

Time course of Tg(mpx:GFP)i114;Tg(lyz:h2az2a-mCherry,cmlc2:GFP)sh530 larva showing a single neutrophil and histone H2A (white arrows), undergoing

NET-like morphological changes where histones are released from the centre of swarms in cytoplasmic vesicles. Time stamps are hh:mm:ss relative to

time post injury. (E) A second example timelapse showing that histones are extruded from the nucleus during the cytoplasmic balloon release.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Validation of zebrafish histone transgenic lines.

Figure supplement 1—source data 1. Numerical data for the graph of Figure 6—figure supplement 1A.
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Figure 7. Inhibition of NET components, gasdermin D, neutrophil elastase, and myeloperoxidase decrease swarm frequency. (A) The percentage of

larvae with neutrophil swarms at 3 hr post injury after gasdermin inhibitor, LDC7559, or DMSO treatment. Data shown are mean with a minimum of 120

larvae analysed in each group, accumulated from three biological replicates. Joined data represent each individual experiment using larvae from the

same zebrafish lay over the two treatment groups (Figure 7—source data 1). (B) The percentage of larvae with neutrophil swarms at 4 hr post injury

after neutrophil elastase inhibitor, MeOSu-AAPV-CMK, treatment, or DMSO control. Data shown are mean, with greater than 73 larvae per group over

three biological replicates. Joined data represent each individual experiment using larvae from the same zebrafish lay over the two treatment groups

(Figure 7—source data 2). (C) Representative fluorescence micrographs of the double transgenic Tg(mpx:GFP);Tg(lyz:nfsb-mCherry) after

myeloperoxidase knockdown using CRISPR-Cas9 with tyrosinase knockdown as a negative control. The myeloperoxidase guide RNA targeted the

promoter of mpx, therefore knocking down expression of green mpx:GFP while leaving lyz:mCherry intact. White arrowhead indicates the presence of a

swarm at the wound (white dashed line). (D) The percentage of larvae with neutrophil swarms at 4 hr post-injury after mpx knockdown by CRISPR-Cas9

or tyr control. Data shown are mean, with a minimum of 115 larvae analysed in each group, accumulated from three biological replicates (Figure 7—

source data 3). Joined data represent each individual experiment using larvae from the same zebrafish lay over the two treatment groups. p-values in

(A), (C), and (D) are generated from unpaired t-tests.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Numerical data for the graph of Figure 7A.

Source data 2. Numerical data for the graph of Figure 7B.

Source data 3. Numerical data for the graph of Figure 7D.

Figure supplement 1. ROS inhibition by DPI and swarm frequency.
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Here we show that zebrafish neutrophils can release NET components using mammalian NET-

inducing stimuli PMA and calcium ionophore, as well as more physiologically relevant microbial

infection. We confirm that zebrafish NETs contained chromatin and myeloperoxidase, providing

some of the first evidence that zebrafish neutrophils can release NETs and contain multiple compo-

nents observed in mammalian systems (Brinkmann et al., 2004; Chen et al., 2021).

Whilst imaging of NETs in vivo is advancing, the understanding of the kinetics of DNA release

from neutrophils remains limited. Here, we have developed in vivo zebrafish reporter transgenic lines

for live imaging of chromatin release using fluorescent protein-tagged histones. Imaging data from

other groups corroborate our identification that NET releasing neutrophils undergo distinct morpho-

logical changes involving the stretching of neutrophil cytoplasm and production of large extracellular

DNA containing vesicles and cellular debris (Tanaka et al., 2014; Pilsczek et al., 2010). Following

LPS stimulation, murine neutrophils expel extracellular DNA in large, balloon-like cytoplasmic

vesicles, similar to our observations in zebrafish (Tanaka et al., 2014). In human neutrophils infected

with S aureus, vesicles containing DNA are released into the extracellular space where they lyse and

release their contents to form NETs, consistent with our observation that cytoplasmic balloon-like

structures containing extracellular DNA are released by neutrophils (Pilsczek et al., 2010). The cata-

pult-like release of DNA and histones by neutrophils observed in our experiments is consistent with

in vitro evidence that DNA release by eosinophils is catapult-like in its expulsion (Yousefi et al.,

2008). We show that zebrafish NETs contain granular proteins consistent with those observed in

mammalian neutrophils, adding to the evidence that NET release is found in zebrafish in vivo

(Johnson et al., 2018; Palić et al., 2007). Our experiments enable the morphology of NET-releasing

neutrophils to be observed in vivo, in real time, providing new insight into the morphological

changes associated with NET release.

We set out to determine the mechanism of NET release in relation to swarming. The

gold standard for NET depletion in vitro is the addition of exogenous DNase to degrade NET DNA.

Administration of a range of DNase1 concentrations by incubation in the water of larvae was highly

toxic to live zebrafish (data not shown); hence, we were not able to assess the role of extracellular

DNA in swarm formation in this way. We therefore targeted components of the NETosis pathway to

investigate the relationship between NET release and swarming. NET release is mediated by MPO

activation, and release of NE into the cytoplasm. This leads to chromatin decondensation and

nuclear membrane breakdown, resulting in the mixing of nuclear chromatin with granular and cyto-

plasmic proteins. DNA release in NET formation (Chen et al., 2018; Sollberger et al., 2018), and

other forms of lytic release (e.g. pyroptosis; Chen et al., 2021), requires gasdermin proteins that

forms pores in the nuclear and plasma membranes to allow lytic release of intracellular components.

Humans possess six isoforms (GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and PJVK) and in zebra-

fish pjvk, gsdmea, and gsdmeb have been identified as orthologues. A recent zebrafish study identi-

fied that activation of neutrophil pyroptosis is essential for NET formation during hemolysin-

overexpressing E. piscicida (EthA+) E. piscicida infection and that this is mediated by the caspy2-

GSDMEb axis (Chen et al., 2021). By inhibiting pore-forming gasdermins, we found that the swarm-

ing response was reduced linking gasdermin-mediated chromatin release to neutrophil swarming in

vivo. Neutrophil elastase-deficient mice have defective NET formation, although some reports sug-

gest that they can still be made in response to strong stimuli such as PMA (Martinod et al., 2016).

Humans have a large repertoire of elastase proteins (CELA1, CELA2A, CELA2B, CELA3A, CELA3B,

ELANE, AZU1, CTRC, and PRTN3. CELA1 to CELA3B), of which PRTN3, ELANE, and AZU1 are in

neutrophils (Wright et al., 2013). Zebrafish have orthologues of cela, ela, and prtn3 genes, but have

multiple copies of each annotated on the genome (cela1.1, cela1.2, cela1.3, cela1.4, cela1.5, cela1.6,

ela2, and ela2l), rendering genetic approaches unfeasible. By targeting NE pharmacologically, we

identified a reduction in neutrophil swarming in zebrafish, further supporting a functional role of NE

in the swarming response. These findings contribute important in vivo data to growing evidence that

NETs contribute to neutrophil swarming. NET release is observed at sites of alum injection-associ-

ated with neutrophil swarming in mice (Stephen et al., 2017), and NET formation facilitates neutro-

phil aggregation at sites of fungal infection (Byrd et al., 2013). Neutrophil swarming in zebrafish has

recently been shown to be mediated by a sustained calcium alarm signal following sensing of danger

signals including ATP, which are propagated by neutrophils via Cx43 connexins (Poplimont et al.,

2020). Deciphering the intricate modulation of NET release, danger signal release, and calcium sig-

nalling in swarm formation requires further mechanistic studies in complementary models.
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Interestingly, inhibition of caspases did not appear to contribute to swarm frequency in our zebra-

fish studies. Our images and videos strongly suggest a form of lytic cell death of pioneer neutrophils

is occurring, leading to cell debris and death of the cell body, not consistent with some reports of

vital NET formation in other models (Tong et al., 2019; Lelliott et al., 2020; Desai et al., 2016).

However, the mode of this cell death remains undefined and challenging to address in vivo due to

lack of available tools to define this. In mammalian systems an important, but not critical, player in

the onset of NET forming pathways is NADPH-oxidase-induced reactive oxygen species (ROS)

release (Papayannopoulos et al., 2010; Fuchs et al., 2007). ROS inhibition via DPI did not decrease

swarm frequency in the zebrafish model. This is consistent with recent findings that DPI does not

inhibit the formation of neutrophil swarms in synchronised in vitro swarm arrays. However, DPI did

decrease swarm stability around foci of fungal infections in swarm arrays (Hopke et al., 2020); there-

fore, understanding the roles of NADPH-oxidase in the different phases of swarming requires further

investigation in vivo.

Our findings in this study implicate a role for endogenous pioneer neutrophil NET release in

swarming. Our zebrafish data demonstrate that it is possible to dissect mechanisms of NET and

swarm formation in vivo, mechanisms that have been challenging to uncover in endogenous neutro-

phils in mammalian models. Understanding why swarms are initiated is important for understanding

the signals that control the coordination of neutrophil migration within interstitial tissue, which ulti-

mately could lead to the identification of novel therapeutic avenues to target excessive inflammation

for the treatment of chronic inflammatory disease.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene (Danio rerio) TgBAC
(mpx:EGFP)i114

Renshaw et al.,
Blood 2011

i114Tg
RRID:ZFIN_ZDB-ALT-070118-2

Transgenic

Gene (Danio rerio) Tg(lyz:nfsb-
mCherry)sh260

Buchan et al., 2019 sh260Tg
RRID:ZFIN_ZDB-ALT-190925–14

Transgenic

Gene (Danio rerio) TgBAC(mpx:
GAL4-VP16)sh256

Prajsnar et al.,
Infection and
Immunity, 2013

sh256Tg
RRID:ZFIN_ZDB-ALT-131203–1

Transgenic

Gene (Danio rerio) Tg(UAS:kaede)s1999t Isles et al., 2019a s1999tTg
RRID:ZFIN_ZDB-ALT-070314–1

Transgenic

Gene (Danio rerio) TgBAC(mpx:CFP-
DEVD-YFP)sh237

Robertson et al., 2016 sh237Tg
RRID:ZFIN_ZDB-ALT-161012–5

Transgenic

Gene (Danio rerio) Tg(lyz:h2az2a-
mCherry,cmlc2:GFP)sh530

This paper sh530Tg Transgenic

Gene (Danio rerio) Tg(mpx:H2Bcerulean-
P2A-mKO2CAAX)gl29

Manley et al., Journal of
Leukocyte Biology and
This paper

gl29Tg
RRID:ZFIN_ZDB-ALT-151201–2

Transgenic

Gene (Danio rerio) Tg(lyz:dsRed)nz50 Hall et al., BMC
Developmental
Biology 2019

nz50Tg
RRID:ZFIN_ZDB-ALT-071109–3

Transgenic

Genetic reagent
(Danio rerio)

ltah4 CRISPR-
Cas9 guide RNA

This paper ltah4 CRISPR AGGGTCTGAAACTGGAGTCA(TGG)

Genetic reagent
(Danio rerio)

blt1 CRISPR-
Cas9 guide RNA

This paper blt1 CRISPR CAATGCCAATCTGATGGGAC(AGG)

Genetic reagent
(Danio rerio)

myeloperoxidase
CRISPR-Cas9 guide RNA

This paper mpx CRISPR GTTGTGCTGAATGTATGCAG(CGG)

Genetic reagent
(Danio rerio)

tyrosinase CRISPR-
Cas9 guide RNA

Isles et al.,
Frontiers in
Immunology, 2019

tyr CRISPR GGACTGGAGGACTTCTGGGG(AGG)

Sequence-
based reagent

lta4h_fw This paper PCR primer GTGTAGGTTAAAATCCATTCGCA

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Sequence-
based reagent

lta4h_rev This paper PCR primer GAGAGCGAGGAGAAGGAGCT

Sequence-
based reagent

blt1_fw This paper PCR primer GTCTTCTCTGGACCACCTGC

Sequence-
based reagent

blt1_rev This paper PCR primer ACACAAAAGCGATAACCAGGA

Recombinant
DNA reagent

p5E-MCS lyz Kwan et al., 2007 Plasmid Gateway compatible plasmid

Recombinant
DNA reagent

p3E-PolyA Kwan et al., 2007 Plasmid Gateway compatible plasmid

Recombinant
DNA reagent

pDestTol2CG2 Kwan et al., 2007 Plasmid Gateway destination vector

Recombinant
DNA reagent

pME-h2a-mCherry This paper Plasmid Gateway compatible plasmid

Strain, strain
background
(Staphylococcus aureus)

SH1000
pMV158mCherry

Pollitt et al., 2018 SH1000 Transgenic

Antibody anti-mpx
(rabbit polyclonal)

GeneTex GeneTex: GTX128379 (1:200)

Antibody anti-eGFP
(chicken polyclonal)

Abcam Abcam: ab13970 (1:2000)

Antibody anti-rabbit
Alexafluor 647
(goat polyclonal)

Jackson
ImmunoResearch

Jackson Immuno
Research: 111-605-045

(1:1000)

Antibody anti-chicken
Alexafluor 488
(goat polyclonal)

Jackson
ImmunoResearch

Jackson Immuno
Research: 103-545-155

(1:1000)

Chemical
compound, drug

zVAD-fmk Santa Cruz
Biotechnology

Z-VAD-FMK
(CAS 187389-52-2)

Chemical
compound, drug

LDC7559 MedChem Express CAS No.: 2407782-01-6

Chemical
compound, drug

MeOSu-AAPV-CMK Sigma-Aldrich CAS No.: 65144-34-5

Chemical
compound, drug

Diphenyleneiodonium
chloride (DPI)

Sigma-Aldrich CAS No.: 4673-26-1

Software, algorithm NIS elements Nikon https://www.microscope.
healthcare.nikon.com/
products/software/nis-elements

Software, algorithm MatLab MathWorks https://www.mathworks.com/
products/matlab.html

Software, algorithm BASiCz Blood atlas of single
cells in zebrafish

https://www.sanger.
ac.uk/tool/basicz/

Software, algorithm ChopChop ChopChop http://chopchop.cbu.uib.no/

Software, algorithm Primer3 ELIXIR https://primer3.ut.ee/

Software, algorithm Volocity Quorum Technologies https://quorum
technologies.com/
volocity

Other lta4h Synthetic SynRNA Merck lta4h CRISPR guide RNA AGGGTCTGAAACTGGAGTCA(TGG)

Other blt1 Synthetic SynRNA Merck blt1 CRISPR guide RNA CAATGCCAATCTGATGGGAC(AGG)

Other mpx Synthetic SynRNA Merck mpx CRISPR guide RNA GTTGTGCTGAATGTATGCAG(CGG)

Other tyr Synthetic SynRNA Merck tyr CRISPR guide RNA GGACTGGAGGACTTCTGGGG(AGG).

Other tracrSynthetic SynRNA Merck tracr CRISPR RNA
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Zebrafish husbandry and ethics
To study neutrophils during inflammation, TgBAC(mpx:EGFP)i114, Tg(lyz:nfsb-mCherry)sh260,

TgBAC(mpx:GAL4-VP16)sh256Tg(UAS:kaede)s1999t, TgBAC(mpx:CFP-DEVD-YFP)sh23, TgBAC

(mpx:GFP)i114;Tg(lyz:h2az2a-mCherry,cmlc2:GFP)sh530 and Tg(mpx:H2Bcerulean-P2A-mKO2CAAX)

gl29 zebrafish larvae were bred to produce larvae. All zebrafish were raised in the Biology Services

Aquarium (BSA) at the University of Sheffield in UK Home Office-approved aquaria or in the Fish-

Core aquarium at Monash University, Melbourne, Australia, and were maintained following standard

protocols (Nu€sslein-Volhard and Dahm, 2002). Adult fish were maintained at 28˚C with a continuous

re-circulating water supply and a daily light/dark cycle of 14/10 hr. All procedures were performed

on larvae less than 5.2 dpf, which were therefore outside of the Animals (Scientific Procedures) Act,

to standards set by the UK Home Office. Animal experiments performed in Australia conformed to

‘Australian code for the care and use of animals for scientific purposes (2013)’ and were undertaken

under protocol MAS/2010/18 approved by the MARP2 Animal Ethics Committee at Monash

University.

Tail fin transection assay
To induce an inflammatory response, zebrafish larvae at 2 or 3 dpf were anaesthetised in 4% Tricaine

(0.168 mg/ml; Sigma-Aldrich) in E3 media and visualised under a dissecting microscope. For linear

tail fin injury, tail fins were transected consistently using a scalpel blade (5 mm depth, WPI) by slicing

immediately posterior to the circulatory loop, ensuring the circulatory loop remained intact as previ-

ously described (Renshaw et al., 2006). For high-resolution imaging, tail fins were nicked by placing

the tip of the scalpel blade directly below the end of the caudal vein and slicing through the ventral

fin, such that the entire wound site could be observed using a 40� objective.

Widefield microscopy of transgenic larvae
For neutrophil tracking experiments, injured 3 dpf mpx:GFP larvae were mounted in a 1% low-melt-

ing-point agarose solution (Sigma-Aldrich) containing 0.168 mg/ml tricaine immediately following

tail fin transection. Agarose was covered with 500 ml of clear E3 solution containing 0.168 mg/ml tri-

caine to prevent dehydration. Time lapse imaging was performed from 0.5 to 5 hr post-injury with

acquisition every 30 s using 10 z-planes were captured per larvae over a focal range of 100 mm using

an Andor Zyla five camera (Nikon) and a GFP-specific filter with excitation at 488 nm. Maximum

intensity projections were generated by NIS elements (Nikon) to visualise all 10 z-planes.

Confocal microscopy of transgenic larvae
For visualising neutrophil swarming at high magnification, larvae were mounted in a 1% low melting

point agarose solution (Sigma-Aldrich) containing 0.168 mg/ml tricaine for imaging immediately

after tail fin transection. Agarose was covered with 2000 ml of clear E3 solution containing 0.168 mg/

ml tricaine to prevent dehydration. Imaging was performed from 30 min post injury using a 20� or

40� objective on an UltraVIEWVoX spinning disk confocal laser imaging system (Perkin Elmer). Fluo-

rescence for GFP was acquired using an excitation wavelength of 488 nm and emission was detected

at 510 nm, fluorescence for DAPI was acquired using an excitation wavelength of 405 nm and emis-

sion was detected at 440 nm, and fluorescence for mCherry was acquired using 525 nm emission

and detected at 640 nm. Images were processed using Volocity software.

Tracking assays
Tracking of GFP-labelled neutrophils was performed using NIS Elements (Version 4.3) with an addi-

tional NIS elements tracking module. A binary layer was added to maximum intensity projections to

detect objects. Objects were smoothed, cleaned, and separated to improve accuracy. A size restric-

tion was applied where necessary to exclude small and large objects which did not correspond to

individual neutrophils.

Distance–time plots
For wound plots, the distances from the wound were obtained by processing neutrophil tracks under

the assumption that the tail fin wound is a straight line parallel to the x-axis of the greyscale image.

Neutrophil tracking data was extracted from NIS elements and imported into MatLab software. For
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distance to pioneer plots, the pioneer centre was set as a reference point and tracking was per-

formed to determine neutrophil distance to the reference point. Tracks were extracted from NIS ele-

ments and plotted manually using GraphPad Prism version 8.0.

Neutrophil-specific expression of zebrafish genes
Gene expression was assessed using an RNA sequencing database from fluorescence-activated cell

sorting (FACS) sorted GFP-positive cells from 5 dpf zebrafish (Rougeot et al., 2019) (data deposited

on GEO under accession number GSE78954). RPKM values for genes of interest were extracted. For

single-cell analysis, gene expression values were extracted from the BASiCz (Blood atlas of single

cells in zebrafish) cloud repository (Athanasiadis et al., 2017). Cells of the neutrophil lineage were

analysed for expression of LTB4 signalling components.

CRISPR/Cas9 reagents
Synthetic SygRNA (crRNA and tracrRNA) (Merck) in combination with cas9 nuclease protein (Merck)

was used for gene editing. Transactivating RNAs (tracrRNA) and gene-specific CRISPR RNAs (crRNA)

were resuspended to a concentration of 20 mM in nuclease-free water containing 10 mM Tris–HCl

pH 8. SygRNA complexes were assembled on ice immediately before use using a 1:1:1 ratio of

crRNA:tracrRNA:Cas9 protein. Gene-specific crRNAs were designed using the online tool CHOP-

CHOP (http://chopchop.cbu.uib.no/). We used the following crRNA sequences to target the ATG

region of blt1 and lta4h, where the PAM site is indicated in brackets: lta4h: AGGGTCTGAAAC

TGGAGTCA(TGG), blt1: CAATGCCAATCTGATGGGAC(AGG). crRNA for mpx targets the promotor

region, mpx: GTTGTGCTGAATGTATGCAG(CGG). Tyrosinase control crRNA tyr: GGACTGGAG-

GACTTCTGGGG(AGG).

Microinjection of SygRNA into embryos
A 1 nl drop of SygRNA:Cas9 protein complex was injected into mpx:GFP embryos or double trans-

genic mpx:GFP;lyz:nfsB-mCherry embryos at the one-cell stage. Embryos were collected at the one

cell stage and injected using non-filament glass capillary needles (Kwik-Fil Borosilicate Glass Capillar-

ies, World Precision Instruments (WPI), Herts, UK). RNA was prepared in sterile Eppendorf tubes. A

graticule was used to measure 0.5 nl droplet sizes to allow for consistency of injections. Injections

were performed under a dissecting microscope attached to a microinjection rig (WPI) and a final vol-

ume of 1 nl was injected.

Genotyping and melting curve analysis
Site-specific mutations were detected using high-resolution melting (HRM) analysis, which can reli-

ably detect CRISPR-Cas9-induced indels in embryos (Samarut et al., 2016; Parant et al., 2009).

Genomic DNA extraction was performed on larvae at 2 dpf. Larvae were placed individually in 0.2

ml PCR tubes in 90 ml 50 mM NaOH and boiled at 95˚ for 20 min. Ten microlitre Tris–HCL ph8 was

added as a reaction buffer and mixed thoroughly. Gene-specific primers were designed using the

Primer three web tool (http://primer3.ut.ee/). Sequences were as follows: lta4h_fw: CGTGTAGG

TTAAAATCCATTCGCA lta4h_rev: GAGAGCGAGGAGAAGGAGCT blt1_fw: GTCTTCTCTGGAC-

CACCTGC blt1_rev: ACACAAAAGCGATAACCAGGA. HRM analysis (Bio-Rad) PCR were made with

5 ml Sybr Green master mix (Thermo Fisher), 0.5 ml of each primer (10 mM), 1 ml gDNA, and 3 ml

water to make a final reaction volume of 10 ml. PCR were performed in a LightCycler instrument

(Bio-Rad) using 96-well plates. The two-step reaction protocol was as follows: 95˚C for 2 min, fol-

lowed by 35 cycles of 95˚C for 10 s, 58˚C for 30 s, 72˚C for 20 s. The second stage of the protocol

was 95˚C for 30 s, 60˚C for 60 s, 65˚C for 10 s. The temperature then increased by 0.02˚C/s until 95˚C

for 10 s. Melt curves were analysed using Bio-Rad software version 1.2. Successful detection of

CRISPR-Cas9-induced indels is illustrated in Figure 1—figure supplement 4B. Mutagenesis frequen-

cies of 91% and 88% were detected for lta4h and blt1, respectively.

Preparation of microbial agents
Staphylococcus aureus strain SH1000 pMV158mCherry was used (Pollitt et al., 2018). An overnight

bacterial culture was prepared by growing 1 cfu of SH1000 pMV158mCherry in 10 ml of bovine heart

medium (BHI) (Sigma-Aldrich, lot number 53286) and 10 ml of 5 mg/ml tetracycline (Sigma-Aldrich)
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for 16–18 hr at 37˚C. Five hundred microlitre of this overnight culture was then aliquoted into 50 ml

of BHI (Sigma Aldrich, 53286) infused with 50 microlitre of 5 mg/ml tetracycline (Sigma-Aldrich) and

grown until an optical density at 600 nm of 0.5 was obtained. This culture was pelleted and resus-

pended in PBS (pH 7.4) (Fisher Scientific, lot number 1282 1680) to a concentration of 2500 cfu/nl.

Phorbol myristate acetate (PMA, Sigma; stock 1 mg/ml) and calcium ionophore (CaI, Sigma; stock 1

mg/ml) were prepared in dimethyl sulfoxide (DMSO, Sigma) and stored at �70˚C.

Otic vesicle injections
S. aureus: 2500 cfu of Sh1000 pMV158mCherry was injected into the otic vesicle of 2 dpf Tg(mpx:

GFP)i114 larvae. Injections were performed under a dissecting microscope attached to a microinjec-

tion rig (WPI) and a final volume of 1 nl was injected. For analysis of swarm volumes, larvae were

fixed in 4% paraformaldehyde in PBS and imaged using an UltraVIEWVoX spinning disk confocal

laser imaging system (Perkin Elmer).

FRET imaging of neutrophil apoptosis
Neutrophil apoptosis was studied using our transgenic TgBAC(mpx:CFP-DEVD-YFP)sh237

(Robertson et al., 2016) zebrafish line, which expresses a genetically encoded FRET biosensor con-

sisting of a caspase-3 cleavable DEVD sequence flanked by a CFP YFP pair (Tyas et al., 2000), under

the neutrophil-specific mpx promoter. A loss of FRET signal in this system provides a read out of

apoptosis specifically in neutrophils in vivo in real time. To visualise apoptotic events in the context

of neutrophil swarming, 3 dpf TgBAC(mpx:CFP-DEVD-YFP)sh237 larvae were injured and mounted

in a 1% agarose solution containing 0.168 mg/ml tricaine and covered with 500 ml of a clear E3 solu-

tion containing tricaine to prevent dehydration. FRET imaging was performed from 30 min post-

injury for 5 hr using a 20� objective lens on an UltraVIEWVoX spinning disk confocal laser imaging

system (Perkin Elmer) with acquisition every 2 min. Ten z-planes were captured per larvae over a

focal range of 100 mm using the following filters: a donor CFP channel (440 nm for excitation, 485

nm for detection), an acceptor YFP channel (514 nm for excitation and 587 nm for detection), and a

FRET channel (440 nm for excitation and 587 nm for detection). An Ultraview dichroic mirror passes

405,440,515,640 was used to increase imaging speed using these filter blocks. Volocity software was

used to calculate normalised FRET values (nFRET). To compensate for the bleed through of the CFP

and YFP fluorophores into the FRET channel, FRET bleed through constants were calculated. Control

samples containing HeLa cells transfected with CFP alone or YFP alone were imaged using the same

settings used for data acquisition of the mpx:FRET zebrafish reporter line. ROIs were drawn around

a population of cells in the frame and Volocity software calculated FRET bleed through values as the

mean intensity of the recipient channel (FRET) divided by the mean intensity of the source (CFP or

YFP). These FRET constants were then used by Volocity to calculate a normalised FRET value. Neu-

trophil apoptosis was observed by overlaying the YFP and nFRET channels.

Generation of histone transgenic reporter line
For the generation of H2A transgenic reporter line, the Gateway cloning toolkit was used to gener-

ate a construct, where by the neutrophil-specific lyzozyme C promoter (lyz) drives mCherry expres-

sion fused to the zebrafish H2az2a protein. The gateway components used to assemble this were a

5’ vector p5E-MCS lyz containing 6.6 kb of the lysozyme C promoter (Kwan et al., 2007), a middle

entry vector pME-h2a-mCherry containing zebrafish histone H2az2a fused to mCherry, and a 3’ vec-

tor containing a polyadenylation site p3E-polyA. The final construct containing Tol2 arms and green

heart marker (cmlc2:GFP) for easy recognition of successful transgenesis was created by an LR reac-

tion combining the three vectors with the destination vector pDestTol2CG2. The final construct was

microinjected (50 ng/ml), along with tol2 transposase mRNA (50 ng/mL), into one-cell stage embryos

of the transgenic line TgBAC(mpx:GFP)i114. A stable double transgenic line TgBAC(mpx:GFP)i114;

Tg(lyz:h2az2a-mCherry,cmlc2:GFP)sh530 was generated.

Kidney neutrophil preparation
Kidney(s) from adult zebrafish aged 3–6 months were dissected as previously described (Palić et al.,

2007; Lieschke et al., 2001), pooled in HBSS, homogenised, and pelleted by centrifugation (250 g,

15 min). Pellets were gently resuspended in 6 ml HBSS and layered on 2 ml of lymphocyte
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separation medium 1078 (Mediatech; CellGro, AK) in a 15 ml falcon tube and centrifuged (400 g, 30

min). The resulting layer of leukocytes was removed with a 1 ml sterile pipette and transferred to a

15 ml tube. HBSS was added to a total volume of 4 ml and leukocytes collected by centrifugation

(400 g, 15 min). The leukocyte pellet was resuspended in 1 ml HBSS/kidney, and cell yield assessed

using a haemocytometer. Preparations yielded 1.1 ± 0.6 � 106 cells (n = 15 independent prepara-

tions) and were 88.7 ± 6.2% pure (n = 9 random fields).

In vitro NET release assay
Two hundred microlitre purified kidney neutrophils from Tg(lyz:dsRed)nz50 zebrafish cultured in

HBSS were plated and left for 30 min to adhere before stimulation with phorbol myristate acetate

(PMA) or calcium ionophore solutions containing SYTOX-green. SYTOX-green (Molecular Probes,

Eugene) was prepared immediately before use. Stocks were diluted in HBSS for each assay. Final

concentrations in assays were as follows: calcium ionophore 100 mg/ml, PMA 10 mg/ml, and SYTOX-

green 1 mM. As microbial stimuli, preparations of S. aureus and C. albicans were used (generous gift

of Dr A. Peleg, Monash University). Cells were mounted under coverslips for imaging at time points

indicated in figures up to 120 min post-stimulation.

Staining and immunohistochemistry
Propidium iodide: Live 3 dpf mpx:GFP larvae were incubated in 1% LMP agarose solution containing

0.1% propidium iodide (Sigma-Aldrich) immediately following tail fin transection. Pearson’s colocali-

sation analysis was performed by drawing a region of interest around neutrophil cytoplasmic vesicles

using Volocity software. DAPI: For DNA staining of sh530 larvae, 2 dpf larvae were fixed in 1 ml of

4% paraformaldehyde (PFA) at room temperature for 30 min, washed in PBST, and transferred to

100% MeOH overnight at �20˚C. Samples were washed in PBST twice before permeabilisation using

proteinase K (10 mg/ml) for 20 min at room temperature. Samples were fixed for 20 min in 4% PFA

at room temperature and washed twice in PBST. Samples were stained in a 0.1% DAPI (Sigma

Aldrich) solution in 1� PBS for 20 min and kept in the dark. Samples were washed in PBST, and

imaging was performed. Immunohistochemistry: primary antibodies were rabbit anti mpx 1:200

(GeneTex 128379) and chicken anti-EGFP 1:2000 (Abcam ab13970). Secondary antibodies were

used 1:1000 from Jackson ImmunoResearch (goat anti-rabbit Alexafluor 647 and goat anti-chicken

Alexafluor 488). For antibody staining, paraformaldehyde-fixed (2%) whole embryos were washed

twice in PBS-Tx for 30 min and incubated with primary antibody overnight at 4˚C. Samples were

washed three times in PBS-Tx for 30 min and incubated at 4˚C overnight in secondary antibodies.

Samples were washed (PBS-Tx, 30 min, three times; PBS, 10 min once) and imaged on Zeiss LSM710

and Leica SP5 microscopes.

Photoconversion of endogenous pioneer neutrophils
Photoconversion assays were performed using larvae expressing the photoconvertible protein Kaede

under the neutrophil-specific mpx promoter: TgBAC(mpx:GAL4-VP16)sh256; Tg(UAS:Kaede)s1999t

(Elks et al., 2011). At 3 dpf larvae were anaesthetised and injured using the minor tail fin nick and

mounted immediately in a 1% LMP agarose solution containing tricaine. At 10 min post-injury, a

region of interest was drawn around the neutrophil nearest to the injury site for photoconversion

from green to red fluorescence. Photoconverting of Kaede-labelled neutrophils at the wound site

was performed using an UltraVIEWPhotoKinesis device (Perkin Elmer and Analytical Sciences) on an

UltraVIEWVoX spinning disk confocal laser imaging system (Perkin Elmer). The photokinesis device

was calibrated using a coverslip covered in photobleachable substrate (Stabilo Boss, Berks, UK). Pho-

toconversion was performed using a 405 nm laser at 40% using 120 cycles, 250 pk cycles, and 100

ms as previously published (Elks et al., 2011). Successful photoconversion was detected through

loss of emission detected following excitation at 488 nm and gain of emission following 561 nm exci-

tation. Following photoconversion, time lapse imaging was performed from 20 min post-injury for 4

hr. Photoconverted neutrophils that became swarm-initiating pioneer neutrophils were analysed.

Caspase inhibition
Tailfin transection was performed on 2dpf TgBAC(mpx:GFP)i114 zebrafish larvae.
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At 2 hpi, larvae without an inflammatory response were excluded. zVAD-fmk (Santa Cruz Biotech-

nology) was then added to the fish water at a concentration of 100 mM. Neutrophil swarms were

assessed at 6 hpi. Treatment groups of inhibitor experiments were blinded to the experimenter until

post-analysis.

Gasdermin D inhibition
1 dpf TgBAC(mpx:GFP)i114 zebrafish larvae were incubated for 21 hr with LDC7559 (Medchem

express) at 10 mM in fish water. Tailfin transections were performed at 2 dpf with neutrophil swarms

assessed at 3 hpi.

Neutrophil elastase inhibition
2 dpf TgBAC(mpx:GFP)i114 zebrafish larvae were injected with 1 nl of 80 mM MeOSu-AAPV-CMK

(Sigma-Aldrich) via the Duct of Cuvier. Tailfin transections were performed 1 hr post-injection, and

neutrophil swarms were assessed at 3 hpi.

ROS inhibition
2 dpf TgBAC(mpx:GFP)i114 zebrafish larvae were incubated in diphenyleneiodonium chloride (DPI,

Sigma-Aldrich) for either 4 hr pre-injury or 1 hr post-injury at 10 mM in fish water. Tailfin transections

were performed and neutrophil swarms assessed at 3 hpi, with neutrophil counts at the tailfin per-

formed at 4 hpi.

Statistical analysis
Data were analysed using GraphPad Prism version 8.0. Unpaired or paired t-tests were used for

comparisons between two groups, and one-way or two-way ANOVA with appropriate post-test

adjustment was used for comparisons of three or more groups.
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