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Behavioural modification effects for particle-laden turbulent flows are developed and assessed through high-fidelity modelling 

using an implementation of the mirroring ghost-cell based immersed boundary method in conjunction with direct numerical 

simulation. The continuous phase uses the open-source spectral element method-based solver, Nek5000. A dynamic form of 

the mirroring immersed boundary method is described which also solves for interparticle attraction and repulsion forces 

allowing for nontrivial collision outcomes such as agglomeration. The solid-phase solver is validated against empirical drag 

coefficient data as well as spherical bouncing experiments with excellent agreement obtained at low particle Reynolds numbers. 

Periodic boxes of homogeneous isotropic turbulence are generated using the linear forcing method at 𝑅𝑅𝑒𝑒𝜆𝜆 = 29, 51 and 120. 

Ensembles of structure-resolved binary particle collisions are then studied within these boxes, considering the variation of six 

key mechanical and chemical parameters. These are the coefficient of restitution, Hamaker constant, surface charge potential, 

inverse Debye length, temperature and Reynolds number. It is established that the coefficient of restitution, inverse Debye 

length and Reynolds number have the greatest impact on the resulting particle motion and interaction by considering probability 

density functions of intersurfacial distance and relative particle velocities. Suggestions for real-world procedures which modify 

these parameters in order to either encourage or discourage particle interaction and potential agglomeration are discussed. 

NOMENCLATURE 

ACRONYM DEFINITION 

DLVO Derjaguin and Landau,Verwey and Overbeek 
DNS Direct numerical simulation 
GLL Gauss-Lobatto-Legendre 
IB Immersed boundary 

IBM Immersed boundaries method 
LPT 
PDF 

Lagrangian particle tracking 
Probability density function 

SEM Spectral element method 

 

SYMBOL DEFINITION Θ Reduced surface potential 𝜃𝜃 Second Euler angle 𝜅𝜅 Inverse Debye screening length 𝜆𝜆 Taylor microscale 𝜇𝜇𝐹𝐹 Fluid dynamic viscosity 𝜈𝜈𝐹𝐹 Fluid kinematic viscosity 
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𝜌𝜌𝐹𝐹 Fluid density 𝝉𝝉 Deviatoric stress tensor 𝝉𝝉𝑓𝑓 Deviatoric stress tensor interpolated onto face 𝜙𝜙 First Euler angle 𝜓𝜓 Third Euler angle 𝝎𝝎𝑃𝑃 Angular velocity vector of particle 𝑨𝑨 Orientation matrix 𝐴𝐴𝐿𝐿𝐹𝐹 Linear forcing parameter 𝐴𝐴 Hamaker constant 𝐴𝐴𝑓𝑓 Surface area of face 𝐶𝐶𝐷𝐷 Drag coefficient 𝑑𝑑𝑝𝑝 Particle diameter 𝑑𝑑𝑡𝑡 Simulation timestep 𝑑𝑑𝑑𝑑 Relative particle velocity 𝑑𝑑𝑑𝑑 Relative separation distance 𝑒𝑒𝑁𝑁 Normal coefficient of restitution 𝒇𝒇𝐿𝐿𝐹𝐹 Linear forcing source term 𝑭𝑭1,2𝐷𝐷𝐿𝐿𝑉𝑉𝐵𝐵 Interparticle total DLVO force 𝑭𝑭1,2𝑉𝑉𝐷𝐷𝑉𝑉 Interparticle total van der Waals force 𝑭𝑭1,2𝐸𝐸𝐷𝐷𝐿𝐿 Interparticle total electric double layer force 𝑭𝑭𝑃𝑃 Pressure force on IB 𝑭𝑭𝑇𝑇 Total hydrodynamic translational force on IB 𝑭𝑭𝑉𝑉 Viscous force on IB 𝑓𝑓 IB mesh face identifier 𝐻𝐻1,2 Inter-surface particle distance 𝐼𝐼 Moment of inertia 𝑘𝑘𝐵𝐵 Boltzmann’s constant 𝑁𝑁 Spectral element method order 𝑁𝑁𝑓𝑓 Total number of faces 𝒏𝒏𝑓𝑓 Unit vector normal to face 𝑛𝑛 Number density of electrolyte ions 𝑚𝑚𝑝𝑝 Mass of particle 𝑝𝑝𝐹𝐹 Fluid pressure 𝑝𝑝𝑓𝑓 Fluid pressure interpolated onto face 𝑸𝑸 Quaternion vector 𝑞𝑞𝑖𝑖 Quaternion component 𝑖𝑖 𝒓𝒓𝐹𝐹 Centre-face particle distance vector 𝑟𝑟𝑃𝑃 Particle radius 𝑅𝑅𝑒𝑒𝜏𝜏 Shear / friction Reynolds number 𝑅𝑅𝑒𝑒𝑃𝑃 Particle Reynolds number 𝑅𝑅𝑒𝑒𝜆𝜆 Taylor microscale Reynolds number 𝑡𝑡 Time 𝑻𝑻𝑉𝑉 Total torque on IB 𝑇𝑇𝐹𝐹 Fluid temperature 𝑈𝑈∞ Free stream velocity 𝒖𝒖𝐸𝐸 Fluid velocity at exterior node 𝒖𝒖𝐹𝐹 Instantaneous fluid velocity 𝒖𝒖′𝐹𝐹 Instantaneous fluid velocity fluctuation 𝒖𝒖�𝐹𝐹 Timewise mean fluid velocity 𝒖𝒖𝐺𝐺 Fluid velocity at ghost node 𝒖𝒖𝐼𝐼𝐵𝐵 Instantaneous velocity of IB surface point 𝒖𝒖𝑃𝑃 Instantaneous particle velocity 𝑢𝑢𝑟𝑟∗ Particle collision relative velocity 𝑢𝑢𝜃𝜃 Collision angle 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅′  Root mean square of velocity fluctuation 𝒙𝒙 Position vector in fluid domain 𝑦𝑦+ Wall distance 
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I. INTRODUCTION 

Particle-laden turbulent flows are ubiquitous in both nature and industry, with most multiphase flows composed of solid-gas or 

solid-liquid phases. Accurate prediction of multiphase flows is of increasing importance to the understanding of many diverse 

processes such as drug targeting in blood flows (Zhang et al., 2020), airborne viral droplet dispersion (Dbouk and Drikakis, 

2020) and hydrodynamic chemical mixing (Nieto and Gimeno, 2019), to name but a few. In such systems, the ability to predict 

complex particle-fluid and particle-particle interaction dynamics relies on an understanding of fundamental micro-scale 

mechanisms. For instance, and of relevance to this work, decontamination of legacy nuclear waste stored in ponds, silos and 

tanks is of great importance and stands as a matter of increasing urgency throughout the nuclear industry, with UK government 

recognising decommissioning of legacy nuclear facilities as a national priority. In facilities around the UK and elsewhere, waste 

suspension flows transport solid-liquid mixtures of legacy material from historic ponds and silos to other interim locations 

where they are safely stored (WMSYM, 2016). However, at present these processes are performed sub-optimally and with 

caution due to a lack of understanding of the flow behaviour of the mixtures in question. In practice, the bulk transportive 

behaviour of interest associated with such activities is often sensitive to many of the material properties and flow conditions. 

The ability to control mechanical and chemical conditions of the system can be obtained through various means. Firstly, the 

injection of additives such salt, nanoparticles and polymers (Lumley, 1973) has been shown, even with extremely low 

concentrations, to have great impact on the continuous phase turbulence properties (Wei and Willmarth, 1992). Furthermore, 

ambient properties can be modified, such as temperature which can be manipulated through heating or cooling, offering 

consequences for both the fluid and particle interaction dynamics (Rousta and Lessani, 2020). This sensitivity is hence capable 

of being exploited, and the variation of such quantities to obtain a desired outcome is referred to as behavioural modification. 

For instance, this could be used to control the extent of long-term particle migration and interaction events in wall-bounded 

flows such as particle dispersion, agglomeration and deposition. These processes are of great importance to nuclear waste 

management and the build-up of corrosion products in reactor fuel assembly coolant flows, as undesirable behaviour such as 

blockages entails high risks (Wang et al., 2020). That said, it is extremely difficult to probe the effects of such variations 

experimentally. 

Computer simulations offer a means to overcome this difficulty by providing the capability to specify and explore the 

impact of a set of precise system parameters. The accuracy and reliability of such calculations is based upon both the order of 

the discretisation techniques used for each phase, as well as the fidelity of the models used to predict the wide array of 

interactions between the phases. In recent decades the former has been developed to the point that, given sufficient 
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computational resources, even the smallest flow structures present in turbulent flows are capable of being resolved (Vreman, 

2016). This is most often referred to as direct numerical simulation (DNS) and has been used extensively in recent years to 

develop knowledge surrounding the fundamental dynamics associated turbulent flows (Hussain et al., 1987; Pope, 2001; 

Piomelli et al., 1988). Considering the latter, precisely modelling micron-scale particle-fluid and particle-particle interactions 

has long been challenging. In most cases, we have been forced to make assumptions surrounding the particulate or droplet 

phase such as perfect sphericity, elastic interactions and zero-porosity agglomeration (Maxey and Riley, 1983; Maxey, 1987) . 

This can lead to inaccuracies in the final predicted bulk behaviour which can generate surprising discrepancies when compared 

to reproduced experimental flows. Whilst the combination of DNS and Lagrangian particle tracking (LPT) of the particle phase 

has been used frequently in the last few decades, this approach is more suited to large ensembles of particles (𝑁𝑁𝑃𝑃 > 106), with 𝑁𝑁𝑃𝑃 the total number of computational particles contained within the system. Despite these assumptions, LPT has proven a 

useful tool to explore macroscopic behaviour such as dispersion (Fairweather and Yao, 2009; Crowe et al., 1985; Elghobashi 

and Truesdell, 2006; Mortimer et al., 2019; Zhao et al., 2012), deposition (Li and Ahmadi, 1992; Li et al., 2013; Walters and 

Luke, 2010; Soldati and Marchioli, 2009; Winkler et al., 2006) and particle-fluid coupling (Kasbaoui et al., 2019; Monchaux 

and Dejoan, 2017; Mortimer and Fairweather, 2020; Eaton, 2009; Balachandar and Eaton, 2010). A recent review performed 

by M. Kuerten (2016) identified the important findings and conclusions obtained over the last few decades surrounding LPT 

studies, considering the important emergent behaviours in wall-bounded turbulent particle-laden flows such as turbophoresis 

and preferential concentration (Fessler et al., 1994; Eaton and Fessler, 1994). For increased levels of interaction such as 

interparticle collisions and agglomeration, further assumptions are introduced into LPT models (Sungkorn and Derksen, 2012). 

To remove these assumptions and obtain more accurate results, one must develop models which successfully predict the 

dynamics of more complex particle shapes and interactions. With modern computing, we are now at a stage where the 

fundamental high-fidelity calculation of small ensembles of these interactions is feasible. In recent years, advances in both 

computational techniques and power now allow for realistic simulations at high accuracy levels. This provides a suitable 

framework to investigate and generate understanding of multiphase flows at a more fundamental level and has therefore been 

of great interest in recent work, in which multiphase computational fluid dynamics is used to obtain insight into such behaviour. 

In order to constitute a true DNS, the full Navier-Stokes equations must be solved for at all relevant length and time scales, 

which includes those corresponding to the boundary layer between the bulk fluid and the particle surface, in the case of particle-

laden systems. Implicit to this methodology is the simulation of the wake behind the particle, and all inherent hydrodynamic 

forces on the particle are calculated by integrating the pressure and viscous terms over the structure. Various attempts at 

constructing such computational methods and algorithms have been carried out in recent years, each offering their own trade-

off between accuracy and complexity. 
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For dynamic particle simulation, it is unfeasible in terms of computational expense to regenerate the computational grid 

surrounding the particle at each timestep in order to ensure grid points reside perfectly on the surface of the particle. That said, 

similar approaches such as the conformal arbitrary Lagrangian-Eulerian method have been used previously (Hu, 1996; Hu et 

al., 2001), with convincing accuracy obtained. In most cases, a permanent Cartesian grid is used to simulate the continuous 

phase, within which the particle or solid-phase mesh is bound. This solution to the fluid-structure interaction problem wherein 

Eulerian and Lagrangian coordinates are used for the fluid and structure motion respectively is commonly referred to as the 

immersed boundary (IB) method and has been widely used in recent years (Kim and Choi, 2019). To account for the coupling 

between the IB structure and the fluid, momentum forcing is imposed in the Eulerian phase. In all such techniques, two 

boundary conditions must be satisfied. The first is the no-slip condition on the boundary, which requires that the velocity of 

the Lagrangian point on the IB is equivalent to the fluid velocity at that location. The second is that the integration of the 

Cauchy stress tensors across the IB are equivalent for both the structure and fluid phases. The method by which these are 

imposed determines the general form and accuracy of the IB technique. In the original formulation (Peskin, 2002; Peskin, 

1977), the IB is assumed to be composed of massless Lagrangian mesh points, interconnected with springs, with forces (based 

on Hooke’s law) applied back to the Eulerian phase using a distribution function, which tends to blur the representation of the 

boundary and is only first-order accurate. Various attempts were made in subsequent years to improve the accuracy of this 

technique, including ensuring the flow is brought to rest on the surface of the stationary boundary via external forcing 

(Goldstein et al., 1993), however constraints on the upper limit of timesteps were then introduced, leading to increased 

computational resources required to perform such calculations. Similar attempts at improving this method were performed by 

(Silva et al., 2007), who used physical arguments to justify the inclusion of the forcing terms. Kim and Peskin (2007) used a 

variant of the feedback method wherein both massless and massive boundaries were tracked, with the displacements between 

these boundaries used to calculate the momentum forcing. 

Alternatively, rather than using a distributive forcing method to satisfy the boundary conditions, the no-slip boundary 

condition can be enforced directly on the Lagrangian points of the surface of the IB (Mohd-Yusof, 1997). To achieve this, it is 

ensured that the velocity field varies smoothly across the sharp interface between the continuous and solid phases by applying 

an explicit momentum force to the interior boundary Eulerian nodes. This method avoids severe timestep restrictions, and has 

been used widely in recent years (Uhlmann, 2005; Yang and Balaras, 2006; Luo et al., 2010). However, in the case of dynamic 

solid phases, local force oscillations were observed leading to wiggles in the solution as the interface was advected, a problem 

which diminished with reducing grid spacing or timestep. This was also alleviated somewhat by adopting a feedback-based 

approach where momentum forcing is calculated through the Navier-Stokes equations, using the interpolated fluid/structure 
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velocities (Uhlmann, 2005). These techniques can suffer from unrealistic mass fluxes across the boundary due to the reversing 

of the velocity field inside the IB. The ghost-cell based IB method (Tseng and Ferziger, 2003) ensures the correct velocity at 

the no-slip boundary by extrapolating the fluid flow through a triangle mesh face to a point on the interior of the solid structure. 

This leads to second-order accuracy and, with some modifications, has shown good promise in the last few decades (Mark and 

van Wachem, 2008). The mirroring immersed boundary method in particular exhibits convincing behaviour for interacting 

particles in simple flows (Zastawny et al., 2010; Chi et al., 2017). In this case, the velocity of interior points on the IB are 

mirrored across the closest triangular face such that interpolation of the velocity at the surface satisfies the Dirichlet condition. 

Investigation of microscale particle-fluid behaviours using particle-resolving techniques has already shown much promise, 

providing insight on many fundamental dynamics. Turbulence modulation effects in decaying isotropic turbulence were 

investigated by Lucci et al. (2010), generating understanding surrounding how particles influence the development of 

turbulence kinetic energy and its dissipation rate. Channels with obstacles have also been simulated with a focus on particle 

collision and adhesion effects (Hosaka et al., 2018). In recent years, fully resolved interparticle collisions have been of great 

interest, since most solid-fluid flows in nature and industry tend to be of high volume fraction. Zhang et al. (2015) studied 

collisions in ducts using DNS and Mizuno et al. (2018) considered the effect of the particle wake on the resultant collision 

distributions. A soft sphere collision model for fully resolved simulations including finite-size particles was developed by Costa 

et al. (2015) which accounts for both long and short range hydrodynamic interactions, and was applied in Ardekani et al. (2016) 

who studied sedimentation of spheroidal particles, and in Li et al. (2020) who studied Lagrangian particles in Couette flow. 

More recently, the hard-sphere model has been applied by Jain et al. (2019) who studied interacting structure-resolved ellipsoids 

in viscous fluids. The types of collisions considered were more realistic than alternative approaches since associated timescales 

were more comparable to those used to resolve the fluid. Furthermore, there were no numerical parameters that needed 

modification which would have detracted from the realism of the simulations. A drawback, however, is that this approach is 

limited to binary particle interactions, with the collision of three or more particles potentially leading to inaccuracies or 

otherwise requiring special treatment. In studying granular flow, Buist et al. (2016) used a hybrid approach, with soft-sphere 

collisions for any interaction with three or greater constituents, and hard-sphere collisions otherwise. 

The present work uses the mirroring ghost-cell based immersed boundary method coupled to a spectral element method 

(SEM) based DNS solver in order to resolve fully the turbulence field around dynamic spherical particle meshes. The aim is to 

use this technique to study the effect varying several chemical and mechanical properties has on the resulting particle collision, 

and the potential for particle agglomeration. Collision events are based on those frequently occurring at various locations in a 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 channel flow, with properties chosen to match those of calcite in water, the former being a simulant often used in 
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flows to represent nuclear waste material. DLVO theory (Derjaguin and Landau, 1941; Verwey and Overbeek, 1955) is used 

to calculate the interaction potential of charged particle surfaces within the liquid medium, allowing for implicit agglomeration 

eventualities upon collision. DLVO theory interparticle forces cover several important parameters. Attraction is modulated by 

the Hamaker constant, which measures the strength of van der Waals forces between particles. Repulsion is modulated by the 

electrostatics involved with diffused electrical double layers which overlap when particles move very close to one another, 

generating a separating force. The extent of this layer is measured as the Debye length. The variation of system parameters 

such as Hamaker constant, temperature, Reynolds number, collision coefficient of restitution and electric double layer 

properties such as Debye length on bulk flow observables is used to provide insight into means of behavioural modification. 

The generation of this fundamental understanding is attractive in many industries since simple changes to the flow properties 

via heating or some other flow additive in order to obtain a desired behaviour is much more efficient and resourceful than 

redesigning the processing system.   
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II. Methodology 

A. Linearly forced homogeneous isotropic turbulence 

The simulations presented in this article all take place in periodic boxes of linearly forced homogeneous isotropic turbulence. 

The continuous phase dynamics for the flow in which the particles are immersed are governed by the incompressible Navier-

Stokes equations. These are solved using the spectral-element method-based DNS solver, Nek5000 (Fischer et al., 2008). The 

flow equations are: 

 𝛁𝛁 ⋅ 𝒖𝒖𝐹𝐹 = 0, (1) 

 𝜕𝜕𝒖𝒖𝐹𝐹𝜕𝜕𝑡𝑡 + 𝒖𝒖𝐹𝐹 ⋅ 𝛁𝛁𝒖𝒖𝐹𝐹 = −𝛁𝛁𝑝𝑝𝐹𝐹𝜌𝜌𝐹𝐹 +
1𝜌𝜌𝐹𝐹 𝛁𝛁 ⋅ 𝝉𝝉 + 𝒇𝒇𝐿𝐿𝐹𝐹 .  (2) 

Here, 𝒖𝒖𝐹𝐹(𝒙𝒙, 𝑡𝑡) is the fluid velocity vector at Cartesian position vector 𝒙𝒙, 𝑡𝑡 is the time, 𝑝𝑝𝐹𝐹 is the fluid pressure, 𝜌𝜌𝐹𝐹 is the fluid 

phase density, and 𝝉𝝉 is the deviatoric stress tensor for a Newtonian fluid. The acceleration, 𝒇𝒇𝐿𝐿𝐹𝐹, is a linear forcing source term 

(Rosales and Meneveau, 2005; Lundgren, 2003), given by 𝒇𝒇𝐿𝐿𝐹𝐹 = 𝐴𝐴𝐿𝐿𝐹𝐹𝒖𝒖′𝐹𝐹, where 𝒖𝒖′𝐹𝐹(𝒙𝒙, 𝑡𝑡) is the instantaneous velocity 

fluctuation 𝒖𝒖′𝐹𝐹 = 𝒖𝒖𝐹𝐹 − 𝒖𝒖�𝐹𝐹, and 𝒖𝒖�𝐹𝐹(𝒙𝒙, 𝑡𝑡) is the timewise mean velocity. The parameter 𝐴𝐴𝐿𝐿𝐹𝐹 relates to a user-supplied eddy 

turnover time scale, and tuning of this parameter allows one to obtain a desired Reynolds number (based on the Taylor 

microscale, 𝜆𝜆), for a given fluid kinematic viscosity, 𝜈𝜈𝐹𝐹. Despite relatively long times to a statistically stationary state when 

compared to other methods, this technique was chosen due to its lack of computational complexity (Janin et al., 2021). This is 

applied to all fluid nodes in the continuous phase. Due to the very low volume fraction of particles used within this study, 

particle-fluid coupling effects arising from the presence of moving particles which may interfere with the nature of this forcing 

technique are negligible. That said, particle-scale turbulence modulation is captured in the immersed boundary method.  

 

Figure 1: Schematic of the computational domain for the continuous phase containing a single binary particle interaction 
event occurring in homogeneous isotropic turbulence. 
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The computational mesh within which Eqns. (1) and (2) are solved consists of a box with length 2π in each direction, which is 

discretized into 48×48×48 equally distributed cubic spectral elements of order 𝑁𝑁 = 7. The boundary conditions enforced at the 

extent of the axes passing though the centre of the domain (−𝜋𝜋,𝜋𝜋) are periodic. The domain for the continuous phase is 

illustrated in Figure 1. More details surrounding the single-phase solver may be found in Mortimer et al. (2019). 

B. Ghost-cell based mirroring immersed boundary method 

In order to represent an arbitrary finite-sized particle of any convex topology, subject to a flow field, a ghost-cell based 

mirroring immersed boundary method has been developed to compute motion and feedback concurrently with the fluid-phase 

solver Nek5000. The original IB method concept is detailed in Peskin (2002) wherein the structure is reconstructed within the 

continuous phase as a boundary which is coupled to the flow field via forcing. To achieve this, momentum transfer conditions 

are imposed on the surface of the boundary through an additional delta function term added to the Navier-Stokes equations, in 

an effort to satisfy the no-slip requirement. It is possible to extend this idea to a rigid boundary by reducing the deformability 

of the elastic fibres forming the structure, and it is suggested by previous authors (Beyer and LeVeque, 1992) that discrete 

forcing (as opposed to continuous forcing) approaches are easier to implement and also obtain good accuracy when considering 

arbitrary and rigid particle species. The method implemented in this work is based on the second-order accurate ‘mirroring IB’ 

specification developed by Mark and van Wachem (2008). 

Building upon Eqns. (1) and (2), the first immersed boundary condition requires that 𝒖𝒖𝐹𝐹 = 𝒖𝒖𝐼𝐼𝐵𝐵 everywhere on the surface 

of the IB, where 𝒖𝒖𝐼𝐼𝐵𝐵 is the instantaneous velocity of the surface point. Note that this is not necessarily equivalent to the 

translational velocity of the IB structure due to the possibility of angular velocity. This requirement ensures that the velocity of 

the connected fluid satisfies the no-slip condition. The solver reads in a standard format triangle mesh three-dimensional object 

file containing a structured surface grid corresponding to a particle which consists of vertices and faces, which forms the 

topology of the IB. For all simulations performed in this work, a computational icosphere mesh is used to represent spherical 

particles, which is stored in the face-vertex representation and consists of 320 faces. The particle icosphere mesh discretization 

was chosen to be the most refined representation of a sphere where the triangular spacing was still on the order of the fluid 

computational GLL point spacing. Studying the effect of subdividing once more to get the next most resolved icosphere (1280 

faces), we found that the improvement to the drag coefficient was negligible. An example of this discretization is presented in 

Figure 2. Each face has an associated centroid position  and velocity, where the velocity is derived from the global particle 

angular velocity. The no-slip condition is then such that 𝒖𝒖𝐹𝐹 = 𝒖𝒖𝐼𝐼𝐵𝐵 = 𝒖𝒖𝑃𝑃 + 𝝎𝝎𝑃𝑃 × 𝒓𝒓𝑓𝑓 on each particle face, 𝑓𝑓. Here, 𝒖𝒖𝑃𝑃 is the 

particle translational velocity, 𝝎𝝎𝑃𝑃 is the angular velocity of the particle and 𝒓𝒓𝐹𝐹 is the position vector from the centre of the 

particle, a distance 𝑟𝑟𝑃𝑃 to the centroid of face 𝑓𝑓. 
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Figure 2: Computational icosphere mesh consisting of 320 equilateral triangular faces representing IB for spherical particle. 

The ‘mirroring’ implementation to ensure the no-slip requirement is carried out by first assigning each cell (formed by 

the bisectors between two neighbouring Gauss-Lobatto-Legendre (GLL) points) in the continuous phase solver a label. These 

are exterior nodes (E) which reside outside the boundaries of the IB; ghost nodes (G) which are nodes inside the boundary but 

are adjacent to exterior nodes; and finally interior nodes (I), which are inside the IB but not adjacent to any exterior nodes. 

These assignments are illustrated in Figure 3. Indicated in the diagram, the velocity at the ghost node is modified such that 

linear interpolation at the midpoint of the line connecting it with the mirrored node in the continuous phase domain would yield 

exactly the velocity of that particular surface of the IB. The velocity at the exterior node is determined using spectral 

interpolation, exploiting the function-based nature of the SEM. Due to symmetry, the interior node velocity is then calculated 

using: 

 𝒖𝒖𝐺𝐺 = 2𝒖𝒖𝐼𝐼𝐵𝐵 − 𝒖𝒖𝐸𝐸 . (3) 

 

Figure 3: Two-dimensional representation of computational domain containing part of an immersed boundary. Dashed lines 

meet at continuous phase GLL points. Large circles represent the midpoints of IB triangle faces. Each small circle represents 

a node with labels: E – exterior node; G – ghost node; I – interior node. Dotted lines demonstrate the mirroring of the ghost 

node velocity across an IB surface onto an interpolated point in the exterior fluid. 
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The exact point of mirroring is determined by calculating the shortest distance between the interior ghost node and the closest 

triangular planar surface. The position of the exterior point at which the velocity is then interpolated is subsequently calculated 

by reflecting the ghost node across the surface. All other interior velocities are set to be equivalent to the velocity of their 

closest boundary. 

C. Calculation of hydrodynamic forces and torques on surface of IB 

To advect and rotate the particle, forces and torques due to pressure and viscous contributions are calculated using interpolations 

of the local fluid pressure and viscous stress tensor. The equation for the total hydrodynamic force exerted on an IB (Ouchene, 

2020) is: 

 𝑭𝑭𝑇𝑇 =  � (𝑭𝑭𝑃𝑃 + 𝑭𝑭𝑉𝑉) 𝑑𝑑𝑑𝑑 = � (−𝑝𝑝𝐹𝐹𝜹𝜹 + 𝝉𝝉) ⋅  𝒏𝒏 𝑑𝑑𝑑𝑑𝐼𝐼𝐵𝐵𝐼𝐼𝐵𝐵 . (4) 

Here, 𝑭𝑭𝑇𝑇 is the total translational force on the particle, with 𝑭𝑭𝑃𝑃 and 𝑭𝑭𝑉𝑉 the pressure and viscous components, respectively. The 

two terms in Eqn. (4) can be recast in terms of a summation of forces on each face of the IB as follows: 

 𝑭𝑭𝑃𝑃 =  �−𝑝𝑝𝑓𝑓𝒏𝒏𝑓𝑓𝐴𝐴𝑓𝑓𝑁𝑁𝑓𝑓
𝑓𝑓=1 . (5) 

Since the pressure field inside the IB is undefined, two exterior points are used for the interpolation of pressure onto the face, 𝑓𝑓, with the subscript referring to the current face in the summation, and 𝑁𝑁𝑓𝑓 being the total number of faces in the particle mesh. 

After interpolation, 𝑝𝑝𝐹𝐹 is the pressure at the face centroid, 𝒏𝒏𝑓𝑓 is a unit vector normal to face 𝑓𝑓, and 𝐴𝐴𝑓𝑓 is the surface area of the 

face. The viscous term is calculated as follows: 

 𝑭𝑭𝑉𝑉 =  �𝝉𝝉𝑓𝑓 ⋅ 𝒏𝒏𝑓𝑓𝐴𝐴𝑓𝑓𝑁𝑁𝑓𝑓
𝑓𝑓=1 . (6) 

Here, the derivatives in the viscous stress tensor, 𝝉𝝉𝑓𝑓, are determined by interpolating velocities onto points which are projections 

of an exterior extrapolation point onto the Cartesian axis. Of course, the velocity at the triangle centroid is known from the IB 

condition, and hence only three velocities need to be interpolated to obtain all three Cartesian derivatives. 
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Figure 4: Schematic for rotating particle with co-moving frame (primed) and the particle reference frame (double-primed). 

For rotation, particle orientation is dealt with using the quaternion formulation (Zhao et al., 2015). The orientation can be 

fully defined by three Euler angles, 𝜙𝜙, 𝜃𝜃 and 𝜓𝜓 which represent the angles between the co-moving frame (primed) and the 

particle frame (double-primed), as in Figure 4. Following the definition of quaternions (or Euler parameters) as given by 

Mortensen et al. (2008), it is possible to construct a full orientation state (𝑞𝑞0,𝑞𝑞1,𝑞𝑞2,𝑞𝑞3) using Eqns. (7)-(10): 

 𝑞𝑞0 = cos�1

2
(𝜓𝜓 + 𝜙𝜙)� cos �𝜃𝜃

2
�, (7) 

 𝑞𝑞1 = cos�1

2
(𝜓𝜓 − 𝜙𝜙)� sin �𝜃𝜃

2
�, (8) 

 𝑞𝑞2 = sin�1

2
(𝜓𝜓 − 𝜙𝜙)� sin �𝜃𝜃

2
�, (9) 

 𝑞𝑞3 = sin�1

2
(𝜓𝜓 + 𝜙𝜙)� cos �𝜃𝜃

2
� . (10) 

From these, an orientation matrix, 𝑨𝑨, can be constructed, capable of transforming between the co-moving frame and the particle 

frame, as in Eqn. (11): 

 𝑨𝑨 =  �1 − 2(𝑞𝑞22 + 𝑞𝑞32) 2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2)

2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 1 − 2(𝑞𝑞12 + 𝑞𝑞32) 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1)

2(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2) 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1) 1 − 2(𝑞𝑞12 + 𝑞𝑞22)

�. (11) 

Each timestep the quaternion vector 𝑸𝑸 = (𝑞𝑞0,𝑞𝑞1,𝑞𝑞2,𝑞𝑞3), and the angular velocity vector (in the particle co-moving reference 

frame) 𝝎𝝎𝑃𝑃 = �𝜔𝜔𝑥𝑥′ ,𝜔𝜔𝑦𝑦′  ,𝜔𝜔𝑧𝑧′�, are also tracked. The time-varying quaternion vector differential equation is: 
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𝑑𝑑𝑸𝑸𝑑𝑑𝑡𝑡 =

⎝⎜
⎜⎜⎜⎜
⎛𝑑𝑑𝑞𝑞0𝑑𝑑𝑡𝑡𝑑𝑑𝑞𝑞1𝑑𝑑𝑡𝑡𝑑𝑑𝑞𝑞2𝑑𝑑𝑡𝑡𝑑𝑑𝑞𝑞3𝑑𝑑𝑡𝑡 ⎠⎟

⎟⎟⎟⎟
⎞

= �𝑞𝑞0 −𝑞𝑞1 −𝑞𝑞2 −𝑞𝑞3𝑞𝑞1 𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2𝑞𝑞2 𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1𝑞𝑞3 −𝑞𝑞2 𝑞𝑞1 𝑞𝑞0 ��
0𝜔𝜔𝑥𝑥′𝜔𝜔𝑦𝑦′𝜔𝜔𝑧𝑧′�, (12) 

and the corresponding Eulerian torque equation for the time-varying angular momentum is given by: 

 𝐼𝐼 𝑑𝑑𝝎𝝎𝑃𝑃𝑑𝑑𝑡𝑡 = 𝑻𝑻𝑉𝑉 , (13) 

where 𝐼𝐼 represents the moment of inertia of the rotating particle, and 𝑻𝑻𝑉𝑉 = ∑ 𝒓𝒓𝑓𝑓 × 𝑭𝑭𝑉𝑉,𝑓𝑓𝒇𝒇  represents the total off-normal torque 

contribution from the viscous force calculation. For spheres, 𝐼𝐼 = 𝐼𝐼𝑟𝑟𝑝𝑝ℎ𝑚𝑚𝑟𝑟𝑚𝑚 =
110𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝2, where 𝑚𝑚𝑝𝑝 is the mass of the particle and 𝑑𝑑𝑝𝑝 is the sphere diameter. Due to floating-point precision errors inherent in performing calculations using quaternions, at the 

end of each timestep, the quaternion vector is normalized by performing the following operation: 

 𝑸𝑸′ = 𝑸𝑸(𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32)−12 . (14) 

D. Particle-particle collisions and interactions 

Whilst advected by the flow, particles are capable of undergoing various interactions. In this study, we consider the effects of 

momentum exchange during collisions along with interspherical van der Waals attraction and electric double layer repulsion. 

Collisions are performed using the inelastic hard-sphere approach (Derksen, 2011), with varying normal coefficients of 

restitution, 𝑒𝑒𝑛𝑛. The choice to use this approach as opposed to the soft-sphere mechanism was based on computational efficiency 

and the sensitivity of the collision model relation to the number of colliding bodies observed in previous work (Buist et al., 

2016). Furthermore, we are considering the sensitivity to an adjustable parameter, the coefficient of restitution, which is 

relatable back to the properties associated with the soft sphere model. In this sense, we are not targeting a specific system but 

rather considering the variation of energy lost during a collision, so that precisely simulating a specific interaction lies outside 

the focus of this study. To better represent the type of binary interactions which take place in LPT simulations (which typically 

only consider normal momentum exchange), the friction coefficient, 𝜇𝜇, was set to zero and the tangential momentum exchange 

vector was neglected. Upon advection, particle pairs are checked for a potential collision event. The sole condition for collision 

is that their intersurfacial distance, 𝐻𝐻12, is less than zero, treating the IB structures as perfect spheres. During the timestep over 

which this occurs, the particles collide inelastically and their resulting translational velocities (𝒖𝒖′𝑃𝑃,1,𝒖𝒖′𝑃𝑃,2) and positions 

(𝒙𝒙′𝑃𝑃,1,𝒙𝒙′𝑃𝑃,2) are evaluated as: 
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 𝒖𝒖′𝑃𝑃,1 = 𝒖𝒖𝑃𝑃,1  +
𝑚𝑚𝑃𝑃,2𝑚𝑚𝑃𝑃,1 + 𝑚𝑚𝑃𝑃,2 (1 + 𝑒𝑒𝑛𝑛) ��𝒖𝒖𝑃𝑃,2 − 𝒖𝒖𝑃𝑃,1� ⋅ 𝒏𝒏��𝒏𝒏�, (15) 

 𝒖𝒖′𝑃𝑃,2 = 𝒖𝒖𝑃𝑃,2 − 𝑚𝑚𝑃𝑃,1𝑚𝑚𝑃𝑃,1 + 𝑚𝑚𝑃𝑃,2 (1 + 𝑒𝑒𝑛𝑛) ��𝒖𝒖𝑃𝑃,2 − 𝒖𝒖𝑃𝑃,1� ⋅ 𝒏𝒏��𝒏𝒏�, (16) 

 𝒙𝒙′𝑃𝑃,1 = 𝒙𝒙𝑃𝑃,1 + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝒖𝒖𝑃𝑃,1′ , (17) 

 𝒙𝒙′𝑃𝑃,2 = 𝒙𝒙𝑃𝑃,2 + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝒖𝒖𝑃𝑃,2′ . (18) 

In the simulations carried out here, only binary collisions are considered. Furthermore, all collisions are tracked, no matter how 

frequent, and overlap of the spheres is never permitted nor observed under this approach. Although not used in the present 

work, particle-wall collisions are handled such that if any vertex in the particle mesh surpasses the boundary, the particle 

velocity in the direction normal to the wall is reversed, and the particle deflects by the amount it penetrated the barrier. Periodic 

boundaries, employed below, work in a similar manner, in that as soon as a vertex exceeds the boundary, the particle is 

reinjected in the appropriate location at the opposite side of the periodic box. This means that the particle can appear to ‘jump’, 

but for low particle size with respect to the geometry, the low occurrence of such events means that the error which results 

from this effect is negligible. Finally, intersurface sphere-sphere DLVO (Derjaguin and Landau, 1941; Verwey and Overbeek, 

1955) forces are calculated and included in the particle force balance to account for van der Waals attraction and electric double 

layer repulsion. The equation for the attraction or repulsion caused by spherical particle, 1, on spherical particle, 2, is as follows: 

 𝑭𝑭1,2𝐷𝐷𝐿𝐿𝑉𝑉𝐵𝐵 =  𝑭𝑭1,2𝑉𝑉𝐷𝐷𝑉𝑉 + 𝑭𝑭1,2𝐸𝐸𝐷𝐷𝐿𝐿, (19) 

where 𝑭𝑭1,2𝑉𝑉𝐷𝐷𝑉𝑉 is the van der Waals attractive term and 𝑭𝑭1,2𝐸𝐸𝐷𝐷𝐿𝐿 is the electric double layer term. The van der Waals term, which is 

of great importance in colloidal chemistry, arises due to the electrostatic attraction induced by London dispersion forces 

(Stenhammar et al., 2010). The electric double layer term arises due to an interfacial pair of ion layers, the first of which screens 

the second, which are formed on an object when exposed to a fluid. The surface charge potential is hence reduced as one moves 

away from the surface. These two forces are given as: 

 𝑭𝑭𝑘𝑘𝑐𝑐𝑉𝑉𝐷𝐷𝑉𝑉 =
−𝐴𝐴𝑟𝑟𝑃𝑃𝒏𝒏�
12𝐻𝐻1,22 , (20) 

 𝑭𝑭𝑘𝑘𝑐𝑐𝐸𝐸𝐷𝐷𝐿𝐿 =
64𝜋𝜋𝑟𝑟𝑃𝑃𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹Θ2𝑒𝑒−𝜅𝜅𝐻𝐻1,2𝜅𝜅 𝒏𝒏�. (21) 

In the above equations, 𝐴𝐴 is the Hamaker constant, 𝑟𝑟𝑃𝑃 is the particle radius, 𝐻𝐻1,2 is the inter-surface distance between the two 

spheres, 𝑛𝑛 is the number density of electrolyte ions, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, 𝑇𝑇𝐹𝐹 is the fluid temperature, Θ is the reduced 

surface potential and 𝜅𝜅 is the inverse Debye screening length. Finally, 𝒏𝒏� is a unit vector pointing along the line joining the 

centre of particle 1 to particle 2. 
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III. RESULTS AND DISCUSSION 

A. Validation of immersed boundary method 

To validate the implementation of the immersed boundary method, and determine accuracy, flow around a sphere was 

performed at various Reynolds numbers in order to calculate the drag coefficient, 𝐶𝐶𝐷𝐷. The mesh was equivalent to that detailed 

in the methodology, with the physical length of the domain this time set to 20𝑚𝑚, in line with Mark and van Wachem (2008). 

Boundary conditions for this validation flow consisted of constant velocities (𝑢𝑢𝐹𝐹 = 𝑈𝑈∞), where 𝑈𝑈∞ is the free stream velocity, 

on all walls other than the outlet upon which a Neumann boundary condition was used. Equally, the outlet used a constant 

pressure boundary condition whereas the remaining walls used Neumann pressure conditions. The parameters used in these 

validation simulations are presented in Table 1, with fluid parameters matching those of Mark and van Wachem (2008). Here, 𝑅𝑅𝑒𝑒𝑃𝑃 is the particle Reynolds number, 𝑅𝑅𝑒𝑒𝑃𝑃 = 2𝑈𝑈∞𝑟𝑟𝑃𝑃/𝜈𝜈𝐹𝐹, with 𝑟𝑟𝑃𝑃 the sphere radius. Note here that, although unrealistic, the 

density and viscosity have been chosen to obtain a specific particle Reynolds number. For the range of Reynolds numbers 

considered, the resulting dynamics are dependent only on the Reynolds number. Sensitivity studies were performed on the time 

step, 𝑑𝑑𝑡𝑡, with values lower that indicated having a negligible effect on the final calculated drag coefficient. At the start of the 

simulation, the IB was fixed at the centre of the domain, and although forces were calculated on the particle, the structure was 

not moving. 

Table 1: Parameters for mirroring immersed boundary method validation simulations. 𝑅𝑅𝑒𝑒𝑃𝑃 𝑈𝑈∞ (𝑚𝑚𝑠𝑠−1)  

0.01 0.00025 

0.1 0.0025 

1 0.025 

10 0.25 

100 2.5 
 

Constants 𝜇𝜇𝐹𝐹 (𝑁𝑁𝑠𝑠𝑚𝑚−2) 0.01 𝑟𝑟𝑃𝑃 (𝑚𝑚) 0.2 𝜌𝜌𝐹𝐹 (𝑘𝑘𝑘𝑘𝑚𝑚−3) 1.0 𝜈𝜈𝐹𝐹 (𝑚𝑚2𝑠𝑠−1) 0.01 𝑑𝑑𝑡𝑡 (s) 0.001 
 

 

The simulations were performed until the calculation of drag coefficient carried out at each timestep was unchanging. Eqns. 

(5) and (6) were used to calculate the total force on the IB, which was then converted into a drag coefficient using the following 

equation (Stokes, 1851): 

 𝐶𝐶𝐷𝐷 =
𝐹𝐹𝑥𝑥

1
2
𝜌𝜌𝐹𝐹𝑈𝑈∞2 𝜋𝜋𝑟𝑟𝑃𝑃2. (22) 

The time evolution of the calculated drag coefficient is presented in the left plot of Figure 5. Clearly in all cases, the simulation 

converged towards the expected coefficient in less than a second, with minor fluctuations at the start due to the sudden 

appearance of a particle in an otherwise simple flow. The right plot in Figure 5 compares the converged values (taken at t = 2s) 
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to those predicted by the frequently used empirical correlation of Schiller and Naumann (1933). Excellent agreement is obtained 

for particle Reynolds numbers lower than 10, with good agreement obtained at those higher, although in both cases the drag 

coefficient is slightly underpredicted. This may be due to the imperfections in sphericity associated with the icosphere 

representation of the particle which may induce further drag-reducing effects. It could also be due to insufficient grid resolution 

close to the particle to fully capture its wake. That said, high particle Reynolds numbers are unlikely to be observed in binary 

particle collisions, and the agreement is satisfactory. 

 

Figure 5: Temporal evolution of calculated drag coefficient from validation simulations compared against empirical 
relationship. 

 

   
Figure 6: Instantaneous streamwise velocity flow field surrounding stationary IB sphere at 𝑅𝑅𝑒𝑒𝑃𝑃 = 0.01 (left) and 𝑅𝑅𝑒𝑒𝑃𝑃 = 100 

(right). White lines indicate streamlines, whilst black lines are contours of velocity magnitude (𝑚𝑚𝑠𝑠−1). 

Finally, to demonstrate the flow field surrounding the IB in these validation simulations, a slice of the instantaneous 

streamwise velocity is illustrated in Figure 6, with the flow being from right to left. Here, coloured lines are contours of velocity 

magnitude. Both of these snapshots also indicate instantaneous fluid streamlines, which were generated via Runge-Kutta 4th 

order integration beginning at the minimum boundary in the x-direction and terminating either at the maximum boundary or 

when the velocity was sufficiently low. Further streamlines were generated within the wake in the 𝑅𝑅𝑒𝑒𝑃𝑃 = 100 plot using a 

similar method. 



17 
 

To validate both the translational dynamics and the hard sphere collision mechanism, further simulations were performed 

of bouncing particles falling within a stagnant vertical domain consisting of 20 × 80 × 20 elements. The extent of the domain 

was 0𝑚𝑚 ≤ 𝑦𝑦 ≤ 0.08𝑚𝑚 in the vertical direction and −0.01𝑚𝑚 ≤ 𝑑𝑑, 𝑧𝑧 ≤ 0.01𝑚𝑚 in the two transverse directions. In line with the 

study of Gondret et al. (2002), Teflon (𝜌𝜌𝑃𝑃 = 2150 𝑘𝑘𝑘𝑘 𝑚𝑚−3) and steel (𝜌𝜌𝑃𝑃 = 7800 𝑘𝑘𝑘𝑘 𝑚𝑚−3) spheres of radius 0.003𝑚𝑚 and 

0.0015𝑚𝑚 were dropped into air (𝜌𝜌𝐹𝐹 = 1.2 𝑘𝑘𝑘𝑘 𝑚𝑚−3,𝜇𝜇𝐹𝐹 = 1.85 × 10−5 𝑁𝑁𝑠𝑠𝑚𝑚−2) and oil (𝜌𝜌𝐹𝐹 = 9350 𝑘𝑘𝑘𝑘 𝑚𝑚−3,𝜇𝜇𝐹𝐹 =

10−3 𝑁𝑁𝑠𝑠𝑚𝑚−2) respectively. Their initial vertical distances were set equal to those identified as the maxima of the first rebound 

in each case. Coefficients of restitution were set to 0.8 for Teflon in air and 0.6 for steel in oil, matching those obtained in the 

experimental collisions with the wall. The constant timestep used for these simulations was 𝑑𝑑𝑡𝑡 = 1 × 10−4 𝑠𝑠. The upper and 

lower extents of the domain were considered walls for the purposes of boundary conditions. Collisions with the wall were 

handled identically to those with particles. 

 

Figure 7: Calculated vertical trajectories of Teflon sphere in air (left) and steel sphere in oil (right) compared to those 
obtained in the experiments of Gondret et al. (2002). 

Figure 7 compares the trajectories calculated during these simulations with those obtained in the corresponding experiments of 

Gondret et al. (2002). For the Teflon sphere in air, the agreement with the initial bounce trajectory is excellent, with further 

bounces deviating slightly, a discrepancy which grows over time. This is due to the sensitivity of long term positions to the 

initial conditions and parameters. Furthermore, in the experiment the coefficient of restitution is not consistently exactly 0.8, 

but deviates from this slightly with time, leading to unpredictability over long timeframes. Still, the initial bounce trajectories 

are convincing. For steel in oil, good agreement is also obtained, with the inclusion here of much stronger hydrodynamic fluid 

forces (due to the increased fluid density) also generating similar trajectories to those obtained in the experiment. Again, the 

results are very sensitive to initial position and coefficient of restitution. 
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B. Homogeneous isotropic turbulence 

 

The binary particle interaction simulations studied within this work take place within boxes of homogeneous isotropic 

turbulence which are generated as detailed in the methodology section. To motivate the selection of Taylor Reynolds numbers, 

a typical previously studied case of a 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 channel flow is considered (Mortimer and Fairweather, 2020; Mortimer et 

al., 2019). Here, we choose the Taylor microscale as a characteristic parameter for the turbulence. This is because the scales at 

which particle-particle and particle-fluid interactions take place are largely isotropic (Oesterle and Petitjean, 1993), hence to 

study collisions on the interaction-scale, we may consider local regions of turbulence with the same characteristics as those 

present at various locations across the wall-normal direction of the channel flow. Previously statistically settled single-phase 

channel flow simulations were continued for calculation of the Taylor microscale (Segalini et al., 2011) according to: 

 𝜆𝜆 = � 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅′2
�𝜕𝜕𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅′𝜕𝜕𝜕𝜕 �2   , (23) 

where 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅′  represents the root-mean-square (RMS) of the fluctuating velocity field. These calculations were then used to 

generate the variation of Taylor Reynolds number, 𝑅𝑅𝑒𝑒𝜆𝜆 = 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆/𝜈𝜈𝐹𝐹, with wall-distance. These are presented in Figure 8, where 

length scales are non-dimensionalised using wall units. The left plot demonstrates the variation of the Taylor microscale, which 

is relatively constant within the bulk flow (𝑦𝑦+ > 35), and increases somewhat in the near-wall region. If we consider the 

derived Taylor Reynolds number on the same scale, however, we see more variation across the half-height of the channel. 

Based on this distribution, a typical Reynolds number of 𝑅𝑅𝑒𝑒𝜆𝜆 = 51 representative of the channel flow was chosen as a target 

for the turbulence characteristic in the homogeneous isotropic box of turbulence. This closely relates to the turbulence level in 

the region of a channel flow where the agglomeration efficiency is high (Mortimer et al., 2020). To further discern the effect 

of modification of turbulence level on the resulting binary collision dynamics, two other isotropic boxes were also simulated, 

targeting 𝑅𝑅𝑒𝑒𝜆𝜆 = 120 and 𝑅𝑅𝑒𝑒𝜆𝜆 =29. The simulation parameters for all these flows are presented in Table 2. 
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Figure 8: Variation of Taylor microscale in wall units (left) and Taylor Reynolds number (right) with wall distance in DNS of 
turbulent channel flow at 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. Comparisons are made against the findings of Vreman and Kuerten (2014). 

Table 2: Simulation parameters for periodic boxes of homogeneous isotropic turbulence. 𝑅𝑅𝑒𝑒𝜆𝜆 𝐴𝐴 𝜌𝜌𝐹𝐹 (𝑘𝑘𝑘𝑘𝑚𝑚−3) 𝜈𝜈𝐹𝐹 (𝑚𝑚2𝑠𝑠−1) 

29 0.0667 1.0 4.491× 10−3 

51 0.2 1.0 4.491× 10−3 

120 1.0 1.0 1.272× 10−2 

 

Each simulation was initialized using the Arnold-Beltrami-Childress flow (Dombre et al., 1986), an exact solution of the 

Euler equation with a well-defined initial turbulence energy spectrum. The timestep was modified automatically to ensure a 

Courant number of lower than 0.5 throughout the entire simulation. Both the global mean and the RMS of velocity fluctuations 

within each box were monitored to ensure both that a substantial mean did not develop and that the RMS reached a statistically 

stationary state. The time evolution of these quantities is presented in Figure 9. 

 

Figure 9: Time evolution of absolute value of mean velocity vector normalized by the root-mean-square of velocity (left) and 
the root-mean-square of velocity (right) at three different Reynolds numbers based on the Taylor microscale. 
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Figure 10: Instantaneous pseudocolour plots of velocity magnitude in the 𝑅𝑅𝑒𝑒𝜆𝜆 = 29 (left), 𝑅𝑅𝑒𝑒𝜆𝜆 = 51 (middle), and 𝑅𝑅𝑒𝑒𝜆𝜆 =

120 (right) homogeneous isotropic boxes. 

In each case, the initial transient period involves an increase in turbulence kinetic energy as the dissipation associated 

with the initial solution is greatly outweighed by the forcing’s energy injection. After reaching a critical value of 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅, each 

system undergoes a sudden transition into turbulence. The dissipation from thereon works to reduce the kinetic energy of the 

system until a statistically stationary state is reached where the forcing energy injection and the turbulence energy dissipation 

are approximately equal. Despite minor fluctuations, the RMS of velocity fluctuations remains effectively stationary after that 

point. Furthermore, the left plot indicates that the mean velocity remains bounded (𝑢𝑢𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛 < 𝑂𝑂(10−3)) in all cases, 

demonstrating the stability of the method. To illustrate the topology of the turbulence field, contour plots of velocity magnitude 

are presented in Figure 10. 

C. Behavioural modification effects 

Having verified the accuracy of the particulate-phase solver as well as having obtained suitable continuous phase initial 

conditions, this final section considers the interaction within these boxes between two identical spherical particles.  

 

Figure 11: Particle relative collision velocities (left) and collision angles (right) from four-way coupled LPT simulations 
using calcite particles in 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 channel flow used to determine initial conditions for present IB method simulations. 

Vertical lines indicate means. 
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Using the statistically stationary states of homogeneous isotropic turbulence obtained as described in Section III-B, two 

particles were injected into each box with relative initial velocity vectors matching those most commonly occurring from 

collision events sampled in the equivalent wall-normal regions of a four-way coupled multi-phase channel flow simulation 

described in previous work (Mortimer et al., 2020). The injected particles are identical and have radius 𝑟𝑟𝑝𝑝/𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵 = 0.026 where 𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵 is the diameter of the isotropic box mesh. The particle sizes within the domain with respect to the turbulent scales were 

chosen to ensure at least 10 GLL points reside within the particle mesh across each spatial direction. 

In these prior simulations, particle velocity vectors were calculated in a reference frame moving with the local flow mean 

streamwise velocity.  This enables us to approximate particle collisions in a reference frame moving with the fluid downstream 

inside the channel flow. The relative collision velocity distributions and angles are presented in Figure 11, with vertical lines 

indicating the mean values chosen as initial conditions for the present work. Here, 𝑢𝑢𝑟𝑟∗ represents the relative particle velocity 

non-dimensionalized by bulk length and time scales, and 𝑢𝑢𝜃𝜃 is the angle in radians. In all cases, the collision angles are very 

low. Since the Stokes number is low for these simulations, the collision angles are almost always indicative of glancing 

collisions in the fluid reference frame. The global simulation parameters (material and chemical properties) were chosen to 

represent calcite particles in suspension in water, with other simulations representing deviations to each of several key variables. 

These are presented in Table 3.  

Table 3: Simulation parameters for behavioural modification effects study. 

SIM 0 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 𝑒𝑒𝑁𝑁 0.4 0.2 0.6 0.2 0.6 0.4 0.4 0.2 0.6 0.2 0.6 0.2 0.6 𝐴𝐴 (𝑧𝑧𝑧𝑧) 22.3 22.3 22.3 7.84 36.76 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 Θ (mV) 20 20 20 20 20 16 24 20 20 20 20 20 20 𝜅𝜅 (𝑚𝑚) 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-5 10-3 10-4 10-4 10-4 10-4 𝑇𝑇 (𝐾𝐾) 293 293 293 293 293 293 293 293 293 264 322 293 293 𝑅𝑅𝑒𝑒𝜆𝜆 51 51 51 51 51 51 51 51 51 51 51 29 120 

Simulation 0 represents a base case, with A and B variations corresponding to the modification of each considered 

parameter, either higher or lower than that of the base value.  

A typical interaction for the base case is presented in Figure 12 where a bouncing event is presented, the middle plot of 

which demonstrates the surrounding fluid field at the point of impact between two particles. On the left we observe the evolution 

of the relative distance between the particles, which reduces up until the point of impact and starts to slow at small separation 

distances, likely due to the particles entering the effective range of the DLVO forces. Despite this, the particles continue to 

move closer and bounce off one another. The plot on the right shows the time evolution of their relative velocity, which exhibits 

much more chaotic behaviour as the various forces act on the particles. In the region before 𝑡𝑡 = 5 𝑠𝑠, the velocity profile exhibits 

a consistent magnitude and rms. As the particles draw closer after this point, the relative velocity increases due to the van der 
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Waals attraction until the point of impact where it begins to reduce again rapidly as energy is dispersed in the collision. After 

the collision, the particles once again separate, leading to similar behaviour as seen at the start of the interaction. 

 

Figure 12: Pseudocolour and velocity vector representation of binary particle interaction at point of impact during collision 
event for the base case (middle). Surrounding plots demonstrate the time (in s) evolution of interparticle distance (left) and 

the relative particle velocity (right). 

The first parameter for consideration is the normal coefficient of restitution, 𝑒𝑒𝑛𝑛, which can be manipulated by a variety of 

means. These include coating the particles with viscous films (Liu et al., 2016), injecting a secondary solid phase which will 

adsorb onto the surface of the particles, or using other behavioural modification techniques to increase the size and density of 

the particulate structures. Figure 13 demonstrates the sensitivity of particle interaction events to the restitution coefficient by 

considering the mean relative intersurfacial distance and mean relative velocity between the two particles. To obtain these 

distributions, the intersurfacial separation distance, 𝑑𝑑𝑑𝑑 = �𝑑𝑑𝑃𝑃,2 − 𝑑𝑑𝑃𝑃,1� − 2𝑟𝑟𝑝𝑝, and the relative velocity, 𝑑𝑑𝑑𝑑 = �𝑢𝑢𝑃𝑃,2 − 𝑢𝑢𝑃𝑃,1�, 
were measured from the point of injection at equal intervals of 100 timesteps across the period 0 ≤ 𝑡𝑡 ≤ 20 which was sufficient 

time in all three boxes for the system to exhibit interaction dynamics (either agglomeration, bouncing or missing, and turbulent 

motion). After each interaction, the simulation was reset with a new random injection point somewhere within the domain. 

Statistics were obtained over at least 40 instances of one typical interaction setup, with total sample numbers for each system 

chosen to ensure smooth resulting PDFs. Clearly this property has a strong effect on collision dynamics. A high coefficient of 

normal restitution means that particles tend to spend less time close to each other throughout the event. This is likely due to 

their retention of kinetic energy upon impact, allowing them to overcome the van der Waals attraction force, which causes them 

to return to a region where turbulence dominates. The right-hand plot in Figure 13 indicates a larger spread of relative velocities 

for increases in the coefficient of restitution, suggesting a greater variety of interaction events where particles frequently change 

their velocity. At lower coefficients of restitution, particles undergoing collisions are less likely to reach their greater pre-

collision velocities and so the distribution is shifted towards zero. Zero values of the intersurfacial distance indicating touching 

particles also increase significantly as the coefficient of restitution decreases, with the highest value of this parameter reducing 
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particle contact to close to zero over the interactions considered. It should be noted that zero values of this quantity do not 

necessarily imply agglomeration, as some particles will also bounce off one another following impact.     

 

Figure 13: Effect of variation of coefficient of restitution on mean relative intersurfacial distance and mean relative velocity 
for binary particle interactions sampled over at least 40 instances. 

The Hamaker constant directly modulates the attraction term in the DLVO potential equation, and in previous studies 

(Njobuenwu and Fairweather, 2017) has been shown to influence the agglomeration rate. In Figure 14 we observe that actually 

the Hamaker constant has little effect on the resulting probability density function of relative displacement. This implies that, 

for the range of values studied, the amount of time particles spend close to each other is actually independent of the force of 

the attraction. Consideration of the outcomes of the interactions shows that in all cases, some particles undergo near hits but 

then travel past each other, advected away by turbulence once they overshoot the attractive region. This would make the 

agglomeration mechanism less sensitive to the Hamaker constant, since any agglomeration would only depend on the velocity 

vectors of the particles at the start of the interaction event. The above explanation is reflected in the plot of relative velocity. 

Despite the particles not spending significantly different amounts of time close to each other, they differ quite extensively in 

their relative velocity, with a high Hamaker constant showing that the particles travel faster and over a greater range of speeds. 

If the particles are travelling past each other and not colliding then this would be the case since the acceleration and subsequent 

range of relative velocities would depend primarily on the attraction strength. This behaviour implies that in high concentration 

fluid-particle dispersions, the Hamaker constant would also influence decoupling the particles from local flow velocities, 

particularly for inertial particles. For low Stokes number particles, or tracers, the forces may cause additional collisions since 

the attractive forces may cause particle motion to deviate away from the fluid flow streamlines, which could lead to increased 

agglomeration rates, particularly in the bulk flow region. In practice, the Hamaker constant has been shown to be adjustable by 

adding salt to the fluid (Shahidzadeh et al., 1998) and has also been shown to be temperature dependent (Bergström, 1997). By 

tuning this parameter, control is obtained surrounding the impact velocity of colliding particles. 
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Figure 14: Effect of variation of Hamaker constant on mean relative intersurfacial distance and mean relative velocity for 
binary particle interactions sampled over at least 40 instances. 

Figure 15 illustrates the sensitivity of the relative displacement and relative velocity to surface potential, which linearly 

modulates the strength of the electric double layer repulsion. In both plots, it is evident that for the range of parameters 

considered, there is little effect on the resulting interaction dynamics. This is due to the very short range associated with this 

force particularly with the chosen Debye length. As the particles reach low separation distances, the force is not strong enough 

to overcome the van der Waals attraction. That said, it is likely that this parameter would have a much more pronounced effect 

on particle-scale motion of much smaller particles. 

 

Figure 15: Effect of variation of reduced surface potential on mean relative intersurfacial distance and mean relative velocity 
for binary particle interactions sampled over at least 40 instances. 

The effect of manipulation of the inverse Debye length is presented in Figure 16. From these results, it is evident that at 

low inverse Debye lengths, the mean relative displacement is largely unchanged from that of the standard case. Similar 

observations are made for the mean relative velocity with perhaps a slight overall increase. In increasing the inverse Debye 

length by an order of magnitude from the base case, the range of relative displacements, as well as the mean, is increased 

greatly. In distributing the electric double layer force over a much greater distance, the repulsion may dominate in regions 
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where the van der Waals attraction is still weak. Considering the distribution of relative velocities, these are lowered, likely 

due to the repulsion slowing the particles down as they approach each other. By tuning the salt concentration in such systems, 

hence manipulating the ionic strength, the Debye screening length is capable of being increased or reduced (Kontogeorgis et 

al., 2018). 

 

Figure 16: Effect of variation of inverse Debye length on mean relative intersurfacial distance and mean relative velocity for 
binary particle interactions sampled over at least 40 instances. 

 

Figure 17: Effect of variation of temperature on mean relative intersurfacial distance and mean relative velocity for binary 
particle interactions sampled over at least 40 instances. 

The effect of modification of temperature is presented in Figure 17. This parameter modulates the electric double layer 

linearly, and to isolate this modulation, variations of other parameters with temperature are not considered here. That said, over 

the range of temperatures considered (which is very broad and beyond any range likely to be encountered in practice), very 

little effect on the resulting collision behaviour is observed. In the plot of intersurfacial displacement, an increase in temperature 

slightly reduces the mean distance particles spend close to each other, and slightly increases the range of relative velocities. 

That said, the DNS simulation did not solve for the temperature field, the addition of which may have further implications for 
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both the turbulence field and the particle-turbulence energy transfer during collisions such as these which may yield different 

behaviour. 

 

Figure 18: Effect of variation of Reynolds number based on the Taylor microscale on mean relative intersurfacial distance 
and mean relative velocity for binary particle interactions sampled over at least 40 instances. 

Finally, the effect of variation of Reynolds number was studied by performing the binary particle interactions in the three 

isotropic boxes outlined in Section III-B. In decreasing the Reynolds number from the base case value, shown in Figure 15, the 

particles spend more time in close proximity to each other, with the effects of the collision dominating their motion. Their 

range of velocities is also lowered, with many instances of particles moving with the same velocity indicating an agglomeration 

event. Upon increasing the Reynolds number, it seems that agglomeration is actually deterred, with the increased turbulence 

either removing particles from their impact trajectories or carrying them away after a collision takes place in which they do not 

lose enough kinetic energy and overcome the close range attraction. Similarly, the range of velocities is increased, with many 

particles obtaining much higher velocities than they were injected with. Given a collision is about to occur, the turbulence 

increase hence reduces the chance that the collision will result in an agglomeration event, which has been observed in previous 

LPT studies (Njobuenwu and Fairweather, 2017; Mortimer et al., 2020). 
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Figure 19: Effect of behavioural modification parameters on the mean interparticle distance and the mean relative velocity 
during an interaction event. Up and down arrows indicate increase and decrease in parameter, respectively, whilst fixing all 

other parameters. 

The results of the behavioural modification effects considered in this study are summarized in Figure 19, which illustrates 

the impact of increasing or decreasing a certain parameter on the mean interparticle distance and mean relative velocity 

parameter space. It can be identified from this plot that both Reynolds number (REP) and coefficient of restitution (COR) 

exhibit the strongest modification effects, which both increase relative distance and velocity as each of these parameters is 

increased. Here, the increase has a larger impact on the relative distance for the coefficient of restitution, and similarly the 

relative velocity is impacted more by the turbulence intensity. Conversely, an opposite trend is observed for increasing inverse 

Debye length (IDL), where the relative velocity is reduced as separation distance increases. Note that reducing the inverse 

Debye length has little effect, as the distance over which the electric double layer is effective reduces to scales lower than those 

considered in the simulation. The remaining parameters (HAM – Hamaker constant, RSP – reduced surface potential, TMP – 

temperature) show limited response for the range of values considered, and in future studies a larger range of values should be 

investigated. Note that the ‘standard’ point in Figure 18 refers to values for no behavioral modification effect.  

IV. CONCLUSIONS 

In order to simulate and study binary particle interactions, and to assess behavioural modification techniques for turbulent 

multiphase flows, this work described a particle-resolved immersed boundary method which was implemented into the spectral 

element-based DNS code, Nek5000. The ghost-cell mirroring method was used to ensure the no-slip condition on the particle 

surface is met and, for the first time, both hard-sphere collisions and interparticle DLVO forces were included in the 

calculations. A validation of the IB method was performed which considers calculation of the drag coefficient on a stationary 

spherical particle subject to flow fields with differing particle Reynolds numbers. The results showed very strong agreement 

across the range of Reynolds numbers studied, with very slight inaccuracies at Reynolds numbers greater than 100. Periodic 
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boxes of isotropic turbulence at three different Reynolds numbers based on the Taylor microscale were generated using the 

linear forcing method, with turbulence levels representative of various regions present in a 𝑅𝑅𝑒𝑒𝜏𝜏 = 180 turbulent channel flow. 

The transition from initial conditions to steady state isotropic turbulence within these boxes was demonstrated with temporal 

plots of the mean of the velocity fluctuation throughout the box. From these, a statistically stationary state was identified, with 

mean flow quantities negligible compared to the root-mean-square of the velocity fluctuations. Slices of velocity magnitude 

contour plots were also presented for all levels of turbulence, with each possessing their own characteristic eddy length spectra 

and range of velocities. 

By combining the implemented IB method within the boxes of homogeneous isotropic turbulence, structure-resolved 

particle-particle interactions were simulated. Particles were injected with initial conditions matching those present in pre-

collision events sampled from a four-way coupled turbulent channel flow performed with identical dispersed, but point, 

particles at 𝑅𝑅𝑒𝑒𝜏𝜏 = 180. These simulations were used to study the effect of varying certain mechanical and chemical parameters 

on particle collision and aggregation dynamics. We observe that increasing the coefficient of restitution discourages low particle 

separation distances, as particles do not lose enough energy on collision to be overcome by the van der Waals attractive force. 

This also causes a greater spread in particle velocity, as the particles are separated and reintroduced into regions where 

turbulence dominates. It is shown that increasing the Hamaker constant increases the mean velocity of the interacting particles, 

but its effect on the probability of collision and possible agglomeration is very low since the distribution of separation distances 

is unchanged. It is likely that in this case, particles are attracted to each other but sometimes do not collide, leading to their 

reintroduction into regions of turbulence where DLVO forces are uninfluential. Varying the electric double layer surface charge 

had little effect on the resulting interaction statistics. It is noted that the effective range for this force is very low and the 

variation considered herein was too low for modifications to be influential on the resulting particle behaviour. The inverse 

Debye length showed little effect when decreasing it from the chosen base case value, but exhibited a strong effect when 

increasing it by an order of magnitude, such that it increased the mean interparticle distance by a factor of two, and greatly 

increased the range of interparticle distances, discouraging collision events where the particles remain close to each other. 

Additionally, the velocity spread was reduced, meaning that electric double layer repulsion not only plays a part in repelling 

the particles, but removes energy from them as well. Variation of temperature only yielded very slight differences in interaction 

dynamics, with higher temperatures discouraging particles from colliding and potentially agglomerating, and reducing the 

variation of relative velocities. Finally, at increased Reynolds numbers based on the Taylor microscale, the particles were less 

likely to spend time close to each other, with the effects of the hydrodynamic forces overcoming the DLVO forces at low 

separation distances. 
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The results presented herein not only demonstrate the capabilities of the structure-resolved model, but also indicate 

possible parameters which can be employed to encourage or discourage particle collisions and potential agglomeration. Of 

most note are the coefficient of restitution, the inverse Debye length (related to ionic strength) and turbulence level, all three 

of which have associated real-world modifications which can be used to implement the required changes. For instance, coating 

particles, adding salt to the flow and modifying the flow rate will allow each of these parameters to be modified, respectively. 

With this knowledge, further work should include determining the impact of these key parameters in bulk-scale flows, where 

the turbulence dynamics leading up to the collision are also captured. 
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