
This is a repository copy of Assessing the potential of different satellite soil moisture 
products in landslide hazard assessment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176455/

Version: Accepted Version

Article:

Zhao, B., Dai, Q., Zhuo, L. orcid.org/0000-0002-5719-5342 et al. (3 more authors) (2021) 
Assessing the potential of different satellite soil moisture products in landslide hazard 
assessment. Remote Sensing of Environment, 264. 112583. ISSN 0034-4257 

https://doi.org/10.1016/j.rse.2021.112583

© 2021 Elsevier. This is an author produced version of a paper subsequently published in 
Remote Sensing of Environment. Uploaded in accordance with the publisher's self-
archiving policy. Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 
 

Assessing the potential of different satellite soil moisture products in landslide hazard 1 

assessment 2 

Binru Zhao1,2, Qiang Dai1,2,3, Lu Zhuo4, Shaonan Zhu5, Qi Shen1, Dawei Han3 3 

1Key Laboratory of VGE of Ministry of Education, Nanjing Normal University, Nanjing, China. 4 

2Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and 5 

Application, Nanjing, China. 6 

3Department of Civil Engineering, University of Bristol, Bristol, UK. 7 

4Department of Civil and Structural Engineering, the University of Sheffield, Sheffield, UK. 8 

5College of Geographical and Biological Information, Nanjing University of Posts and Telecommunications, 9 

Nanjing, China. 10 

Corresponding author: Qiang Dai (qiangdai_nnu@163.com)  11 

 12 

Keywords 13 

satellite soil moisture; landslide; soil moisture variability; SMAP 14 

Abstract 15 

With the development of remote sensing technology, satellite-based soil moisture estimates become more 16 

and more available, and the potential of using satellite soil moisture products in landslide hazard assessment 17 

has been widely recognized. However, to our knowledge, there is a lack of studies exploring the performance 18 

difference of various satellite soil moisture products for such an application. Therefore, this study aims to 19 

compare several state-of-the-art satellite soil moisture products on their potentials in landslide applications. 20 

The selected products include the ESA CCI soil moisture dataset, the SMAP Level-3 (L3), enhanced Level-21 

3 (L3), Level-4 (L4) surface, and Level-4 (L4) root zone soil moisture datasets. Specifically, the completeness 22 

of different datasets is calculated to assess their applicability in practical applications. To investigate the 23 
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relationship between the soil moisture and the commonly used rainfall information in landslide predictions, 24 

the correlation study of the satellite soil moisture with the antecedent cumulated rainfall is also carried out. 25 

In addition, to explore whether the satellite soil moisture can provide valuable information for landslide 26 

hazard assessment, infiltration events are identified based on the time series of satellite soil moisture, and the 27 

significance of event characteristics (such as event duration, soil moisture change, etc.) in landslide 28 

occurrence is then investigated with Bayesian analysis. This study is carried out in a landslide-prone area, 29 

the Emilia-Romagna region in northern Italy. Results show that the SMAP L4 product does not have any 30 

missing values, beneficial to the continuous monitoring of landslides. As for the correlation relationship 31 

between soil moisture and antecedent cumulated rainfall, the SMAP L4 product also has more rational spatial 32 

distribution of the Pearson correlation coefficients compared with other datasets, which can be better 33 

explained by the distribution of slope and TWI (topographic wetness index). Bayesian analysis on the 34 

infiltration events shows that our prior knowledge of the probability of landslide occurrence is better 35 

improved by using the ‘SMAP L4 root zone soil moisture’-derived infiltration events, indicating its greater 36 

potential to be used for landslide hazard assessment in the study region.  37 

1. Introduction 38 

As one of the most common and frequent natural hazards, landslides pose great threats to human lives and 39 

infrastructures. With the increasing development of mountainous areas, people and infrastructures are 40 

becoming more exposed to landslides. The increase of extreme rainfall events caused by climate change also 41 

increases the frequency of rainfall-triggered landslides. These make the threats from landslides more serious.  42 

To mitigate the impact of landslides, a landslide early warning system (LEWS) is essential to notify the public 43 

of upcoming landslides in the hazard regions all over the world (Lagomarsino et al. 2012; Naidu et al. 2018; 44 
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Piciullo et al. 2018; Segoni et al. 2018). From the published literature, LEWS is mainly based on traditional 45 

statistical approaches, like the commonly used rainfall thresholds. Although LEWS performs well in terms 46 

of high hit rate, it is usually achieved at the cost of high false alarm rates (Gariano et al. 2019; Rosi et al. 47 

2016). Based on the rationale that landslides are initiated by the increase in pore water pressures, which is 48 

more related to soil moisture, some scholars attempted to improve the credibility of LEWS by making use of 49 

the soil moisture information (Glade et al. 2000; Godt et al. 2006; Thomas et al. 2019; Zhao et al. 2019; 50 

2020). For instance, Marino et al. (2020) defined hydro-meteorological thresholds with the soil moisture and 51 

rainfall information, and the false alarm rate of LEWS was significantly reduced. Besides combining with 52 

rainfall information, soil moisture is also directly used to provide valuable information for landslide early 53 

warnings. For example, Zhuo et al. (2019b) developed soil moisture thresholds for landslides monitoring 54 

under varied environmental conditions including land cover, soil type and slope. Wicki et al. (2020) used soil 55 

moisture as a proxy for landslide occurrences, and demonstrated the potential of soil moisture measurements 56 

for regional landslide early warning. 57 

In-situ measurements could provide accurate soil moisture information; however, due to the high cost of 58 

instruments and maintenance, it is difficult to have dense measurement networks over large areas. There are 59 

only a few studies that have explored the potential of using in-situ soil moisture measurements for landslide 60 

early warnings (Mirus et al. 2018a; 2018b; Thomas et al. 2020). Land surface modelling or hydrological 61 

modelling is another way to estimate soil moisture. Zhuo et al. (2019a) integrated three advanced Land 62 

Surface Model schemes with the Weather Research and Forecasting (WRF) model to estimate soil moisture 63 

for landslide hazard assessment. Zhao et al. (2020) used a distributed hydrological model SHETRAN to 64 

simulate soil moisture, and applied it to define thresholds for landslide predictions. However, limitations 65 

persist for these modelling approaches due to the high demand for accurate data inputs. Soil moisture 66 
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information could also be retrieved using remote sensing technology, which is a major source of large-scale 67 

dataset that is available globally. There are many satellites in orbit providing soil moisture estimates. Some 68 

are specifically dedicated to the measurement of soil moisture from space, like the Soil Moisture Ocean 69 

Salinity (SMOS) mission by the European Space Agency (ESA), and the Soil Moisture Active Passive 70 

(SMAP) mission by the National Aeronautics and Space Administration (NASA); Others provide soil 71 

moisture estimates by carrying onboard sensors, like the Advanced Scatterometer (ASCAT) on the ESA’s 72 

MetOp-A and MetOp-B satellites, and the Advanced Microwave Scanning Radiometer 2 (AMSR2) on the 73 

Japan Aerospace Exploration Agency (JAXA)’s GCOM-W1 satellite. Extended from these measurements, 74 

there are various satellite-based soil moisture products available for research and operational purposes, such 75 

as the ESA Climate Change Initiative (CCI) soil moisture product derived by merging multiple active and 76 

passive sensors (https://www.esa-soilmoisture-cci.org/), and the SMAP Level-3 (L3), enhanced Level-3 (L3), 77 

Level-4 (L4) surface and root zone soil moisture products derived from the estimates of the SMAP passive 78 

microwave radiometer (https://smap.jpl.nasa.gov/data/). With the availability of satellite-based soil moisture 79 

estimates, there is an increasing interest in the possibility of using such datasets for landslide hazard 80 

assessment. For instance, Brocca et al. (2016) used satellite soil moisture product ASCAT to improve the 81 

prediction of landslide hazard for an operational early warning system in Umbria Region (central Italy). 82 

Thomas et al. (2019) assessed the feasibility of satellite-based information in the definition of thresholds for 83 

landslides, and demonstrated the utility of the SMAP L4 root zone product for LEWS. Felsberg et al. (2021) 84 

carried out a global feasibility study to explore the effectiveness of SMOS, SMAP, and GRACE observations, 85 

land surface simulations, and data assimilation for the probabilistic modeling of hydrologically triggered 86 

landslides. The authors pointed out that the SMAP L4 product was generally more beneficial than the others 87 

for the landslide applications.  88 
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Despite a number of studies that have demonstrated the potential of using satellite soil moisture in landslide 89 

hazard assessment, few have evaluated and compared the difference in this potential for various satellite soil 90 

moisture products. Due to differences in satellite sensors, scan pattern, revisit period and processing 91 

algorithms, satellite-based soil moisture products vary greatly in accuracy and resolutions, which has been 92 

widely explored in studies of comparing different satellite soil moisture products (Al-Yaari et al. 2019; Cui 93 

et al. 2017; Ma et al. 2019). It could be inferred that these different characteristics will lead to different 94 

potentials for landslide applications. Therefore, we aim to assess the potential of several state-of-the-art 95 

satellite soil moisture products for landslide hazard assessment, which can provide a relevant and timely 96 

contribution filling in a critical knowledge gap in the field and further prompt the use of satellite soil moisture 97 

in landslide researches. In this study, five satellite soil moisture datasets are selected, including the ESA CCI 98 

soil moisture dataset, the SMAP Level-3 (L3), enhanced Level-3 (L3), Level-4 (L4) surface, and Level-4 (L4) 99 

root zone soil moisture datasets. The reason for considering the ESA CCI soil moisture dataset is that it is 100 

created by merging information from multiple active and passive sensors. SMAP soil moisture datasets are 101 

selected because SMAP operates at L-band whereas AMSR-E and ASCAT retrievals are based on X-band 102 

(10.7 GHz) and C-band (5.3 GHz), respectively, and microwave radiometry at L-band (1.4-1.427 GHz) is 103 

recognized as a better solution for soil moisture estimation (Monerris et al. 2009). Besides, compared with 104 

SMOS that also uses L-band, SMAP could offer observations at a higher spatial resolution that are less 105 

affected by radiofrequency interference than those from SMOS. We assess these satellite soil moisture 106 

products from the perspective of their application in landslide hazard assessment, specifically focusing on 107 

three aspects: (1) the completeness of the datasets is calculated to assess their applicability in practical 108 

applications; (2) to investigate the relationship between the soil moisture and the commonly used rainfall 109 

information in landslide predictions, the correlation study of satellite soil moisture with antecedent cumulated 110 
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rainfall is carried out; (3) to explore the potential of satellite soil moisture in providing valuable information 111 

for landslide hazard assessment, infiltration events are identified based on the time series of satellite soil 112 

moisture data, and the significance of event characteristics in landslide occurrence is investigated with 113 

Bayesian analysis. The study area is the Emilia-Romagna region (northern Italy), which is an extensively 114 

studied landslide-prone region due to its abundant landslide records, and rich measurements of the 115 

hydrological and meteorological information. 116 

2. Study area and data sources 117 

2.1 Study area 118 

The study area is the Emilia-Romagna region in the north of Italy, covering an area of approximately 22446 119 

square kilometers (Figure 1). The north and east of this region are flat, formed by alluvial deposits of the Po 120 

River. The southern and western parts are occupied by hills and mountains of Apennines, with the maximum 121 

altitude reaching 2165m. The mountainous area is highly subject to landslide hazards of different types, such 122 

as rational-translational slides, slow earth flows and complex movements. Landslides are mainly induced by 123 

rainfall in this region. Corresponding to the characteristics of the Mediterranean climate (warm and dry 124 

summer, and mild/cold and wet winter), rainfall-triggered landslides occur frequently in autumns and winters. 125 

2.2 Landslide data 126 

Landslide data used in this study are provided by the Emilia-Romagna Geological Survey, which collects 127 

landslide information from various sources, such as researches, reports, national and local press, technical 128 

documents, etc. The recorded landslide information should include the occurrence location, location accuracy, 129 

occurrence date, date accuracy, landslide characteristics (length, width, type and material), triggering factors, 130 

damage and references. Since landslides mainly occur in mountainous areas, it is difficult to collect all the 131 
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information. As a result, in most cases, only the occurrence location, location accuracy, date and date accuracy 132 

were recorded. Despite these issues, this landslide catalogue is relatively complete compared with other 133 

regions. We only select landslides that have good confidence in occurred location and date for analysis. There 134 

are 292 qualified landslides for the study period from April 2015 to December 2019, marked with pushpins 135 

in Figure 1. 136 

 137 
Figure 1. Map of the Emilia-Romagna region and the location of reference grid centers, landslides, and the 138 

grid center for infiltration event analysis. 139 

2.3 Rainfall data 140 

The rainfall data used in this study are from the ERG5 dataset provided by the Regional Agency for 141 

Prevention, Environment and Energy of Emilia-Romagna (Arpae) (https://dati.arpae.it/dataset/erg5-142 

interpolazione-su-griglia-di-dati-meteo). The ERG5 dataset includes hourly and daily data for the main 143 

meteorological and agro-meteorological variables, such as air temperature, precipitation, relative air humidity, 144 
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solar irradiance and wind. This dataset is obtained by spatial interpolation on a regular grid starting from the 145 

values detected by the network of historical meteorological stations, covering the whole territory of the 146 

Emilia-Romagna region from 2001 to today.  147 

2.4 Satellite soil moisture products 148 

Five latest satellite soil moisture datasets are selected for analysis in this study, which are from for the ESA 149 

CCI soil moisture product and the SMAP soil moisture product. 150 

The ESA CCI soil moisture product is from the ESA Program on Global Monitoring of Essential Climate 151 

Variables (ECV), which is initiated in 2010 and produces an updated soil moisture product every year (Dorigo 152 

et al. 2017). There are three separate soil moisture products derived from active, passive and combined (active 153 

+ passive) sensors. The ACTIVE product and the PASSIVE product were created by fusing scatterometer 154 

and radiometer soil moisture products, respectively; and the COMBINED product was created by blending 155 

the former two datasets. In this study, we use the COMBINED product of the latest version (v05.2). 156 

Compared with the previous versions, this version firstly includes SMAP radiometer data. Other 157 

improvements include improved intercalibration of AMSR-2 in the PASSIVE product and improved retrieval 158 

algorithm for all PASSIVE sensor data. The format of the ESA CCI soil moisture is in the volumetric water 159 

content (m3/m3), with a spatial resolution of 0.25 degree and a daily temporal resolution. 160 

SMAP is a NASA environmental monitoring satellite launched on 31 January 2015, which is the latest on-161 

orbit satellite specifically dedicated to the measurement of soil moisture (Piepmeier et al. 2017). SMAP 162 

carries two instruments, a radiometer (passive) and a synthetic-aperture radar (active). The approach of 163 

combing active and passive measurement takes advantage of the spatial resolution of the radar and the sensing 164 

accuracy of the radiometer. There are four levels of data processing: Level 1 products contain instrument-165 
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related data; Level 2 products result from geophysical retrievals that are based on instrument data; Level 3 166 

products are daily global composites of the Level 2 geophysical retrievals for an entire UTC day, which are 167 

derived by re-sampling the Level 2 product to a global grid; Level 4 products contain estimates of root zone 168 

soil moisture, which are obtained by assimilating SMAP observations into a land surface model. In this study, 169 

three SMAP products are adopted for analysis: (1) SMAP L3 Radiometer Global Daily 36 km EASE-Grid 170 

Soil Moisture, Version 7 (hereinafter referred to as ‘SMAP-P’); (2) SMAP Enhanced L3 Radiometer Global 171 

Daily 9 km EASE-Grid Soil Moisture, Version 4 (hereinafter referred to as ‘SMAP-PE’); (3) SMAP L4 172 

Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 5, 173 

including surface soil moisture and root zone soil moisture (hereinafter referred to as ‘SMAP-Sur’ and 174 

‘SMAP-RZ’, respectively). The format of these four datasets is also in the volumetric water content (m3/m3). 175 

Table 1 shows the detailed information of these satellite soil moisture products. For a fair comparison, we 176 

make the spatial and temporal resolution of these products consistent. The 9 km grid of the SMAP-PE dataset 177 

is used as the reference grid to which all satellite products are interpolated through the nearest neighboring 178 

method (reference grid centers are shown in Figure 1). The adopted temporal resolution is one day, at which 179 

the 3-hourly SMAP-Sur and SMAP-RZ datasets are aggregated. Considering the common temporal coverage 180 

of the selected datasets, the study period is from April 2015 to December 2019.  181 

Table 1. Detailed information of satellite soil moisture datasets. 182 

Product Abbreviation 
Temporal 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Soil 

depth 

ESA CCI COMBINED soil 

moisture product (v05.2) 
ESA CCI 

11. 1978 to 

12. 2019 
daily 0.25° x 0.25° 0-5cm 

SMAP L3 Radiometer 

Global Daily 36 km EASE-

Grid Soil Moisture (v7) 

SMAP-P 
4.2015 to 

present 
daily 36 km x 36km 0-5cm 
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SMAP Enhanced L3 

Radiometer Global Daily 9 

km EASE-Grid Soil 

Moisture (v4) 

SMAP-PE 

 

9 km x 9 km 0-5cm 

SMAP L4 Global 3-hourly 

9 km EASE-Grid Surface 

and Root Zone Soil 

Moisture Geophysical Data 

(v5) 

SMAP-Sur 

3-hourly 9 km x 9 km 

0-5cm 

SMAP-RZ 0-100cm 

3. Methods 183 

3.1 Data pre-processing 184 

As the satellite soil moisture estimates in terms of volumetric water content range from 0 to 1 m3/m3, values 185 

outside this range are firstly marked as outliers. Although in most cases missing values are tagged, there are 186 

datasets with untagged missing values. Therefore, we first search the untagged missing values, and then 187 

replace all the missing values and outliers with a ‘na’ tag. 188 

After the quality control, the time series of soil moisture in terms of the volumetric water content is 189 

normalized with the minimum and maximum value for three reasons. First, owing to the limited knowledge 190 

of the local soil conditions, there are uncertainties related to the sensor calibration, which would lead to 191 

uncertainties associated with the absolute value of the volumetric water content. Second, the difference in 192 

the variation range due to the spatial heterogeneity makes it difficult to carry out analyses. Third, in landslide 193 

research, soil saturation has been used as an indicator of predicting landslide occurrence (Mirus et al. 2018b), 194 

and soil saturation is more related to the relative soil moisture than the absolute value of volumetric water 195 

content. The min-max normalization uses the following equation: 196 

 𝜃𝑛𝑜𝑟𝑚 =  𝜃 − 𝜃𝑚𝑖𝑛𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛 (1) 

where 𝜃 , 𝜃𝑚𝑎𝑥  and  𝜃𝑚𝑖𝑛  are the measured, maximum and minimum value of the volumetric water 197 
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content of the individual time series, respectively. The soil moisture mentioned in the analysis of the 198 

infiltration events refers to the normalized soil moisture. 199 

3.2 Infiltration events 200 

To evaluate the performance of satellite soil moisture product in providing valuable information for landslide 201 

assessment, infiltration events are identified and characterized. The continuous increase of soil moisture 202 

caused by the infiltration process is regarded as the infiltration event. 203 

An automatic algorithm is designed to identify infiltration events based on satellite soil moisture estimates 204 

and quantify the conditions that characterize an infiltration event.  205 

Step 1: Identification of infiltration events 206 

With the pre-processed data, the soil moisture variation rate per day is calculated. The algorithm starts by 207 

searching for the variation rate smaller than the threshold T1, referred to as the minor fluctuation. If the 208 

direction of the minor fluctuation is opposite to its neighbors before and after, the minor fluctuation is marked 209 

as the inverse minor fluctuation. The inverse minor fluctuations are considered as noise, and the algorithm 210 

multiplies these variations rates by -1. The algorithm then searches for the period of continuous increase of 211 

the soil moisture variation rate, and the detected periods are infiltration events. To avoid the effect of other 212 

factors like the measurement noise and temperature effects, infiltration events that have a total increase rate 213 

smaller than the threshold T2 are removed.  214 

T1 and T2 are determined automatically for each time series of the soil moisture. In this study, values less than 215 

the 10th percentile are regarded as noise. Therefore, T1 is determined as the 10th percentile of the soil 216 

moisture variation rate per day, and T2 is determined as 10th percentile of the increase rate of the infiltration 217 
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event.  218 

Step 2: Quantification of infiltration event characteristics 219 

Six indicators are calculated to characterize the infiltration event, including infiltration duration, start soil 220 

moisture, maximum soil moisture, mean soil moisture, soil moisture change from the start to the end and rate 221 

of soil moisture change (soil moisture change divided by the event duration).  222 

As the spatial resolution of the interpolated satellite soil moisture is 9 km, landslides within a 5 km radius 223 

are searched for each infiltration event. Thus, infiltration events are classified into two categories: infiltration 224 

events with landslides and infiltration events without a landslide. For infiltration events with landslides, the 225 

characteristics are re-calculated by truncating the event on the day the landslide occurs. 226 

3.3 Bayesian analysis 227 

Univariate Bayesian analysis is applied to assess the significance of infiltration event characteristics in 228 

landslide occurrence and the corresponding differences between different satellite soil moisture products. 229 

Univariate Bayesian analysis is based on the definition of the conditional probability 𝑃(𝐿|𝐼𝑐), which is the 230 

probability of landslide occurrence given a certain characteristic 𝐼𝑐 of the infiltration event: 231 

 𝑃(𝐿|𝐼𝑐) =  𝑃(𝐼𝑐|𝐿) ∙ 𝑃(𝐿)𝑃(𝐼𝑐)  (2) 

where 𝑃(𝐿)  is the prior probability of landslides, defined as the number of landslide-related infiltration 232 

events divided by the total number of infiltration events; 𝑃(𝐼𝑐) is the probability that a certain characteristic 233 

𝐼𝑐 falls within a given interval, defined as the number of infiltration events that a certain characteristic 𝐼𝑐 234 

falling within a chosen interval, divided by the total number of infiltration events; 𝑃(𝐼𝑐|𝐿) is the conditional 235 

probability of a certain characteristic 𝐼𝑐 given landslide occurrence, calculated in the same way as 𝑃(𝐼𝑐), 236 
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but only considering infiltration events with landslides. 237 

In Bayesian terms, the comparison between 𝑃(𝐿|𝐼𝑐) and 𝑃(𝐿) indicates how our prior knowledge of the 238 

probability of landslide occurrence is improved by the additional information provided by a certain 239 

characteristic of infiltration events.  240 

4. Results 241 

4.1 Completeness evaluation 242 

In landslide research, the analysis based on soil moisture information highly relies on the continuity of data. 243 

However, due to the technical and operational problems, there are typically missing values in the dataset. 244 

Although individual missing values have little effect on the effectiveness of information, multiple and 245 

intermittent missing values could result in loss of information and affect the applicability of data. Therefore, 246 

the completeness of different satellite soil moisture datasets is first evaluated by analyzing the missing values. 247 

Figure 2 shows the boxplot of missing values for different satellite soil moisture datasets at all the reference 248 

grid cells for the period from 1 April 2015 to 31 December 2019. As SMAP L4 is a modeled product, it is 249 

not surprising that SMAP-Sur and SMAP-RZ have the continuous data, without any missing value. The 250 

proportion of missing values for ESA CCI varies greatly for different locations, with a median of 9%. The 251 

variation of missing values for SMAP-P and SMAP-PE is small, where the proportion of missing values 252 

fluctuates around 50%. Besides, through inspecting the distribution of missing values in the dataset, it is 253 

found that the missing values in the ESA CCI dataset are individual and occasional, while the missing values 254 

are interspersed in the SMAP-P and SMAP-PE datasets, with one missing value for every one or two records.  255 

Although the proportion and distribution of missing values of ESA CCI have a minor impact on the analysis 256 

of time series, it is within an acceptable range. However, for SMAP-P and SMAP-PE, the large missing 257 
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values interspersed between records make it difficult to analyze the temporal variation of soil moisture and 258 

provide valuable information for landslide occurrence. In this study, the missing values of SMAP-P and 259 

SMAP-PE product hinder the identification of infiltration events. Therefore, in the following analysis on the 260 

infiltration events, the SMAP-P and SMAP-PE products are omitted. 261 

 262 
Figure 2. Boxplot representations of the median (red line), upper and lower quartiles (box), 1.5Â 263 

interquartile range (whiskers) and outliers (black dots) for missing values at all the reference grid cells for 264 

the period from 1 April 2015 to 31 December 2019. 265 

4.2 The correlation with antecedent cumulated rainfall 266 

The temporal variation of soil moisture relies on the change of meteorological conditions, especially rainfall 267 

conditions. And also because of the easier availability of rainfall information, the antecedent cumulated 268 

rainfall is usually used as an indirect proxy of soil moisture in the prediction of landslide occurrences. As soil 269 

moisture information becomes more and more accessible, it is suggested to directly use soil moisture 270 

information in landslide predictions. To investigate the relationship between the soil moisture and the 271 

commonly used rainfall information, we calculated the Pearson correlation coefficient (r) between the soil 272 

moisture and the antecedent cumulated rainfall, which is shown with boxplots in Figure 3, with the 273 

consideration of different durations of the antecedent period. For ESA CCI, SMAP-P, SMAP-PE and SMAP-274 

Sur, the value of r grows with the increase of the antecedent days, and reaches the best performance when 275 

the duration of the antecedent period is 30 days, after which the value of r becomes smaller again. For SMAP-276 
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RZ, soil moisture has the best correlation relationship with the antecedent 60-day cumulated rainfall. It is 277 

obvious that the soil moisture is correlated with the antecedent cumulated rainfall, which explains why 278 

antecedent cumulated rainfall has been used with some successes for landslide predictions in previous studies. 279 

However, it should be noted that even for the best performance at the antecedent 30-day (or 60-day) 280 

cumulated rainfall, the value of r is not high, with a median less than 0.6. This is expected, because in addition 281 

to rainfall, there are other factors controlling the variation of soil moisture, such as evapotranspiration and 282 

lateral flow.  283 

 284 

Figure 3. Boxplot representations of the median (red line), upper and lower quartiles (box), 1.5Â 285 

interquartile range (whiskers) and outliers (black dots) for the Pearson correlation coefficient (r) between 286 

soil moisture and antecedent cumulated rainfall at all the reference grid cells. 287 

The spatial distribution of the Pearson correlation coefficient (r) between the soil moisture and the antecedent 288 
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cumulated rainfall is further explored, as shown in Figure 4, where the antecedent period is 30 days for ESA 289 

CCI, SMAP-P, SMAP-PE and SMAP-Sur, and 60 days for SMAP-RZ. From Figure 4, for most grid cells, 290 

the value of r varies largely for different soil moisture datasets. For example, for grid cells at the southwest 291 

of the Emilia-Romagna region, the value of r ranges from 0.4 to 0.5 for ESA CCI, and from 0.5 to 0.6 for 292 

SMAP-P, SMAP-PE and SMAP-Sur, while the value of r is greater than 0.6 for SMAP-RZ. Although the five 293 

satellite soil moisture datasets have differences in the value of r for the same grid cell, their spatial distribution 294 

of r exhibits a similar pattern. The value of r generally increases from the northeast to the southwest.  295 

To explain this pattern, we investigate the topographic control on the spatial distribution of the correlation 296 

coefficients by considering the elevation, slope and topographic wetness index (TWI). TWI is defined as 297 

ln (𝛼/ tan 𝛽), where 𝛼 is the local upslope area draining through a certain point and tan 𝛽 is the local slope 298 

(Beven and Kirkby 1979). Given the correlation coefficient is based on the grid cell, the average value of the 299 

topographic indicators (elevation, slope and TWI) is also calculated for each grid cell. Figure 5 shows the 300 

scatter plots of the Pearson correlation coefficient (r) against topographic indicators for the five satellite soil 301 

moisture datasets. For ESA CCI, SMAP-P and SMAP-PE, there is no obvious relationship between Pearson's 302 

r and the topographic indicators in terms of elevation, slope and TWI. For SMAP-Sur and SMAP-RZ, the 303 

slope correlate positively with Pearson's r, while TWI correlates negatively with r. The opposite relationship 304 

for slope and TWI is reasonable, because TWI has a negative relationship with slope. When TWI is larger, 305 

the lateral flow has an important role in the variation of soil moisture in addition to the antecedent rainfall, 306 

which could lead to a smaller r between the soil moisture and the antecedent cumulated rainfall. Therefore, 307 

TWI is expected to have a negative correlation with r. Moreover, given the negative relationship between 308 

TWI and slope, the slope is expected to have a positive correlation with r. From this point, SMAP-Sur and 309 

SMAP-RZ perform better than other datasets.  310 
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 311 

Figure 4. Spatial distribution of the Pearson correlation coefficient (r) between soil moisture and antecedent 312 

cumulated rainfall for five satellite soil moisture datasets. 313 

 314 

Figure 5. Scatter plots of the Pearson correlation coefficient (r) against topographic indicators (elevation, 315 
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slope and TWI) for the five satellite soil moisture datasets. 316 

4.3 The potential in providing valuable information for landslide assessment 317 

To investigate the potential of satellite soil moisture products in providing valuable information for landslide 318 

hazard assessments, we first identify infiltration events based on the time series of satellite soil moisture, and 319 

explores the significance of event characteristics in landslide occurrence using univariate Bayesian analysis. 320 

Only grid cells that have more than 5 landslides within a 5 km radius are selected for analysis in this section. 321 

Thus we obtained 21 grid cells and 153 landslides for these grid cells.  322 

The identified infiltration events are visualized in Figure 6 for a sample period (from 1 July 2015 to 30 April 323 

2016) at a sample grid cell (marked with the yellow triangle in Figure 1). During this period, the number of 324 

identified infiltration events for ESA CCI, SMAP-Sur and SMAP-RZ are 58, 43 and 32, respectively. The 325 

difference in the number of infiltration events is mainly explained by the data characteristics, where SMAP-326 

RZ has a smoother behavior of the soil moisture variation compared with ESA CCI and SMAP-Sur. For the 327 

sample grid, there are four infiltration events associated with landslides, with some infiltration events 328 

triggering more than one landslide. It is found that these landslides typically occur at a relative wet soil 329 

moisture condition or with a sharp increase in soil moisture.  330 
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 331 

Figure 6. An example of identified infiltration events based on the time series of soil moisture, as well as 332 

the corresponding landslides for a) ESA CCI, b) SMAP-Sur and c) SMAP-RZ. 333 

To analyze the characteristics of infiltration events for different satellite soil moisture datasets, the 334 

distribution of the infiltration event characteristics is shown in Figure 7. Infiltration events derived from 335 

SMAP-RZ have the largest event duration, followed by SMAP-Sur and ESA CCI; while the results for the 336 

soil moisture change are opposite: the soil moisture change is smaller for SMAP-RZ than ESA CCI and 337 

SMAP-Sur. This is mostly because the effect of rainfall on soil-moisture dynamics is dampened with soil 338 

depth. For the start soil moisture, maximum soil moisture and mean soil moisture, there are similar 339 

distributions for the satellite soil moisture datasets: ESA CCI has the highest values when the cumulative 340 

probability is less than 30%, and SMAP-Sur has the highest values when the cumulative probability is greater 341 

than 35%. As for rate of soil moisture change, at the same cumulative probability, ESA CCI has the highest 342 

value, followed by SMAP-Sur and then SMAP-RZ. This distribution could be explained by the distribution 343 
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of the event duration and soil moisture change. These results indicate that there are great differences in 344 

infiltration event characteristics between different satellite soil moisture estimates. 345 

 346 

Figure 7. Characteristics of infiltration events derived from different satellite soil moisture datasets.  347 

The significance of the infiltration event characteristics in explaining landslide occurrences is evaluated with 348 

univariate Bayesian analysis. Six infiltration event characteristics are tested: infiltration duration, start soil 349 

moisture, maximum soil moisture, mean soil moisture, soil moisture change and the rate of soil moisture 350 

change. For each event characteristic, its possible values are divided into several intervals according to the 351 

variation range. And the conditional probability of landslide occurrence is calculated for every interval. The 352 

results of the analysis are shown in Figure 8-10 for ESA CCI, SMAP-Sur and SMAP-RZ respectively. From 353 

equation (2), the ratio of 𝑃(𝐼𝑐|𝐿)  and 𝑃(𝐼𝑐)  (multiplied by 𝑃(𝐿) ) gives the conditional probability of 354 

landslide occurrence 𝑃(𝐿|𝐼𝑐) . As a result, a large difference between 𝑃(𝐼𝑐|𝐿)  and 𝑃(𝐼𝑐)  can give high 355 
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𝑃(𝐿|𝐼𝑐) and indicates the high significance of the considered event characteristic.  356 

The results of ESA CCI in Figure 8 clearly show that except for the rate of soil moisture change, there are 357 

differences between 𝑃(𝐼𝑐|𝐿) and 𝑃(𝐼𝑐) for other event characteristics. In particular, 𝑃(𝐼𝑐|𝐿) and 𝑃(𝐼𝑐) 358 

are markedly different and the corresponding landslide probability 𝑃(𝐿|𝐼𝑐)  is well above the prior 359 

probability 𝑃(𝐿) when the event duration is 5 days, and the start soil moisture, mean soil moisture and soil 360 

moisture change are in the interval of 0.6-0.8, and the maximum soil moisture is in the interval of 0.8-1. From 361 

the results of SMAP-Sur in Figure 9, for event characteristics other than the rate of soil moisture change, 362 

there are differences between 𝑃(𝐼𝑐|𝐿) and 𝑃(𝐼𝑐). And the largest landslide probability 𝑃(𝐿|𝐼𝑐) is obtained 363 

when the event duration is between 7-9 days, and other event characteristics are in the highest interval. As 364 

for the results of SMAP-RZ in Figure 10, there are differences between 𝑃(𝐼𝑐|𝐿) and 𝑃(𝐼𝑐) for all the event 365 

characteristics. When the start soil moisture, maximum soil moisture and mean soil moisture are in the 366 

interval of 0.8-1, the corresponding conditional probability of landslide occurrence 𝑃(𝐿|𝐼𝑐)  reaches its 367 

largest values. When the event duration, soil moisture change and rate of soil moisture change are in the 368 

interval of 13-19 days, 0.1-0.3 and 0.03-0.06 respectively, the conditional probability 𝑃(𝐿|𝐼𝑐) is well above 369 

the prior probability 𝑃(𝐿).  370 

Based on the above results, for the three satellite soil moisture datasets, the conditional probability of 371 

landslide occurrence  𝑃(𝐿|𝐼𝑐)  is larger than the prior probability 𝑃(𝐿) , generally when the event 372 

characteristics (event duration, start soil moisture, maximum soil moisture, mean soil moisture and soil 373 

moisture change) are in their higher intervals, indicating that the five event characteristics of higher values 374 

are highly significant in explaining landslide occurrences. This is consistent with the real-life situation, 375 

because landslides are more likely to occur when the soil moisture conditions are wetter and the infiltration 376 
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process lasts longer. In addition, it is interesting to find when the event characteristics are in their higher 377 

intervals, the difference between 𝑃(𝐿|𝐼𝑐)  and 𝑃(𝐿)  is more distinct for SMAP-RZ than ESA CCI and 378 

SMAP-Sur. This implies that our prior knowledge of the probability of landslide occurrence is better 379 

improved by using the ‘SMAP-RZ’-derived infiltration events, indicating that SMAP-RZ has greater 380 

potential in providing valuable information for landslide hazard assessment compared with the ESA CCI and 381 

SMAP-Sur datasets. 382 

 383 

Figure 8. Univariate Bayesian analysis of the infiltration events derived from ESA CCI by considering the 384 

event characteristic of a) event duration, b) start soil moisture, c) maximum soil moisture, d) mean soil 385 

moisture, e) soil moisture change and f) rate of soil moisture change. 386 

 387 
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 388 

Figure 9. Univariate Bayesian analysis of the infiltration events derived from SMAP-Sur by considering the 389 

event characteristic of a) event duration, b) start soil moisture, c) maximum soil moisture, d) mean soil 390 

moisture, e) soil moisture change and f) rate of soil moisture change. 391 

 392 

Figure 10. Univariate Bayesian analysis of the infiltration events derived from SMAP-RZ by considering 393 

the event characteristic of a) event duration, b) start soil moisture, c) maximum soil moisture, d) mean soil 394 

moisture, e) soil moisture change and f) rate of soil moisture change. 395 

5. Discussion 396 
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5.1 Identification of infiltration events 397 

Based on the time series of satellite soil moisture, the infiltration events are identified using an automatic 398 

algorithm, which requires the determination of two thresholds T1 and T2. In this study, T1 and T2 are 399 

determined as their 10th percentiles. One question that arises is whether the value of thresholds has effect on 400 

the identified infiltration events and the results of Bayesian analysis. Taking the SMAP-RZ dataset as an 401 

example, we identify infiltration events by determining thresholds as the 5th, 15th and 20th percentiles, 402 

respectively, and carried out the corresponding Bayesian analysis. The results of Bayesian analysis are very 403 

similar for all the six event characteristics, and we chose the results of the event duration and mean soil 404 

moisture to show in Figure 11 and Table 2. As is seen, for the two event characteristics, the pattern of the 405 

probability distribution is very similar for all test thresholds. The only difference exhibits in the magnitude 406 

of the probability, and the difference is very small (Table 2). By comparing the results of different satellite 407 

soil moisture datasets, it is found that the limited difference caused by the threshold values has little effect 408 

on the comparison results, where the characteristics of ‘SMAP-RZ’-derived infiltration events could greatly 409 

improve our prior knowledge of the probability of landslide occurrence. It should be noted that this 410 

conclusion is limited to the case where the thresholds vary from 0 to their 20th percentiles. In addition, 411 

although the threshold values have little effect on the results of Bayesian analysis, they do influence the total 412 

number of infiltration events: the total number of infiltration events decreases as the threshold values become 413 

larger. Therefore, for other applications of the infiltration events, for example, the prediction of landslides, 414 

the threshold values may affect the results, and more attention should be paid to the selection of the thresholds. 415 

Clearly more studies are needed to verify this assumption. 416 
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 417 

Figure 11. Univariate Bayesian analysis of the infiltration events identified based on different threshold 418 

values. 419 

Table 2a. Results of Bayesian analysis for the event characteristic of the duration by considering different 420 

thresholds.  421 

Threshold 1 Threshold 2 P(L) 
P(L|Ic), Ic:Duration 

[1,7) [7,13) [13,19) [19,25] 

P5% P5% 0.014  0.012  0.033  0.286  0 

P10% P10% 0.015  0.013  0.030  0.222  0 

P15% P15% 0.016  0.014  0.023  0.231  0 

P20% P20% 0.017  0.015  0.023  0.188  0 

Table 2b. Results of Bayesian analysis for the event characteristic of mean soil moisture by considering 422 

different thresholds.  423 

Threshold 1 Threshold 2 P(L) 
P(L|Ic), Ic: Mean Soil Moisture 

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1] 

P5% P5% 0.014  0  0.003  0.006  0.018  0.107  

P10% P10% 0.015  0  0.003  0.006  0.020  0.121  

P15% P15% 0.016  0  0.003  0.007  0.022  0.129  

P20% P20% 0.017  0  0.003  0.006  0.024  0.148  

5.2 Advantages of the SMAP L4 product 424 

To gain a better understanding of the difference between different satellite soil moisture datasets in landslide 425 

assessment potential, we evaluate the satellite soil moisture products based on three aspects: (1) the 426 

applicability in practical applications in terms of data completeness; (2) the relationship with the commonly 427 
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used rainfall information in landslide predictions; (3) the potential to provide valuable information for 428 

landslide hazard assessment. 429 

For the completeness evaluation, SMAP L4 product (including the SMAP-Sur and SMAP-RZ datasets) do 430 

not have any missing values, hence are beneficial to analyzing the temporal variations of soil moisture and 431 

monitoring the landslide occurrence. The correlation between soil moisture and antecedent cumulated rainfall 432 

shows that SMAP-Sur and SMAP-RZ have more rational spatial distribution of the Pearson correlation 433 

coefficients compared with other datasets, which can be better explained by the distribution of slope and TWI. 434 

As for the performance in providing valuable information for landslide hazard assessment, the results of 435 

Bayesian analysis indicate that our prior knowledge of the probability of landslide occurrence is better 436 

improved by using the ‘SMAP-RZ’-derived infiltration events, compared with the ESA CCI and SMAP-Sur 437 

dataset.  438 

In summary, the SMAP L4 product, especially the SMAP-RZ dataset, performs better in our evaluation 439 

studies, indicating greater potential to be used in landslide assessment in the study region. There are several 440 

potential reasons for such an outcome. First, SMAP L4 is a modeled product, it is not expected to have any 441 

gaps in the time series. Second, from the published studies on the evaluation of satellite soil moisture products, 442 

the SMAP L4 product shows higher accuracy with in-situ measurements (Al-Yaari et al. 2019; Reichle et al. 443 

2017). And it is inferred that the better performance of the SMAP L4 product benefits from its processing 444 

algorithm, which assimilates SMAP L-band brightness temperature measurements and precipitation 445 

observations into the NASA Catchment land surface model. The higher accuracy of the SAMP L4 product 446 

may explain the better correlation relationship of SMAP-RZ and SMAP-Sur with the antecedent cumulated 447 

rainfall, in terms of the more rational spatial distribution. Third, considering that shallow landslides typically 448 

occur at depth deeper than the uppermost 5 cm, the greater the depth of soil moisture measurement, the better 449 
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it can represent the actual hydrologic response that triggers landslides(Marino et al. 2020). Therefore, it is 450 

not surprising that SMAP-RZ performs better in providing valuable information for landslide occurrence. 451 

Besides, as the landslide assessment potential of satellite soil moisture is evaluated by taking advantage of 452 

infiltration events, a smoother signal of SMAP-RZ time series allows easier identification of the significant 453 

infiltration events. 454 

In addition to the above superior performance of SMAP-RZ to other datasets, SMAP-RZ also shows 455 

advantages in landslide predictions compared with the commonly used rainfall information. As landslide 456 

occurrence is related to the increase of pore water pressure and the decrease of matric suction that are caused 457 

by the infiltration process, characterizing infiltration events based on soil moisture estimates provides a more 458 

direct way of landslide occurrence identification than using rainfall information. Besides, the high-frequency 459 

rainfall data is too “noisy” relative to the dampened signal of root zone soil moisture that is provided by 460 

SMAP-RZ. Therefore, SMAP-RZ can better capture the timescale of infiltration events related to landslides. 461 

5.3 Methodological limitations 462 

Specific limitations arise from the use of normalized soil moisture data. Although the normalized data 463 

facilitates the analysis, it has no physical meaning other than the relative wet condition, which makes it 464 

difficult to see the difference in data for different locations. An improvement in this respect could be the 465 

derivation of the soil saturation, which needs measurements of the porosity and the saturated and residual 466 

water content at each location; however, such information is usually unavailable.  467 

When carrying out the correlation study between the satellite soil moisture and the antecedent cumulated 468 

rainfall, we only use three topographic indicators (elevation, slope and TWI) to explain the spatial distribution 469 

of the correlation coefficients. However, there are other factors that can affect the spatial distribution of soil 470 
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moisture, such as soil texture and vegetation (Gómez-Plaza et al. 2001), which may also have influence on 471 

the spatial distribution of the correlation coefficients. Therefore, a detailed analysis will be carried out in our 472 

future studies. 473 

Furthermore, Bayesian analysis is limited by the completeness of landslide data. The landslide records used 474 

in this study are based on human experiences (e.g. reports, national and local press, technical documents, 475 

etc.), thus small events with less damage to humans or infrastructure are likely to be unreported. Besides, as 476 

the infiltration events with landslides are truncated on the day the landslide occurs, the date-based landslide 477 

timing may introduce uncertainties to the event characteristics. Consequently, the results of Bayesian analysis 478 

could be biased.  479 

Finally, through the identification of the infiltration events based on satellite soil moisture and the analysis 480 

of the significance of event characteristics in landslide occurrence, we can quantitatively evaluate the 481 

landslide assessment potential of different satellite soil moisture products. In addition to the evaluation 482 

application as shown in this study, the derived infiltration events have the potential to be used in landslide 483 

hazard assessment such as for landslide predictions, and therefore further explorations in this are encouraged. 484 

6. Conclusions  485 

In this study, we assess the potential of different satellite soil moisture products in landslide hazard 486 

assessment in the Emilia-Romagna region, using the ESA CCI soil moisture dataset, the SMAP Level-3 (L3), 487 

enhanced Level-3 (L3), Level-4 (L4) surface, and Level-4 (L4) root zone soil moisture datasets. It is found 488 

that the SMAP L4 product, especially the SMAP-RZ dataset, performs better in this comparative study. 489 

Specifically, the SMAP L4 product has no missing values, while SMAP L3 product has intermittent missing 490 

values, unfeasible for analyzing the temporal variations of soil moisture. The correlation between the soil 491 



29 
 

moisture and the antecedent cumulated rainfall shows that for the SMAP L4 product, the spatial distribution 492 

of the correlation coefficients can be better explained by the distribution of slope and TWI. As for the 493 

performance in providing valuable information for landslide hazard assessment, Bayesian analysis on the 494 

infiltration events indicates that our prior knowledge of the probability of landslide occurrence is better 495 

improved by using the ‘SMAP-RZ’-derived infiltration events, compared with the ESA CCI and SMAP-Sur 496 

dataset. 497 

In summary, it can be concluded that the SMAP L4 root zone soil moisture has a greater potential to be used 498 

for landslide hazard assessment in the study area. In order to make the conclusion more general, more 499 

researches are needed using other soil moisture datasets and evaluation methods. For instance, the collection 500 

of in-situ soil moisture measurements will be critical to carry out further evaluations by comparing the 501 

satellite soil moisture products with the ground-based measurements.  502 
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moisture, e) soil moisture change and f) rate of soil moisture change. 604 

Figure 9. Univariate Bayesian analysis of the infiltration events derived from SMAP-Sur by considering the 605 

event characteristic of a) event duration, b) start soil moisture, c) maximum soil moisture, d) mean soil 606 

moisture, e) soil moisture change and f) rate of soil moisture change. 607 

Figure 10. Univariate Bayesian analysis of the infiltration events derived from SMAP-RZ by considering the 608 

event characteristic of a) event duration, b) start soil moisture, c) maximum soil moisture, d) mean soil 609 

moisture, e) soil moisture change and f) rate of soil moisture change. 610 

Figure 11. Univariate Bayesian analysis of the infiltration events identified based on different threshold 611 

values. 612 


