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Abstract

Purpose

Volumetric liver fat fraction (VLFF) measurements were made using the HepaFat-Scan®

technique at 1.5T and 3T to determine the agreement between the measurements obtained

at the two fields.

Methods

Sixty patients with type 2 diabetes (67% male, mean age 50.92 ± 6.56yrs) and thirty healthy

volunteers (50% male, mean age 48.63 ± 6.32yrs) were scanned on 1.5T Aera and 3T

Skyra (Siemens, Erlangen, Germany) MRI scanners on the same day using the HepaFat-

Scan® gradient echo protocol with modification of echo times for 3T (TEs 2.38, 4.76, 7.14

ms at 1.5T and 1.2, 2.4, 3.6 ms at 3T). The 3T analyses were performed independently of

the 1.5T analyses by a different analyst, blinded from the 1.5T results. Data were analysed

for agreement and bias using Bland-Altman methods and intraclass correlation coefficients

(ICC). A second cohort of 17 participants underwent interstudy repeatability assessment of

VLFF measured by HepaFat-Scan® at 3T.

Results

A small, but statistically significant mean bias of 0.48% was observed between 3T and 1.5T

with 95% limits of agreement -2.2% to 3.2% VLFF. The ICC for agreement between field

strengths was 0.983 (95% CI 0.972–0.989). In the repeatability cohort studied at 3T the

repeatability coefficient was 4.2%. The ICC for agreement was 0.971 (95% CI 0.921–

0.989).
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Conclusion

There is minimal bias and excellent agreement between the measures of VLFF using the

HepaFat-Scan® at 1.5 and 3T. The test retest repeatability coefficient at 3T is comparable to

the 95% limits of agreement between 1.5T and 3T suggesting that measurements can be

made interchangeably between field strengths.

Introduction

Non-alcoholic fatty liver disease (NAFLD) poses a significant healthcare burden with its inci-

dence affecting 17–46% of adults in Western countries [1, 2]. A hallmark of NAFLD is the

increased accumulation of triglyceride content within hepatocytes that results in steatosis [3,

4]. Many studies have shown that hepatic fat content is associated with obesity related meta-

bolic complications [5, 6]. The global prevalence of NAFLD in type 2 diabetes (T2DM) is now

55.5% and the presence of insulin resistance and diabetes is considered a risk factor for more

severe liver disease in NAFLD [7, 8].

Liver biopsy has been regarded as the gold standard to diagnose and stage NAFLD [1].

However, this is an invasive, uncomfortable procedure with significant procedural risks,

including infection, and major haemorrhage [9]. Liver biopsy is also subject to sampling vari-

ability [10–12]. As such, appropriate non-invasive methods of liver fat measurements are

desirable. Over recent years, proton density fat fraction (PDFF) has emerged as the preferred

non-invasive quantitative imaging biomarker in the diagnosis and grading of hepatic steatosis

[12, 13]. PDFF measurement by spectroscopy has been the accepted gold standard of reference

used in the quantification of liver steatosis as it has the ability to measure the proton densities

of triglyceride content within liver tissue [14–16].

PDFF measurements have been previously compared between 1.5T and 3T, using different

manufacturers [16–20]. The largest comparison cohort across manufacturers was in n = 24

obese individuals which made a comparison of 1.5T Ingenia Philips, 3T Ingenia Philips and 3T

750 W GE. The mean Bland-Altman bias was -1.75% in the comparison of two Phillips scanner

and -2.4% in the comparison of 1.5T Phillips against 3T GE [13, 18]. Yokoo et al. have con-

ducted a meta-analysis that included 80 participants who had PDFF measured across both

1.5T and 3T using the same technique [16]. The mean bias associated with field strength for

this meta-analysis was -1.2%. Other smaller cohorts have compared normal individuals against

phantoms, diabetics against non-diabetics and children, with biases varying between -0.4 to

+1.2% [17–20].

The fractional area of fatty vesicles seen in thin histopathology liver biopsy sections is

numerically equivalent to the volumetric fraction of liver tissue occupied by fatty vesicles (the

Delesse Principle) [21, 22]. HepaFat-Scan1 is a proprietary magnitude-based MRI technique

for measuring VLFF based on a series of 2D MR images that considers confounding factors.

Adjustments are made to account for T2� decay, T1-amplification, noise bias, the differential

between T1 relaxation times in water and fat, and the relative amount of MRI visible liver tis-

sue. HepaFat-Scan1 results have been shown to have negligible bias against biopsy and very

high sensitivities and specificities for diagnosing all grades of liver steatosis [23]. The data

acquisition protocol for HepaFat-Scan1 was developed at a field strength of 1.5T, and has

been modified for use at 3T prior to this study. The agreement between VLFF measurements

acquired using HepaFat-Scan1measured at 3T and 1.5T has not been previously described.

Furthermore, there have also been no previous studies comparing VLFF measurements of any
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technique using two Siemens scanners at different field strengths. The comparative interstudy

repeatability of the VLFF measurements using HepaFat-Scan1 at the different field-strengths

as well as at 3T alone has also not been defined.

The primary purpose of this study was to compare the agreement of VLFF measurements

made using the HepaFat-Scan1 technique acquired at 1.5T and 3T. We hypothesised that

there would be good agreement and no significant bias between field strengths. We also

assessed the interstudy repeatability of VLFF measurement using the HepaFat-Scan1 tech-

nique at 3T.

Methods

Study design

This was a single-centre prospective, cross-sectional case-control study conducted at the

National Institute for Health Research (NIHR) Leicester Biomedical Research Centre and Uni-

versity Hospitals of Leicester NHS Trust. The study was conducted with the approval of the

West Midlands–Coventry & Warwickshire Research Ethics Committee (REC Ref: 15/WM/

0222) and Solihull Research Ethics Committee (REC Ref: 17/WM/0192) in accordance with

the ethical standards of the UK REC and Health Research Authority (HRA) in line with the

Helsinki Declaration. All participants recruited were over the age of 18. Written informed con-

sent was obtained on ethics committee approved consent forms that were stored in accordance

with study protocol. Participants were also provided with a copy of the signed consent form.

Study population

The baseline MRI scans of 90 participants from the DIASTOLIC trial (NCT02590822), assess-

ing the effects of low-calorie diet and a structured program of exercise on cardiac structure

and function were included for analysis. This consisted of 60 participants with diabetes and 30

healthy volunteers. Detailed study design and rationale as well as inclusion and exclusion crite-

ria of participants are as previously described [24]. Healthy volunteers were recruited through

interests from mailing out and poster advertisements. The inter-study repeatability cohort

comprised of 17 participants from the PREDICT study (NCT03132129), made up of both dia-

betics and healthy volunteers.

MRI scan protocol

Participants underwent serial MRI examinations that included a multiparametric cardiac scan

as well as assessment of the liver and pancreas on a 1.5T (Aera, Siemens Medical Imaging,

Erlangen, Germany) and 3T (Skyra, Siemens Medical Imaging, Erlangen, Germany) MR plat-

form using an 18-channel phased array receiver coil. Both scans were conducted on the same

day one after the other. The coil was centred over the participant’s heart and liver. MRI data

acquisition for measurement of VLFF via the HepaFat-Scan1 protocol at 1.5T comprised an

opposed-phase, in-phase, opposed-phase gradient echo sequence (TEs 2.38, 4.76, 7.14 ms,

respectively, TR 88 ms, 1 excitation, flip angle 70 degrees, bandwidth 500 Hz) with a 10 second

breath hold. Data from three 2D axial slices, positioned through the widest part of the liver,

were acquired in a single breath-hold. The slice thickness was 4 mm and the matrix was 256 x

256 with a field of view 400 x 400 mm. The 3T HepaFat-Scan1 acquisition used a similar gra-

dient echo sequence again using three axial slices with modification of the TEs (1.2, 2.4, 3.6

ms, respectively), bandwidth 1300 Hz, and the number of slices. All other parameters were the

same as the 1.5T acquisition.

PLOS ONE Comparison of LFF measurement at 3T vs 1.5T

PLOS ONE | https://doi.org/10.1371/journal.pone.0252928 July 13, 2021 3 / 10

https://doi.org/10.1371/journal.pone.0252928


MRI image analysis

Quality control procedures were used to ensure data acquisition parameters included were

accurate on all scans and conformed to the requirements of the protocol. Anonymised data

were sent to Resonance Health for analysis and the HepaFat-Scan1 result for both field

strengths was calculated in an identical manner as previously described [23]. All analyses were

conducted offline by two separate blinded observers at the core laboratory.

The measurements were processed by the HepaFat-Scan1 software (Resonance Health

Analysis Services Pty Ltd, Burswood, Australia) to generate a VLFF. Two regions of interest

(ROI) about 580 mm2 were delineated within the right and left lobes of the liver on each of the

three MRI slices, avoiding large intrahepatic vessels and any obvious motion-affected regions.

The image intensity was measured within the liver ROIs and also in an artefact-free region of

free space outside of the patient to sample the background signal levels. Fig 1 illustrates a series

of images that better describes this process. The background signal was subtracted in quadra-

ture from the liver signal of each echo time before further processing. The raw T2�-corrected

Dixon ratio, α, was calculated for each ROI as previously described [25]. To generate the

Fig 1. Example of MRI image acquired and analysis process. Top Row: Axial magnetic resonance images acquired at

1.5 T for VLFF measurement. Left: 2.38 ms (opposed phase), Middle: 4.76 ms (in phase), Right: 7.14 ms (opposed

phase). Middle Row: Axial magnetic resonance images acquired at 3 T for VLFF measurement. Left: 1.21 ms (opposed

phase), Middle: 2.38 ms (in phase), Right: 3.57 ms (opposed phase). Last Row: In-phase magnetic resonance images

acquired at 1.5T (left) and 3T (right) for the same individual. The green ROIs indicate the two regions used for the

analysis at each field strength. At 1.5T the VLFFs for regions 1 and 2 were 27.1% and 28.2%. At 3T the VLFFs for

regions 1 and 2 were 28.5% and 28.0%.

https://doi.org/10.1371/journal.pone.0252928.g001
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VLFF, the α value is further corrected using the relationship defined between α, the VLFF and

a constant k [25]. The constant k takes into account i) the specific sequence acquisition param-

eters (TR, flip angle), ii) the difference in T1 longitudinal relaxation times between fat and

liver water, iii) the ratio of the proton density in fat to the proton density in non-fatty liver tis-

sue, and iv) the volume ratio between the MR-visible water phase and the MR-invisible phase.

The VLFF in each ROI was then averaged to produce a single unconfounded VLFF result.

The 3T analyses were performed independently of the 1.5T analyses. A different analyst,

blinded from the 1.5T results, analysed the 3T data and no attempt was made to match the

slices or regions of interest used in the 1.5T analyses.

Inter-study repeatability

Interstudy repeatability of VLFF measured by HepaFat-Scan1 at 3T was assessed in 17 partici-

pants (15 participants with T2DM and 2 healthy volunteers) completely independent of the

previous cohort of 90 participants, consented to and completed a repeat scan at 3T under iden-

tical conditions within 20 days of their baseline visit. Acquisition parameters were identical to

the first scan, but no attempt was made to match slice locations or analysis regions of interest

and analysts were blinded to the identity of the participants.

Statistical analysis

Data was analysed using SPSS Statistics version 25. Normally distributed data are shown as

mean ± standard deviation and non-normally distributed data are expressed as median (inter-

quartile range). The Bland-Altman method was used to calculate and display limits of agree-

ment between measures and the presence of systematic bias between VLFF at different field

strengths, and to assess the interstudy repeatability at 3T. The statistical significance of any

bias was tested using a one-sample t-test. Two-way, random effect, intraclass correlation coef-

ficients (ICCs) for absolute agreement was also used to assess the agreement of VLFF measures

between repeat measurements at 3T.

Results

Baseline characteristics

The baseline MRI scans of 90 participants were included for analysis. This included 60 partici-

pants with type 2 diabetes and 30 healthy volunteers. Sixty seven percent of the participants

with diabetes were male, and fifty percent of healthy volunteers were male. Mean age for par-

ticipants with diabetes was 50.92 ± 6.56 yrs, mean BMI 36.50 ± 5.75 and for healthy volunteers

mean age was 48.63 ± 6.32 yrs, BMI 24.32 ± 2.38 kg/m2.

Mean VLFF values at both 1.5T and 3T were significantly higher in diabetics

(12.65 ± 7.34% at 1.5 T;13.34 ± 7.77% at 3T) compared to healthy volunteers (2.72 ± 1.80% at

1.5T; 2.76 ± 1.68% at 3T).

Interfield comparison and repeatability

Bland-Altman analysis showed good agreement and the mean bias between 3T and 1.5T was

small at 0.48% (95% CI 0.19–0.77%) VLFF with 95% limits of agreement between 3.2 and

-2.2% (Fig 2). This mean bias was statistically significant (t = 3.292, P = 0.001).

There was excellent agreement between the two field strength measurements of liver VLFF

with ICC = 0.983 (95% CI 0.972–0.989) for single measures. The descriptive statistics are

detailed within Table 1 with graphical representation in Fig 2.
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Test-retest repeatability

The group of subjects for repeatability testing consisted of 15 with diabetes and 2 healthy vol-

unteers who were 53% male, mean age was 63 years and average BMI 29.8 kg/m2. The average

interval between scans for patients undergoing inter-study repeatability at 3T was 9.4 days

(range 6–20 days). Table 1 details the significant statistical values for this analysis. The Mean

VLFF % at 3T on visit 1 was 10.5 ± 8.99% and visit 2 10.9 ± 9.0%. Agreement was excellent

with ICC of 0.971 (95% CI 0.921–0.989).

Fig 3 illustrates the VLFF repeatability data at 3T. The repeatability coefficient was 4.2%

(95% CI 2.8–5.6%) at 3T indicating that 95% of pairs of measurements are expected to fall

within 4.2% VLFF of each other. One pair of measurements from our study showed a large dif-

ference of 6% VLFF across a period of 7 days. While a real change in the VLFF cannot be ruled

out, there were some technical differences between the data acquisitions. The first analysis

from this participant was limited to a single ROI on a more inferiorly positioned slice com-

pared to the second analysis where two ROIs (one in each lobe) were able to be positioned.

Potentially this difference in anatomical position and number of analysed ROIs may have

impacted on the repeatability of this case. Omitting this case would reduce the repeatability

coefficient to 3.2%.

Discussion

This is the largest single cohort of patients scanned on the same day across two field strengths

on scanners of the same manufacturer to measure liver fat fraction. It is the first study to assess

Table 1. Values and statistical tests for inter-field strength comparison and repeatability cohort.

Interfield Comparison Values (95% CI)

Mean bias 0.48 (0.19–0.77) % VLFF

95% limits of agreement -2.2 to 3.2% VLFF

ICC for absolute agreement 0.983 (0.972–0.989)

Repeatability Cohort Values

Repeatability Coefficient 4.2 (2.8–5.6) % VLFF

ICC for absolute agreement 0.971 (0.921–0.989)

https://doi.org/10.1371/journal.pone.0252928.t001

Fig 2. Comparison of VLFF (%) at 3T vs 1.5T. 2(A) Liver VLFF measurement at 3T plotted against Liver VLFF

measurement at 1.5T for the 90 subjects. The solid line is the line of equivalence. 2(B) The difference between the VLFF

measured at 3T and the VLFF measured at 1.5T plotted against the mean of the 1.5T and 3T measurements for the 90

subjects. The dashed line is the mean bias and the solid lines indicate +/- 95% limits of agreement.

https://doi.org/10.1371/journal.pone.0252928.g002

PLOS ONE Comparison of LFF measurement at 3T vs 1.5T

PLOS ONE | https://doi.org/10.1371/journal.pone.0252928 July 13, 2021 6 / 10

https://doi.org/10.1371/journal.pone.0252928.t001
https://doi.org/10.1371/journal.pone.0252928.g002
https://doi.org/10.1371/journal.pone.0252928


the degree of agreement of HepaFat-Scan1 VLFF measurements at 3T with those at 1.5T. This

study also includes a test-retest repeatability cohort. The measurements obtained span a large

range and include both participants with diabetes as well as healthy volunteers. Even examined

as individual groups, these groups are larger cohorts than have previously been studied in

inter-field comparisons.

The data from this study indicate very good agreement between VLFF measures at these

two field strengths. The small bias measured between 1.5T and 3T VLFF (0.48%, 95% CI 0.19–

0.77%) is comparable with and generally smaller than other examples from the literature [13,

17, 18]. Although the mean bias was statistically significant, the small magnitude of the mean

differences suggests that the interchangeable use of HepaFat-Scan results from 1.5T and 3T is

unlikely to impact clinical decision making.

Although the VLFF values between the two groups are very different, with the participants

with diabetes having strikingly higher values than healthy volunteers, the agreement remains

excellent. This shows that at either field strength, HepaFat-Scan1 VLFF measurements clearly

distinguishes between health and disease states.

This study cohort has shown a positive bias in the difference between 3T and 1.5T MRI

liver fat measurements (i.e. 3T VLFF higher on average than 1.5T VLFF). In the most recently

published comparison of MRI-PDFF between two field strengths, both in GE scanners,

although in a small population the magnitude of the bias was similar to our study, i.e. 0.4%,

however it was a negative bias (i.e. 1.5T PDFF higher than 3T PDFF). Note that while PDFF

and VLFF are different physical aspects of liver fat concentration, they are numerically very

similar in magnitude and are strongly correlated with each other. Hence this is the basis of the

validity of these comparisons. While two recent studies also reported that on average the

MRI-PDFF at 1.5T was higher than at 3T, they also reported, conversely, that the 3T MRS-

determined PDFF was higher on average than the 1.5 MRS-determined PDFF [13, 17]. In our

Fig 3. Repeatability of VLFF Measurements at 3T. (A) 3T VLFF at visit 1 plotted against 3T VLFF at visit 2. The solid line is the line of equivalence. (B) The

difference between 3T VLFF at visit 1 and 3T VLFF at visit 2 plotted against the mean VLFF of visit 1 and visit 2. The solid lines indicate the 95%

repeatability coefficient.

https://doi.org/10.1371/journal.pone.0252928.g003
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study, the 3T scan was always conducted after the 1.5 T scan and this could also be a contribut-

ing factor to the bias.

The test-retest measurement of Hepafat-Scan1 at 3T is again novel and showed excellent

repeatability suggesting precise measurements and robust analysis methodology. Our repeat-

ability coefficient, 4.2 (± 1.4)% at 3T is higher compared to the 2.3 (± 0.3) % reported by Kim

et al. [20]. A potential reason for this has been explained within the results section. Therefore,

we have a technique that agrees at different field strength both in disease states and healthy vol-

unteers and has good test-retest repeatability. Importantly, the repeatability coefficient is com-

parable to the 95% limits of agreement between the results from 1.5T and 3T. Taken together

with the clinically insignificant bias between the results from the two field strengths, the data

suggest that the HepaFat-Scan1method can be used interchangeably between the two field

strengths for clinical purposes.

Limitations

In principle, the small but systematic bias we measured could be used as a basis for correcting

the 3T data, or vice versa, but as this is a single centre study confined to two specific Siemens

scanners, it cannot be implied the results are applicable to other models and manufacturers

although the excellent reproducibility is consistent with the previous literature. More data

from other manufacturers would be required to determine whether the bias measured in this

study using the Hepafat-Scan1methodology was applicable more widely. No phantom data

acquisitions were made in this study, which may have limited the variability between field

strength even further [26], however it is the measurement in patients that is clinically

meaningful.

A limitation of this technique is that it does not sample the entire liver in 3D, but consists of

three 2D slices. In the context of steatosis that is spatially heterogenous, this could present a

potential problem in trying to colocalize images across longitudinal studies. Only one patient

population was studied, diabetes, but this is unlikely to affect the results in other patients with

steatosis since the analysis technique is generic.

Conclusion

Inter-field strength agreement between the VLFF measured using Hepafat Scan1 at 1.5 and

3T is good in a mixed cohort of subjects with diabetes and healthy volunteers. There was a sys-

tematic positive bias in VLFF measured at 3T compared to 1.5T but this difference was so

small as to be considered clinically unimportant. Repeatability of VLFF measured using Hepa-

fat Scan1 at 3T was comparable to the 95% limits of agreement between 1.5T and 3T suggest-

ing that measurements can be made interchangeably between field strengths.
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