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Sequen-C: A Multilevel Overview of Temporal Event Sequences

(Supplemental Materials)

Jessica Magallanes, Tony Stone, Paul D Morris, Suzanne Mason, Steven Wood, and Maria-Cruz Villa-Uriol

This document presents further details regarding the time perfor-
mance analysis (Appendix A), Sequen-C implementation details (Ap-
pendix B), and discusses domain-specific examples for the analytic
tasks (Appendix C).

APPENDIX A. TIME PERFORMANCE ANALYSIS

This appendix adds further details on the time complexity, and presents
additional tables and charts of the performance analysis of different data
subsets. The time performances reported in this paper were obtained in
a laptop with the following characteristics:

• macOS Big Sur Version 11.4
• MacBook Pro (15-inch, 2017)
• Processor 2.9 GHz Quad-Core Intel Core i7
• Memory 16 GB
• Graphics Radeon Pro 560 4GB

Time complexity

The time complexity of Algorithm 1 is O(Nnl2), where N is the num-
ber of input unique sequences, l is the maximum sequence length in
the dataset, and n is the average number of sequences per node. Note
that l is the maximum sequence length in the dataset, as opposed to
the average sequence length, because the length of a new alignment
na∪b will be at least the maximum sequence length amongst the se-
quences in the nodes na and nb. If a sequence with a high length is
aggregated at an early iteration, this length will be carried to all subse-
quent alignments. As observed in Fig. 10 and Fig. 11, the alignment
time increases significantly when the maximum sequence length in the
dataset increases.

The function aggregate is repeated N −1 times, from which the
alignment step (MSA) is the most time consuming with a complexity
of O(nl2). Fig. 8 and Fig. 9 show plots comparing the running time in
seconds for the functions in Algorithm 1 (buildAggregateTree) and
Algorithm 2 (Align, Score and Simplify), according to the maximum
sequence length of the four subsets from the CUREd and MIMIC-III
data shown in Table 1 (in the paper). Note that these plots should show a
quadratic curve given the term l2 in the time complexity, however, they
look quite linear due to the huge gap between the first three maximum
lengths and the last one (e.g. 13, 19, 28, and 177 for CUREd).

Performance for additional subsets of the data

Table 1 in the paper shows the time performance for subsets of 25%,
50%, 75%, and 100% of the data. Tables 2 and 3 show the time for
subsets increasing every 5%. Only the time for buildAggregateTree
and Align are included as these are the ones that are precomputed (see
Appendix B for more details). Unique sequences were ordered by
length before selecting subsets, meaning that the 5% subset contains
the shortest sequence. The additional subsets allow us to see how
the maximum sequence length impacts the time performance, even
when the number of unique sequences does not increase much between
subsets - for example when comparing the alignment time between the
95% and 100% data subsets (see Fig. 10 and Fig. 11).

Fig. 8: Running time per function, according to the maximum sequence
length (13, 19, 28, and 177) of four subsets of the CUREd data. The
Align function is the most time consuming.

Fig. 9: Running time per function, according to the maximum sequence
length (8, 10, 12, and 96) of four subsets of the MIMIC-III data. The
Align function is the most time consuming.

APPENDIX B. IMPLEMENTATION DETAILS

The GUI of Sequen-C was implemented in Java, while the clustering
and alignment steps were implemented in R.

As mentioned in Appendix A, a big factor in the performance is the
maximum sequence length in the dataset (l). Around 300 to 500 input
unique sequences with an average sequence length of 7 to 10 events can
be aligned relatively fast (under 10 seconds), as long as the length of
certain sequences do not go too far from the average. For Sequen-C to
have real time interaction, Algorithms 1 and 2 are precomputed, except
for the Score and Simplify steps which are computed on the fly as the
value of the number of clusters (k) or information score threshold (Iτ )
change.

The R script precomputes the aggregate tree and the alignment of
each node in the tree. The hierarchy of clusters and alignment matrices
are saved to a file. For a selected number of clusters k, the alignment



CUREd dataset

Subset
No. sequences No. event

types
Length of sequences Execution time (s)

Individual Unique Average Maximum buildAggregateTree Align

5% 14232 48 11 7.33 9 0.01 0.38

10% 17869 96 11 8.43 10 0.00 1.23

15% 19065 144 11 8.96 11 0.01 3.17

20% 19696 192 11 9.47 11 0.02 5.70

25% 20124 240 11 9.97 13 0.03 9.27

30% 20200 289 11 10.56 14 0.04 13.49

35% 20417 337 11 11.15 15 0.05 19.29

40% 20738 385 11 11.76 17 0.06 32.71

45% 20794 433 11 12.44 18 0.17 41.27

50% 20901 481 11 13.07 19 0.10 59.11

55% 21006 529 11 13.69 20 0.12 83.32

60% 21327 577 11 14.28 22 0.14 105.54

65% 21400 625 11 14.87 23 0.17 143.82

70% 21461 673 11 15.52 25 0.19 174.42

75% 21520 722 11 16.25 28 0.21 225.50

80% 21583 770 11 17.04 30 0.27 297.74

85% 21657 818 11 17.88 33 0.26 421.03

90% 21707 866 11 18.88 38 0.47 614.18

95% 21757 914 11 20.07 48 0.36 895.94

100% 21805 962 11 22.70 177 0.37 3984.67

Table 2: Time performance of the buildAggregateTree and Align functions for additional subsets of the CUREd data.

MIMIC-III dataset

Subset
No. sequences No. event

types
Length of sequences Execution time (s)

Individual Unique Average Maximum buildAggregateTree Align

5% 135 66 51 4.42 5.00 0.05 0.19

10% 240 131 88 4.94 6.00 0.01 0.40

15% 310 197 112 5.37 7.00 0.12 1.49

20% 375 262 139 5.77 7.00 0.04 2.31

25% 442 328 158 6.07 8.00 0.07 3.46

30% 507 393 184 6.39 8.00 0.10 6.00

35% 573 459 199 6.62 8.00 0.20 6.44

40% 638 524 221 6.88 9.00 0.17 8.74

45% 704 590 231 7.11 9.00 0.21 10.63

50% 770 656 242 7.31 10.00 0.22 16.91

55% 835 721 261 7.55 10.00 0.35 24.75

60% 901 787 277 7.76 10.00 0.34 33.90

65% 966 852 301 7.99 11.00 0.36 37.57

70% 1032 918 322 8.21 11.00 0.48 48.80

75% 1097 983 338 8.45 12.00 0.51 73.36

80% 1163 1049 355 8.71 13.00 1.30 77.56

85% 1228 1114 373 8.99 14.00 0.80 109.02

90% 1294 1180 388 9.34 16.00 1.22 147.31

95% 1359 1245 412 9.79 20.00 1.37 228.06

100% 1425 1311 448 10.68 96.00 1.46 995.39

Table 3: Time performance of the buildAggregateTree and Align functions for additional subsets of the MIMIC-III data.

matrices of the k clusters are retrieved from the file by the Java program.
Then, the Score and Simplify steps are computed on the fly over the
retrieved alignment matrices according to the current value of Iτ . The
times reported in Table 1 (in the paper) refer to the time required to
compute Score and Simplify for all the nodes in the tree, however, in the
implementation these steps are computed only for the selected values of
k or Iτ . On average, it takes 0.11 seconds to recompute Score/Simplify
and repaint the visualization of a given number of clusters, this allows
users to change the vertical and horizontal level-of-detail in real time.
Depending on the dataset, the total preprocessing time can be obtained
as the sum of the buildAggregateTree and Align columns on Tables
2 and 3.

APPENDIX C. DOMAIN-SPECIFIC EXAMPLES

The analytic tasks used to design Sequen-C were defined through a
series of face-to-face (pre-COVID) and online interviews, and feed-
back sessions with three groups of stakeholders in the clinical domain
(emergency services, cardiac intensive care, and outpatients). With the
exception of the expert in the cardiac intensive care domain, experts
were not only problem owners, but they were also data owners, and
they had an active interest in understanding their own data to improve
how they operated.

Data characterization

The event sequence data owned by the stakeholders were partially
derived from processes. This means that for some of the captured
events, there was an internal ordering of events. For example, an



Fig. 10: Alignment time in seconds and maximum sequence length for
the 20 different data subsets shown in Table 2 for the CUREd dataset.

Fig. 11: Alignment time in seconds and maximum sequence length
for the 20 different data subsets shown in Table 3 for the MIMIC-III
dataset.

ambulance does not arrive at the scene unless a call requesting such
service happens first, or a patient cannot see a consultant before waiting
to see that consultant.

In the case of the CUREd dataset, some events come in groups, such
as “Patient arrived Emergency Department”, “Triage”, and “Patient
seen for treatment”. These events are semantically related, they usually
go together and in this order. If they do not, they are considered to
be a deviating pathway worth exploring, possibly indicating a glitch
in the data capturing system. For these three events, there could be
other events in between such as “Ambulance stood down”, an event
related to the ambulance transporting the patient to the Emergency
Department. The interest of the domain experts was to obtain frequent
and infrequent pathways originated from the calls, identify patients with
multiple incidents, and explore the aggregated characteristics of the
patients following a pathway of interest. For the MIMIC-III case study,
the interest was in understanding the impact that certain combinations
of prescribed drugs (irrespective of the administration order) had on
the clinical outcome for a patient (e.g. death or length of hospital stay).
In these cases, enforcing the strict ordering of events when grouping
patients in clusters of similar patients was not the best strategy.

Domain-specific examples

Below we provide domain-specific examples for the analytic tasks
listed in Section 4.

T1. Explore common and deviating pathways: help users to ex-
plore and discover which clusterings summarize better the most
common (and deviating) pathways in the data. Clusters will group

sequences that share a set of event types, regardless of their order.
Examples:

– “When studying the evolution of patients over time and the
influence of certain prescriptions, we would like to obtain
a summary of the distinct clinical pathways, by grouping
patients that have been prescribed with similar drug combi-
nations (not necessarily in the same order).”

– “We would like to identify and explore patients with unique
drug combinations that differ from the rest of patients.”

– “When studying patients calling emergency services, we
would like to obtain a summary of the distinct pathways
originated from the calls according to the occurrence or
absence of certain events in our process. For example, by
grouping patients according to whether they attended the
emergency department or not, or whether they required an
ambulance or not, or whether their call was just handled
via a phone call.”

– “We would like to identify what proportion of patients have
an unusual number of calls to the emergency department
and explore their outcomes.”

T2. Interpret the sequences that constitute a cluster: the visual-
ization should allow users to compare the most common event
orderings (and permutations) within and across clusters using
sequence alignment. Examples:

– “When studying patients calling emergency services, we
would like to quickly understand what events usually occur
after a visit to the emergency department.”

– “We would like to identify patients that make multiple calls
before an ambulance arrives at the scene, and compare them
with patients that receive an ambulance service after the
first call.”

– “We would like to identify scenarios that do not make sense

from a process perspective and that are likely to be data
input errors, to improve how data is captured in practice.
For example, study scenarios where it appears the patient
has been seen by a health professional before a call has
been made to the emergency department.”

– “When studying the evolution of patients over time and
the influence of certain prescriptions, we would like to
understand how the length of stay varies depending on the
drug combination prescribed to patients across care units.”

T3. Focus the analysis on a selected set of records: allow queries
in the dataset to focus on sequences with specific characteristics.
Examples:

– “We would like to focus our analyses on patients above 70
years old with a diagnosis of heart disease.”

– “For the patients calling emergency services, we would like
to focus our analyses on those patients who required an
ambulance and ended up being admitted.”

T4. Obtain details on demand: provide coordinated views so that
users can request finer details of interesting items in the overview.
Users should be able to go from the highest level of aggregation
(i.e. clusters), passing through sequences grouped by their unique
sequence, to individual sequences and their raw data including
event timestamps and duration. Examples:

– “We would like to explore the characteristics of individual
patients within a cluster of interest - including the time
elapsed between a call and the arrival of an ambulance at
the scene, or their total length of stay.”

T5. Aggregate and compare context information for selected
groups of records: the system should allow to aggregate and
compare data attributes (e.g. age, gender, country) for selected
clusters, unique sequences, or individual sequences. Examples:



– “We would like to understand the demographics of interest-
ing patient groups, for example, patients whose call do not
lead to an ambulance service or patients with a recorded
death event.”

Influence of event ordering

The utility of Sequen-C in analyzing temporal event sequences and
choice of distance metric, depends on the nature of the dataset and the
questions from the end users. The proposed approach works well in
situations where there are common events across sequences that act as
milestone events, or in situations when certain events are semantically
associated and will have a natural order between them. However, the
current choice of distance metric will not work, or a different distance
metric will be necessary, in cases where the interest is in studying the
impact of event order in the outcome. For example:

• For patients in cardiac arrest, does the order of certain diagnostic
tests impact patient outcome (e.g. length of stay, death)? Does
the length of stay reduce or increase when an echocardiogram is
performed before an angiogram?

• Following on the last domain-specific example for Task T2, when
we want to study the evolution of patients over time and the
influence of certain prescriptions, besides exploring drug com-
binations, does the order of medication impact the final patient
outcome (e.g. medicine A prescribed before medicine B)?

In the cases above, when event order is an important criteria to
partition patients into groups, another metric such as the Levenshtein
edit distance could be used. Further work is necessary to test the utility
of the proposed multilevel overview with alternative metrics that take
into account order.


