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Spatio-temporal Multi-task Learning for Cardiac

MRI Left Ventricle Quantification
Sulaiman Vesal, Mingxuan Gu, Andreas Maier Member, IEEE, and Nishant Ravikumar

Abstract—Quantitative assessment of cardiac left ventricle
(LV) morphology is essential to assess cardiac function and
improve the diagnosis of different cardiovascular diseases. In
current clinical practice, LV quantification depends on the mea-
surement of myocardial shape indices, which is usually achieved
by manual contouring of the endo- and epicardial. However,
this process subjected to inter and intra-observer variability,
and it is a time-consuming and tedious task. In this paper,
we propose a spatio-temporal multi-task learning approach to
obtain a complete set of measurements quantifying cardiac LV
morphology, regional-wall thickness (RWT), and additionally
detecting the cardiac phase cycle (systole and diastole) for a
given 3D Cine-magnetic resonance (MR) image sequence. We
first segment cardiac LVs using an encoder-decoder network
and then introduce a multitask framework to regress 11 LV
indices and classify the cardiac phase, as parallel tasks during
model optimization. The proposed deep learning model is based
on the 3D spatio-temporal convolutions, which extract spatial
and temporal features from MR images. We demonstrate the
efficacy of the proposed method using cine-MR sequences of
145 subjects and comparing the performance with other state-of-
the-art quantification methods. The proposed method obtained
high prediction accuracy, with an average mean absolute error
(MAE) of 129 mm

2, 1.23 mm, 1.76 mm, Pearson correlation
coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and
myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and
an error rate of 9.0% for phase classification. The experimental
results highlight the robustness of the proposed method, despite
varying degrees of cardiac morphology, image appearance, and
low contrast in the cardiac MR sequences.

Index Terms—Left Ventricle Quantification, Cardiac MRI,
Cardiac Segmentation, Deep Learning, Myocardial Infraction

I. INTRODUCTION

Cardiovascular diseases (CVDs) and other cardiac patholo-

gies are the leading cause of death worldwide [1], [2], [3].

Timely diagnosis is crucial for improving survival rates and

delivering high-quality patient care. Cardiac magnetic reso-

nance imaging (MRI) is a non-invasive imaging modality used

to detect and monitor cardiovascular diseases. Quantitative as-

sessment and analysis of cardiac-MR images are indispensable
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Fig. 1. A schematic representation of LV indices for short-axis cardiac Cine-
MR image. The LV and Myo cavity areas are shown with green and blue
colors in (a) and three LV cavity dimensions with black arrows in (b). (c)
shows Six myocardial regional-wall thicknesses, namely anterolateral (AL),
inferolateral (IL), inferior (I), inferoseptal (IS), anterior (A), inferoseptal (IS)
and anteroseptal (AS). The cardiac phase (systole or diastole) is shown in (d).

for diagnosis and devising suitable treatments. The reliability

of quantitative metrics that characterize cardiac function such

as myocardial deformation and ventricular ejection fraction are

heavily dependent on the precision of ventricle quantification

[4].

In everyday clinical practice, evaluation of LV function is

often conducted by visual assessment and semi-automatic tools

to quantify dynamics in MRI [5], [6] [7]. Hence, clinical

evaluation of regional LV function is mostly qualitative and

by visually observing myocardial wall displacement and de-

formation. Naturally, this process can be error-prone either

due to artifacts arising from cardiac, respiratory or patient

motion, variations in image contrast, or human error. This

may prevent an accurate evaluation of LV structures. On the

other hand, LV assessment by cardiologists requires extensive

expertise and experience [8], [9], [10]. A central part of

morphological cardiac quantification involves manual/semi-

automatic contouring of the endo- and epicardial walls of

the left ventricular myocardium. It is time-consuming and

often subjected to high intra and inter-observer variability.

Moreover, the myocardium contouring process is performed

on the end-systolic (ES), and end-diastolic (ED) frames that

are inadequate for comprehensive analysis of heart function

(across the full cardiac phase) [5]. Notwithstanding recent

advances, LV segmentation is still a challenging problem due

to limited contrast between tissue boundaries, and pathology-

driven variability in shape and appearance in cine-MR se-

quences. [11], [12].

To address these challenges, we propose a deep learning

approach to enable automatic full quantification of LV

morphology in short-axis cardiac cine-MR images without

any further information. We investigate the use of temporal and

spatial information to estimate the cardiac phase, diameters of

the LV blood pool (or cavity) along with different directions,

regional wall thicknesses (RWTs) (as depicted in Fig. 1), and

LV cavity and myocardial areas. Comprehensive assessment
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of these measures requires analysis of images from the

entire 2D + t cine-MR sequence (covering the full cardiac

cycle), thereby considering the temporal dynamics of the heart.

II. RELATED WORK

In recent years, many studies have focused on automatic

full cardiac LV morphological quantification. These methods

are designed either as multi-stage or end-to-end approaches, in

terms of their training strategy. Traditional multi-stage meth-

ods are mainly based on myocardium segmentation [13], [14],

[15], [16], where first the LV endocardium and epicardium

are segmented and then the desired LV indices are estimated

based on segmentation masks. The latter takes advantage

of machine learning algorithms [17], [18], where features

are extracted automatically from cardiac MR images, and a

regression model utilizes these features to estimate the LV

indices. In comparison to the multi-stage methods, end-to-

end methods [13], [19], [20] combine feature extraction and

regression together using deep neural networks.

One of the earliest works for LV quantification based on

manual segmentation proposed by Suinesiaputra et al. [14].

They asked seven cardiologists to manually delineate contours

around myocardium and LV cavity volume at the ES and

ED phases to evaluate cardiac function. As we know, manual

segmentation is very time-consuming, subjective, and not very

efficient. To tackle these limitations, several automatic seg-

mentation algorithms [21], [22], [23], [24] have been proposed.

Wang et al. [25] considered a Bayesian method for two-

ventricular volume estimation that used a likelihood function

for exploiting appearance features and a probability model to

incorporate the area correlation between the cavities. Zhen et

al. [18] initially extracted hierarchical profiles using multi-

scale deep neural networks and then placed them in a random

regression forest to estimate the left ventricle. In this type

of two-step approach, there is only a forward linkage and

no feedback from the second step. Therefore the features

extracted in the first stage may not be closely related to the

target tasks, and the estimated results in the second stage may

not be very accurate.

Moreover, the direct regression-based methods have been

also used to quantify LV indices either in an end-to-end or

multi-stage fashion. Xue et al. [26] proposed an integrated

model to present multiple LV criteria, including two regions

and six RWTs per frame within the cardiac cycle. To model

the temporal dynamics of cardiac sequences, they employed

a Recurrent Neural Network (RNN) followed by a Convo-

lutional Neural Network (CNN) module to regress six RWTs

[19].Additionally, Xue et al. [20] focused on the quantification

of complete LV measurements, which requires estimating the

regions, orientation dimensions, and RWTs simultaneously

for each MR image. To improve the prediction accuracy,

they used both CNN and RNN modules and modeled the

correlations between the different LV criteria with a multi-

task loss. Nevertheless, these methods don’t process the whole

cardiac cycle as a whole for feature extraction, but rather

an embedding of 3-5 neighboring MR frames to incorporate

temporal information. Therefore, they do not guarantee the

temporal dynamic consistency of the estimated volumes across

the whole cardiac cycle. Wang et al. [13] proposed a cascaded

segmentation and regression network, in which the segmenta-

tion component extracts left ventricular myocardial contours,

and the regression component estimates the desired LV criteria.

However, this method only computes the LV indices and not

the cardiac phase cycle. Another study [22] processes stacks

of adjacent slices(k = 5) using 3D convolutional kernels to

incorporate temporal information within the learned model.

Tao et al. [12] in a more clinically adapted approach tested

three different CNNs for fully automated quantification of LV

on multi-centers and multi-vendors study. However, this work

was performed on retrospective data and not cover a wide

range of cardiovascular abnormalities, which is clinically more

demanding. Recently, disentanglement representation learning

methods also investigated [27] [28] to extract generalize

features within a multi-task framework. The model encodes

informative features for different tasks and employing the

adversarial regularization to enforce the extracted features to

be minimally informative about irrelevant tasks.

Inspired by previous works, and to address the challenges

as yet unmet by current methods for LV quantification,

we propose a novel end-to-end multi-task learning

framework based on 2D + t spatio-temporal convolutions

to simultaneously tackle multiple tasks and allow them

mutually learn from each other [29], [30],[31]. The proposed

approach permits accurate quantification of standard LV

indices and provides 3D segmentation for the blood pool and

myocardium of the LV for further morphological analysis.

Introducing a single model that is capable of solving multiple

tasks at the same time can be clinically very relevant and

reduce the overhead for the cardiologists to have individual

models for each sub-task including ventricle segmentation

and quantification.

In summary, our main contributions are three folds:

• First, we propose an end-to-end deep learning model that

directly learns temporal and spatial features using 3D

spatio-temporal convolutions from the estimated 3D cine-

MR segmentation masks. The proposed model takes the

full temporal cine-MR sequence into account, to quantify

the LV, rather than a single 2D image or by concatenating

a few 2D image slices from adjacent time frames (i.e.

2.5D).

• Second, a multi-task network is introduced to leverage

the shared information useful for LV segmentation, LV

indices regression, and cardiac phase cycle classification

tasks, by jointly optimise all three. We further demon-

strate with empirical evidence that the temporal infor-

mation and volumetric quantification improves prediction

accuracy significantly compared to 2D and 2.5D deep

learning models.

• Third, we validate our proposed method using the pub-

licly available LVQuan 2018 benchmark dataset, which

provides short-axis cine-MR sequences with annotations

for the above indices (for the whole cardiac cycle). The

proposed method achieved better robustness and interpre-
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tation for LV quantification and morphology assessment

in comparison to state-of-the-art methods. The code and

model are available at: https://github.com/sulaimanvesal/

CardiacQuanNet

III. MATERIALS AND METHODS

In this section, we first describe the details about the dataset.

Further, we introduce our proposed Spaito-temporal multi-

task learning network pipeline and its component for LV

segmentation, regression, and classification. Eventually, the

objective function and training settings are described.

A. Dataset

We validated our proposed framework on the STACOM

LVQuan 2018 challenge training dataset [26]. The dataset

collected from 3 different hospitals and in collaboration with

two healthcare centers, namely London Healthcare Center and

St. Josephs Healthcare [19], [24]. It consists of 2D Cine-

MR images of nS = 145 patients with an average age of

58.9 years. The Cine-MR images have a pixel spacing ranges

between 2.0833 mm/pixel and 0.6836 mm/pixel. The dataset

has a set of various pathologies like myocardial hypertrophy,

regional-wall motion abnormalities, atrial septal defect, mildly

enlarged LV, LV dysfunction, etc. Each Cine-MR sequence has

20 frames per cycle, resulting in a total of 2900 images in the

training dataset. Following the standard American Heart Asso-

ciation (AHA) recommendation [32], each frame in the dataset

includes only mid-cavity regions, which is perpendicular to the

long axis of the heart.

All cardiac images annotated manually to obtain the epi-

cardium and endocardium boundaries, which are double-

checked by two experienced cardiologists. The ground truth

values of LV indices are computed based on these delineations.

The RWTs and LV blood pool dimensions indices are normal-

ized with respect to the image size, while the areas normalized

by the number of pixels (2900). After the training step, the

computed indices are converted back to physical thickness

(mm) and area (mm2) by changing the resizing procedure

and multiplying each subject with their corresponding pixel

spacing. To evaluate and compare model performance, we em-

ployed five-fold cross-validation similar to other studies. Off-

line data augmentation was used by randomly rotating, flipping

horizontally/vertically, and applying elastic deformation to the

training images. This process increased the number of training

samples in each fold by a factor of 8.

B. Network Architecture

As discussed previously, our LV quantification framework

consists of two modules: a segmentation network G and the

multi-task classification/regression network D. During train-

ing, we first provide an MR image sequence IS ∈ R
t×h×w×1

(with annotations) to the segmentation network for optimizing

G. Then, we convert the soft probabilities of the softmax

layer to hard probabilities, and provide the LV and Myo

segmentation predictions (PS ∈ R
t×h×w×2) as the input

to D. Here, 2 refers to image channels corresponding to

the LV and Myo segmentation masks, and we discard the

background channel as the indices are computed from LV and

Myo channels only. The network propagates gradients from D

to G, which in turn encourages G to optimize its weights with

respect to both the segmentation labels (tissue boundaries) and

the LV indices of interest. Fig. 2 shows an overview of the

proposed algorithm. In this section, we first describe the left

ventricle segmentation module and subsequently, the multi-

task network for regression and classification of 11 indices and

cardiac phase recognition, respectively. The G and D modules

are trained using two strategies: (1) multi-stage and (2) end-

to-end. In an end-to-end fashion, we optimize both networks

simultaneously.

C. Left Ventricle Segmentation

To segment the LV blood pool and myocardium of the LV,

we employ a fully convolutional network architecture inspired

by [33] called Dilated Residual-UNet (DR-UNet), which is

depicted in Fig. 3. The segmentation network G has an

encoder and decoder paths that are connected by a bottleneck

block. Every block in encoder and decoder paths has two

2D convolution layers followed by a Rectified Linear Unit

(ReLU), batch-normalization, and a 2D max-pooling layer

to reduce the dimensions of feature maps. To improve the

flow of gradients, and enforcing the encoder to extract more

discriminative features, a residual connection [34] added in

each encoder block. The last layer of the network has a softmax

activation function to produce probability segmentation maps

for each class. In DR-UNet, the normal convolution layers

are replaced with dilated convolutions to permit the network

to capture both global and local contextual information by

increasing the respective field. A sequence of dilated convo-

lutions can introduce gridding effects (different output nodes

use disjoint subsets of input nodes) if dilation rates are not

selected properly [35]. As a consequence, we have created

a block of stacked dilated convolutions whose outputs are

summed together. This way, each subsequent layer has full

access to previous features learned using different dilation

rates, addressing the issue of gridding artefacts. In our network

settings, we used four dilated convolutions with a dilation rate

of 1− 8 in the network bottleneck. In the case of the end-to-

end training strategy, we adapted the segmentation network G

from 2D to 3D by replacing all the 2D convolution operations

with 3D convolution layers, while the rest of the network

remained the same. It is because we consider the full temporal

sequence as the input for the regression and classification task,

resulting in an input tensor size of 20×80×80×2. On the

other hand, the 3D spatio-temporal module for classification

and regression have 3D kernels which required 3D input.

Therefore, we selected DR-UNet 3D as the segmentation

backbone.

D. Left Ventricle Quantification

To quantify the cardiac LV, we propose a multi-task CNN

architecture, which is trained both in an end-to-end and

multi-stage fashion. This network employs spatio-temporal

convolutions to consider not only spatial but also temporal
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Fig. 2. Network architecture overview. Given Cine-MR volumes with the size t×h×w from the training dataset as input, we pass it through the segmentation
network to obtain output segmentation masks for the LV cavity and Myo. A segmentation loss is computed based on the ground truth. To make predictions
for 11 indices and cardiac phase detection, we utilize a multi-task spatio-temporal network with two parallel branches. Then a multi-task loss is calculated on
the target prediction for both regression and classification tasks and is back-propagated to the segmentation network.

Fig. 3. The schematic illustration of our left ventricle segmentation network
equipped with dilated convolutions(4 dilation rate 1-8) in the bottleneck to
capture multi-scale features and residual blocks in the encoder path.

information. 3D CNNs applied to 2D + t image frames to

preserve temporal information and propagate it through the

layers of the network [36], [37]. The cardiac Cine-MR dataset

has a short-term temporal dynamic between neighboring slices

in the sequence over one cardiac cycle. For this reason, we

consider 3D information as features for temporal modeling on

the 2D + t MR images. The 3D convolution addresses each

image with assistance from adjacent slices, and it can represent

more robust structural features as well as temporal information

[38].

Fig. 2 illustrates our proposed spatio-temporal network

architecture. The proposed network consists of three spatio-

temporal blocks and two task-specific parallel branches. The

first branch computes 11 indices for LV areas, LV dimensions,

and RWTs, and the second branch classifies the cardiac phase

across entire sequences. Cardiac phase-detection is normally

considered as a sequence modeling task as the temporal dy-

namics are important for determining the cardiac phase. RNN

blocks are widely used for this type of task [24], but these

models are difficult to optimize. The proposed spatio-temporal

blocks on the other hand, already take into account both the

spatial and temporal dynamics of slices, which removes the

need for RNN blocks.

The input to the encoder part has a size of t×h×w, where

t is the temporal axis, and h × w are the spatial axes. Each

spatio-temporal block has two 3D convolution layers and a

subsequent 3D MaxPooling layer. The first 3D convolution

layer has a kernel size of 3×1×1 that captures temporal

features across the time axis. The second convolution layer

extracts spatial features with a kernel size of 1×3×3 and

strides of 1. The MaxPooling layer has a window size of

1×3×3 as we only want to downsample the inputs along
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Fig. 4. LV MR image slices before(first row) and after pre-processing and
normalisation (second row).

the spatial dimensions while keeping the number of frames

fixed (as we would like to compute LV indices for each

frame). In comparison to fully 3D convolution operation, this

decomposition offers two advantages as highlighted in [36].

First, in this setup, the number of parameters is not changed.

However, it increases the number of nonlinearities in the net-

work due to the additional ReLU between the two convolution

layers in each block. Doubling the number of nonlinearities

enhances the complexity of functions, which approximate the

effect of a big filter by applying multiple smaller filters with

additional nonlinearities in between. The second benefit is that

forcing the 3D convolution into separate spatial and temporal

components makes the optimization easier [36]. This in turn

helps reduce the error rate compared to conventional 3D CNNs

of the same capacity [36]. For all convolution layers, we

initialize the kernels with the He initializer [39] and employ L2

weight regularization to reduce the overfitting of the proposed

model on the training data.

E. Pre-processing

All cardiac images were preprocessed by the challenge

organizer, including landmark labeling to find the ROI, rotation

to align the volumes, ROI cropping, and resizing. The resulting

images are 80 × 80 in size. The LVQuan 2018 dataset

images vary a lot in terms of contrast and brightness. The

variability results from different acquisition parameters and

scanners are always a challenge for designing a robust and

generalized neural network model. Contrast limited adaptive

histogram equalization (CLAHE) is applied to further improve

the contrast of Cine-MR images as well as reducing the

variability across the dataset, particularly for those images with

low contrast [40]. Subsequently, the images were normalized

by subtracting the mean and dividing by the standard deviation

for each sequence. These prepossessing steps significantly

improved the segmentation accuracy for DR-UNet. Fig. 4

presents a few sample images before and after employing

CLAHE and image normalization. From these images, it is

evident that variability in brightness and contrast is largely

diminished following contrast enhancement.

Target Labels Normalisation: In the LVQuan 2018 dataset,

there is a large amount of variation in the magnitude of

the various indices. Different distributions of different target

indices can cause unbalanced and unstable training. To tackle

this issue, we normalize the label indices using the z-score

for all the 11 indices (2 LV and Myo areas, 3 LV blood pool

dimensions, and 6 RWTs) across the whole dataset. After

training for the final evaluation, we scale the indices back

to the original value by multiplying the standard deviation

and adding the mean value. It should be noted that this

normalization step is only for quantification labels, while the

image normalization process described in the preprocessing

section.

F. Loss Functions

Segmentation Loss: The segmentation network G is trained

with a multi-class soft-Dice loss, which shown to be less

sensitive when there is a huge class imbalance within the

dataset in comparison to binary cross-entropy loss. Many

recent studies [33], [41] also used this objective function

for medical image segmentation. We first compute the Dice

loss for every class individually and then average it over the

number of available classes. To segment a Cine-MR image

IS ∈ R
t×h×w×1 with having LV, Myo and background as

labels, the output of Softmax layer is three probability maps

for classes k = 0, 1, 2 where for each pixel
∑

c yyyn,k = 1.

Given the ground-truth label ŷ̂ŷyn,k for that identical pixel, the

multi-class soft Dice loss is computed as follows:

Ldice(yyy, ŷ̂ŷy) = 1−
1

K
(
∑

k

wwwk

∑

n yyynkŷ̂ŷynk
∑

n yyynk +
∑

n ŷ̂ŷynk
) (1)

where wwwk is the weight factor to tackle class imbalance

as Myo region has fewer pixels compared to the other

two classes. We empirically set the weights for each

class: {BG : 0.2, LV : 0.3,Myo : 0.5}. We achieved better

segmentation performance by weighting the Myo class higher.

Classification Loss: Given the class probability output

Pphase = D(IS) from the cardiac phase classification branch,

the cross-entropy loss Lbce(yyy, ŷ̂ŷy) for the two classes (i.e., ED

and ES) can be written as:

Lbce(yyy, ŷ̂ŷy) = −
1

N

N
∑

i=1

(yyyi).log(ŷ̂ŷyi) + (1− yyyi).log(1− ŷ̂ŷyi)

(2)

where, yyy is the label (1 for ED phase and 0 for ES phase)

and ŷ̂ŷy is the predicted probability.

Multi-Task Loss: To train the multi-task regression and

classification module D, we optimized the model using a joint

loss, combining Lbce(yyy, ŷ̂ŷy) and Mean Squared Error (MSE),

for cardiac phase classification and LV indices regression,

respectively. The loss is formulated as:

Lmse(yyy, ŷ̂ŷy) = −
1

N

11
∑

s=1

N
∑

i=1

||yyys,i − ŷ̂ŷys,i||
2

2
(3)

Lmt(yyy, ŷ̂ŷy) = argmin
ŷ

λ1.Lmse(yyy, ŷ̂ŷy) + λ2.Lbce(yyy, ŷ̂ŷy) (4)

where, λ1 and λ2 are the weights to control the influence of

the individual tasks on the combined loss. We empirically set

λ1 = 1 and λ2 = 4. This is due to the fast convergence of
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Lmse, which necessitated higher weights for the classification

task in order to stabilize the training process. Equation (4) can

be extended further to train the entire pipeline including the

segmentation network G, in an end-to-end fashion:

Lmt(yyy, ŷ̂ŷy) = argmin
ŷ

λ1.Ldice(yyy, ŷ̂ŷy) + λ2.Lmse(yyy, ŷ̂ŷy)

+λ3.Lbce(yyy, ŷ̂ŷy)
(5)

Here, we combine the segmentation loss Ldice with the

multi-task loss for regression and classification tasks. How-

ever, to have control over the influence of different losses and

gradients in Lmt, we have empirically set λ1 = 10 , λ2 = 1
and λ3 = 1 as weights. Since the regression and classification

part depends on the output of the segmentation network, we

have given more weights to this task. This enforces the method

to produce more accurate myocardial segmentation. Fig. 5

illustrates a simplified view of our framework, which shows

the flow of gradients between different modules and how we

train all the three tasks end-to-end.

G. Network Training

As discussed previously, we trained our LV quantification

pipeline using both multi-stage and end-to-end strategies. In

each training batch, the MR sequence IS is provided to

the segmentation network G which is trained by optimizing

Ldice(yyy, ŷ̂ŷy) in (Eq. 1), to generate the output probability map

Ps. These soft probability masks are subsequently converted to

hard probabilities and passed on to the multi-task network D.

The latter in turn is trained by optimizing Lmt in (Eq 4). The

predicted normalized LV indices are subsequently converted

back to physical values before evaluation.

The performance of our framework evaluated across 5-

fold cross-validation experiments. In each fold, there are 29

subjects. Four folds used to train the spatio-temporal multi-

task learning model and the fifth to test. We repeated the

same procedure five times until the LV indices of all subjects

were obtained. The proposed deep learning model designed

and developed in Keras and TensorFlow [42], which is an

open-source deep-learning library for Python. All the networks

trained on an NVIDIA Titan X-Pascal GPU with 12GB mem-

ory. In the multi-stage strategy, we trained the segmentation

network G using the ADAM optimizer [43]. A fixed learning

rate of 0.0001 with exponential decay rates of the 1st is

used, and Adam momentum parameters were set to 0.9 and

0.999, respectively. The multi-task network D was also trained

using Adam optimizer with a learning rate of 0.004, and

with similar decay rate and momentum as G. For the end-

to-end training strategy, we employed the same optimizer and

hyperparameters to make both the models comparable.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Metrics

To evaluate the performance of the methods quantitatively,

we used the Pearson correlation coefficient (PCC) and Mean

Absolute Error (MAE) metrics. For the cardiac LV indices

MAE and PCC are computed as follows:

MAEind =
1

N

N
∑

i=1

|ŷ̂ŷyiind − yyyiind| (6)

PCCind =

∑N

i=1
(ŷ̂ŷyiind − ȳ̄ȳyiind)(yyy

i
ind − ȳ̄ȳyiind)

√

∑N

i=1
(ŷ̂ŷyiind − ˆ̄ŷ̄ŷ̄yind)2(yyyiind − ȳ̄ȳyind)2

(7)

where, ind ∈ (A1, A2, D1...D3, RWT1...RWT6), ŷ̂ŷyind is

the estimated value by the model and yyyind is the ground-truth

value provided by the rater. Here, ȳ̄ȳyind and ˆ̄ŷ̄ŷ̄yind are their mean

values, respectively.

To evaluate and assess the model performance for cardiac

phase classification, we used the Error Rate (ER), which is

defined as:

ERphase =
1

N

N
∑

i=1

(ŷ̂ŷyiphase 6= yyyiphase)100% (8)

where yyyphase and ŷ̂ŷyphase are the ground-truth and estimated

classes for the cardiac phase, respectively. To evaluate the

accuracy of the segmentation results, we used the well-known

metrics in the medical image segmentation field, the Dice

coefficient (Dice) score, and Hausdorff distance (HD). [33].

B. Comparison With State-of-the-art Methods

LV Segmentation Performance: All segmentation networks

were evaluated with and without the connected component

analysis (CCA) as postprocessing step and weighted-class

loss function, respectively. Table I summarizes the results

for our segmentation module G under different settings. We

observe that DR-UNet 2D and DR-UNet 3D achieved high

segmentation accuracy for the LV blood pool and background

classes in terms of Dice score and HD value. However, it was

less successful for the Myo, primarily due to the presence

of noise, low contrast tissues, and different pathologies. The

2D DR-UNet with eight filters without CCA and weighted

class average loss achieved an average Dice of 85.0% on the

validation set for Myo. However, by including both operations

and increasing the number of filters to 16, the average Dice

for Myo improved to 89.0%. HD value also reduced to 4.87

mm, respectively. Accurate segmentation of Myo is crucial

since most LV functional indices are computed based on

the endo- and epicardial contours. A similar performance

gain was achieved by DR-UNet 3D. DR-UNet 3D with CCA

and weighted-loss achieved an average Dice score of 88.7%

for Myo, but a substantially higher HD value of 3.71 mm.

Fig. 6 depicts the segmentation output for the complete

cardiac cycle of a patient and segmentation error w.r.t the

ground truth. It can be seen that the predicted contours for

LV and Myo are precise and have a very low error-rate at

tissue boundaries. Table I also demonstrates the intermediate

segmentation results for DR-UNet 3D and DR-UNet 2D when

the models were trained end-to-end along with the regression

and classification tasks (rows 8-11). Interestingly, DR-UNet

3D and 3D spatio-temporal network achieved a dice score of
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Fig. 5. Representation of gradient flow between segmentation, regression and classification tasks in our cardiac quantification framework.

TABLE I
SEGMENTATION ACCURACY USING DIFFERENT EVALUATION METRICS AND TRAINING STRATEGIES. AS AN ABLATION STUDY, THE NUMBER OF FILTERS,

POST-PROCESSING AND LOSS FUNCTION HAVE BEEN CHANGED TO EVALUATE THE PERFORMANCE.HERE, CONNECTED COMPONENT ANALYSIS IS

ABBREVIATED AS CCA.

Experiments Filters CCA Weighted-loss

Dice Score ↑ HD [mm] ↓

ParametersBg LV Myo Bg LV Myo

CSRNet [13] - - - 0.989 0.959 0.886 4.88 3.55 5.43 0.3 M

8 × × 0.978 0.945 0.854 4.54 4.65 11.92 0.9 M
16 × × 0.982 0.950 0.868 4.03 5.76 11.53 3.6 M

DR-UNet 2D 8 X × 0.981 0.951 0.857 4.30 4.33 11.92 0.9 M
16 X × 0.983 0.954 0.871 3.67 4.30 10.51 3.6 M
16 X X 0.990 0.959 0.888 3.34 3.63 4.87 3.6 M

DR-UNet 3D 16 X X 0.989 0.958 0.887 4.57 3.71 5.04 3.6 M

End-to-End Training

DR-UNet 2D & 3D CNN 16 X X 0.990 0.959 0.889 4.01 3.60 3.90 3.6 M
DR-UNet 2D & 3D spatio-temporal 16 X X 0.989 0.957 0.881 4.05 3.50 4.50 3.6 M
DR-UNet 3D & 3D CNN 16 X X 0.990 0.959 0.883 3.80 3.35 4.03 3.6 M
R-UNet 3D & 3D spatio-temporal 16 X X 0.990 0.957 0.889 3.29 2.85 3.40 3.6 M

Fig. 6. Qualitative segmentation results of DR-UNet 2D. The red contour shows the ground truth segmentation contour, and the blue color is overlaid as the
proposed model prediction output. The row 1-2 shows the first 10 slices with their segmentation error. The row 2-4 illustrate frames 11 to 20 with segmentation
error respectively. It can be seen, that segmentation error is quite low for both endocardium and epicardium contours in most of the frames.

89.0% and the lowest HD values of 2.85 mm and 3.40 mm

for LV and Myo. It can also confirm the advantage afforded

by jointly optimizing three tasks together under a multi-task

learning scenario.

LV Quantification Performance: In order to highlight the

gain in performance for LV quantification afforded by our

approach relative to the state-of-the-art, we compared our

approach with six recent methods - Xue et al. [19] (Indices-

Net) , Xue et al. [26] (FullLVNet), Xue et al. [24] (DMTRL),

Li et al. [23] (DLA), and Wang et al. [13] (CSRNet) under the

same experiment settings. Xue et al. introduced Indices-Net to

estimate multiple cardiac indices at the same time. The author

uses two closely coupled networks: a deep convolutional auto-

encoder for feature extraction from cardiac images and a

multiple-output CNN for index regression. Xue et al. extended
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Fig. 7. Example of LV indices and cardiac phase estimation by our proposed framework for a median Cine-MR case across the whole cardiac cycle. The
estimated results (dashed-line in red) are very close to their ground truth values (solid line in green color) for the three types of LV indices: areas (a-b), diameters
(d-f), wall-thickness (g-l) and phase cycles (c). The proposed method captures the temporal variation pattern of all indices precisely. The corresponding MR
images are shown in the top row for visual comparison.

their algorithm [24] to first learn cardiac representations with

a deep CNN, and subsequently, the temporal dynamics of the

cardiac sequence with two parallel RNN modules. Li et al. [23]

proposed a method based on deep learning that includes 11

indices of regression and cardiac phase detection. The authors

use deep layer aggregation (DLA) as the backbone to perform

11 index regressions simultaneously on 2D single images and

derive the cardiac phase by searching for the maximum and

minimum frames from the polynomial LV cavity region. In

the most recent attempt for LV quantification, Wang et al. [13]

proposed CSRNet as an end-to-end framework that computes

the LV indices based on the segmentation mask similar to our

model. However, most of these only use a single 2D image or

embedding of 5 images for feature extraction.

Our proposed spatio-temporal multi-task learning approach

outperformed the majority of these state-of-the-art methods for

estimating LV indices, evaluated in terms of mean absolute

error (MAE) and the Pearson correlation coefficient (PCC).

These metrics were evaluated with respect to the ground truth

values and are reported in TABLE II. We can see that our

methods yield the lowest average MAE of 129±115 mm2

and PCC of 0.964 for the LV blood pool and Myo areas,

compared to all other methods. Moreover, it achieved an

average MAE of 1.76±1.44 mm and 1.24±1.01 mm for the

LV dimensions and RWTs, which are very close to the state-of-

the-art results reported by Wang et al. [13] on this benchmark

dataset. However, in terms of PCC values, we outperformed

the model proposed by Wang et al., achieving values of 0.975



ACCEPTED AT IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. final version available at: https://doi.org/10.1109/jbhi.2020.3046449 9

TABLE II
PERFORMANCE OF FULL LV QUANTIFICATION FOR EXISTING STATE-OF-THE-ART METHODS AND OUR PROPOSED METHODS. MAE AND PCC ARE

SHOWN IN EACH CELL. OUR METHOD OUTPERFORMS ALL EXISTING METHODS FOR THE THREE TYPES OF LV INDICES AND CARDIAC PHASE IN TERMS

OF AVERAGE MAE, PCC AND ER.

Indices Metric Indices-Net [19] FullLVNet [26]
FullLVNet

(intra/inter) [26] DMTRL [24] DLA [23] CSRNet [13]
Ours

multi-stage
Ours

end-to-end

Area (mm2)

A-cav MAE 185±162 205±182 181±155 172±148 135 107±98 106±87 101±92
PCC 0.953 0.926 0.94 0.943 \ 0.982 0.985 0.986

A-myo MAE 223±193 204±195 199±174 189±159 177 162±127 165±132 158±128
PCC 0.853 0.925 0.935 0.947 \ 0.928 0.935 0.940

Average MAE 204±133 205±145 190±128 180±118 156 134±115 135±29 129±115
PCC 0.903 0.925 0.937 0.945 \ 0.955 0.960 0.964

Dimension (mm)

Dim1 MAE \ 2.87±2.23 2.62±2.09 2.47±1.95 2.04 1.57±1.42 1.76±1.43 1.85±1.49
PCC \ 0.938 0.952 0.957 \ 0.974 0.975 0.973

Dim2 MAE \ 2.96±2.35 2.64±2.12 2.59±2.07 2.02 1.48±1.36 1.80±1.49 1.76±1.44
PCC \ 0.864 0.881 0.894 \ 0.979 0.977 0.977

Dim3 MAE \ 2.92±2.48 2.77±2.22 2.48±2.34 2.05 1.56±1.33 1.72±1.41 1.82±1.43
PCC \ 0.924 0.935 0.943 \ 0.979 0.978 0.975

Average MAE \ 2.92±1.89 2.68±1.64 2.51±1.58 2.03 1.54±1.37 1.76±1.44 1.81±1.46
PCC \ 0.901 0.917 0.925 \ 0.978 0.977 0.975

RWT (mm)

IS MAE 1.39±1.13 1.42±1.21 1.32±1.09 1.26±1.04 1.39 1.06±0.87 1.15±0.93 1.16±0.921
PCC 0.824 0.806 0.84 0.856 \ 0.895 0.908 0.910

I MAE 1.51±1.21 1.53±1.25 1.38±1.10 1.40±1.10 1.41 1.33±1.14 1.24±1.01 1.25±1.01
PCC 0.701 0.678 0.751 0.747 \ 0.812 0.856 0.855

IL MAE 1.65±1.36 1.74±1.43 1.57±1.35 1.59±1.29 1.48 1.33±1.09 1.42±1.13 1.47±1.17
PCC 0.671 0.618 0.691 0.693 \ 0.788 0.836 0.825

AL MAE 1.53±1.25 1.59±1.31 1.60±1.36 1.57±1.34 1.46 1.32±1.09 1.37±1.08 1.38±1.06
PCC 0.698 0.657 0.651 0.659 \ 0.77 0.829 0.831

A MAE 1.30±1.12 1.36±1.17 1.34±1.11 1.32±1.10 1.24 1.08±0.92 1.13±0.97 1.14±0.99
PCC 0.781 0.754 0.768 0.777 \ 0.84 0.875 0.870

AS MAE 1.28±1.00 1.43±1.24 1.26±1.10 1.25±1.01 1.31 0.97±0.80 1.05±0.84 1.03±0.83
PCC 0.871 0.821 0.864 0.877 \ 0.919 0.928 0.933

Average MAE 1.44±0.71 1.51±0.81 1.41±0.72 1.39±0.68 1.38 1.16±0.097 1.23±1.01 1.24±1.01
PCC 0.758 0.723 0.761 0.768 \ 0.868 0.872 0.871

Phase (%)

ES/DS ER \ 13 10.4 8.2 8.1 \ 10.8 9.0

and 0.871. On the other hand, there is a reduction of 38.8%

MAE value for the cavity area and 38.6% for the Myo area

when compared to the IndiceNet, FullLVNet, DMTRL, and

DRL methods. The higher average PCC value means that there

is a better linear relationship between the estimation results

from our model and the ground truth, which is illustrated

for a test case in Fig. 7. It can be seen in the figure that

RWTs are more difficult to estimate in comparison to LV

dimensions and area of the cavity. This is because RWTs

estimation involves both the endocardium and epicardium

contours (small region), which is usually difficult to segment

due to available noise and low contrast within the image.

Furthermore, the improvements afforded by our approach to

estimates the myocardial indices and RWTs, in terms of MAE

are less prevalent as the segmentation results for the LV blood

pool were more accurate than for the Myo.

Our model is trained both in an end-to-end and multi-

stage fashion. The end-to-end model unified all three modules

(segmentation, regression, and classification), and based on

evaluation metrics achieved overall better performance com-

pared to the former.

Ablation Studies: We conducted ablation experiments to eval-

uate the effectiveness of spatio-temporal convolutions in our

proposed spatio-temporal multi-task framework. The results

are presented in Table III. Our baseline network uses only

3D convolution layers to incorporate temporal information for

better LV indices regression and phase classification in a multi-

stage manner (row 1). It can be seen from the table, that this

configuration achieved only an average MAE value of 2.06

mm for LV blood pool dimensions, 154 mm2 for LV and

Myo areas, and 1.35mm for RWTs. The error rate for phase

classification is also quite high close to 11.0%. Training this

network with the same configuration in an end-to-end manner

improved the LV areas, dimensions and RWT quantification

slightly (row 2). Next, we replaced the 3D convolution blocks

with proposed 2D + t spatio-temporal layers with a kernel

size of 3 × 1 × 1 and 1 × 3 × 3. This model trained both

in a multi-stage and end-to-end fashion (rows 5-8). We can

see that the MAE and ER values improved almost for all

the indices in comparison to 3D convolution configuration.

The model with multi-stage training and spatio-temporal CNN

achieved the lowest MAE value of 1.76 mm and 1.23 mm for

LV dimensions and RWTs (row 7). However, the 3D spatio-

temporal CNN with an end-to-end training strategy achieved

the lowest MAE value for LV and Myo areas and reduced

the phase classification error-rate to 9.0% (row 8). Moreover,

we have also trained two models based on our DR-UNet

2D segmentation model in multi-stage and end-to-end fashion

(rows 3 & 5). Here, we can see again that DR-UNet 2D

and 3D spatio-temporal model outperformed DR-UNet 2D

and 3D CNN. These results can confirm the effectiveness of

spatio-temporal layers, which encode jointly global temporal
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information and local spatial information.

C. Statistical Analysis

To statistically measure the effectiveness of our proposed

multi-task approach compare to manual ground-truths, we

employ Bland-Altman analysis [44]. This statistical technique

determines the agreement between two quantitative measure-

ments by constructing limits of agreement (LoA).

The Bland-Altman plots for differences in LV indices (Ar-

eas, DIMs, and RWTs) obtained using manual and proposed

methods are shown in Fig. 8. The areas per patient are

expressed in mm2 and for dimensions and RWTs in mm

respectively. It can be observed that in terms of LV area

estimation (Fig. 8(a)) the agreement between our proposed

method and manually generated ground truth is high with a

bias (mean signed difference) of 14.98 mm2 and limits of

agreement of ±342.45 mm2. This is also the same for the

dimensions and RWTs with LoR of ±4.51 mm2 and ±2.99

mm2, respectively. These results suggest that the proposed

method has a small bias to overestimate RWTs and that

the variation between automated and manual estimates of

the LV area is only slightly greater than the expert manual

annotation. There are some outlier cases (refer to plots a-

c in Fig. 8), regarded as hard-examples to measure due to

the presence of low contrast and noise in the scans or not a

precise segmentation of LV and Myo cavity areas. Overall, our

methods produced accurate indices quantification resulting in

a significantly lower mean difference in most of the cases.

V. DISCUSSION

We proposed a novel multi-task end-to-end method for full

LV quantification in cardiac cine-MR images in this study.

This approach leverages spatial and temporal information

contained within the cine-MR sequences using 3D spatio-

temporal convolutions, to quantify the LV, unlike most existing

methods that utilize just 2D spatial convolutions. Additionally,

our model exploits the information contained in the estimated

segmentation masks rather than the raw images, to combine

both spatial and temporal features during model training,

and inference. Thus, features are learned from the full cine-

MR sequence to estimate the various LV indices of interest.

This framework can be considered as an efficient tool for

cardiac LV functional analysis that tackles three different

related tasks simultaneously, namely - LV blood pool and Myo

segmentation, regression of 11 LV morphological indices, and

classification of cardiac phase.

A multi-task learning framework enables specialized mod-

ules to tackle different tasks simultaneously while benefiting

from one another. By sharing the same feature extraction

backbone, this framework allows information synergy between

various tasks and presents a mutual influence process that can

further obtain performance gains from different tasks. In our

network, the regression and classification tasks are optimized

in an end-to-end paradigm, together with LV segmentation.

The presented results indicate that methodically consolidating

multiple but interrelated tasks with mutual information sharing

and considering the task relationship using a suitable weight-

ing strategy, yields better performance. Moreover, our method

is similar to the commensal correlation network proposed

by Luo et al. [45], where feature extraction performed in

parallel to the segmentation for LV quantification. However,

this method computes the LV indices using a single 2D MR

image and temporal information of the cardiac cycle discarded.

In contrast, our proposed method takes advantage of the full

cardiac cycle and the quantification indices computed in a

cascade manner.

Extensive experiments on the LVQuan 2018 benchmark

dataset have highlighted the effectiveness of our approach. By

integrating myocardial segmentation with multi-task classifica-

tion and regression learning framework. The method combines

the advantages of two-step methods based on segmentation

with end-to-end learning approaches. The segmentation mod-

ule of the framework can remove task-independent structures

so that the following regression and classification network can

extract discriminating features from the segmented masks only.

The myocardial contours only guide the regression task, but do

not fully determine the accuracy of the quantification results

like the two-step procedures based on segmentation. The

results for DR-UNet with post-processing and weighted-loss

outperformed the other segmentation methods. Additionally,

our segmentation network has fewer than 3.6 million trainable

parameters and takes less than 20 minutes to train with

300 epochs, which is considered modest in size/complexity,

compared with other relevant SOTA approaches [24]. In the

validation phase, LV metrics are estimated in each fold for 28

subjects with 580 images in just ∼2.2 seconds on a machine

with 4GB GPU memory. This demonstrates the real-time

characteristic of the pipeline, which could be integrated into

MR acquisition systems to triage patients into high and low-

risk categories of CVDs for improved efficiency and clinical

decision making.

The proposed method achieved comparable results to CSR-

Net and even for LV and Myo areas, our model achieved better

results. On the other hand, for 3 LV diameters and 6 RWT, our

model could achieve very close results. However, It should be

noted that CSRNet doesn’t consider cardiac phase detection

tasks (systolic or diastolic) and only quantify the indices

based on raw segmentation. On the other hand, our method

simultaneously performs three tasks including segmentation,

indices regression and phase classification. In this end-to-

end training, every learning step is directed at the final goal,

encoded by the overall objective function. There is no need

for training modules on an auxiliary objective. Our end-to-

end multi-task learning framework is nicely consistent with

the general approach of machine learning to take the human

expert out of the loop and to solve problems in a purely data-

driven manner.

Although the segmentation accuracy of our approach was

high for the LV blood pool, there is still room for improve-

ment, especially for the myocardium. Moreover, in the end-to-

end training strategy, combining the losses of different tasks

is a critical issue, because different tasks converge at different

rates. To balance task importance during optimization, we

empirically set the hyperparameter λ for each task in the
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TABLE III
EFFECTIVENESS OF 3D SPATIO-TEMPORAL CNN LAYERS IN OUR PROPOSED FRAMEWORK IN COMPARISON TO 2D AND 3D CONVOLUTION OPERATIONS.
MULTI-STAGE AND END-TO-END DENOTES THE TYPE OF TRAINING STRATEGY. THE VALUES SHOW THE AVERAGE MAE FOR LV BLOOD POOL AND MYO

AREAS, 3 LV DIMENSIONS AND 6 RWTS.

Methods Multi-stage End-to-End Area (mm2) DIM (mm) RWT (mm) Phase (%)

DR-UNet 3D & 3D CNN X × 154±134 2.06±1.60 1.35±1.09 11.0

DR-UNet 3D & 3D CNN × X 148±122 2.00±1.32 1.32±1.02 11.2

DR-UNet 2D & 3D CNN X × 157±127 2.01±1.64 1.30±1.03 11.3

DR-UNet 2D & 3D CNN × X 146±116 2.16±1.73 1.32±1.01 10.6

DR-UNet 2D & 3D spatio-temporal X × 136±115 1.77±1.44 1.23±1.01 10.7

DR-UNet 2D & 3D spatio-temporal × X 142±113 2.13±1.71 1.25±1.05 10.6

DR-UNet 3D & 3D spatio-temporal X × 135±29 1.76±1.44 1.23±1.01 10.8

DR-UNet 3D & 3D spatio-temporal × X 129±115 1.81±1.46 1.24±1.01 9.0

(a) (b) (c)

Fig. 8. Bland-Altman analysis plots show that the LV indices for areas, dimensions, and RWTs estimated using our model is very close to the ground truth.
Plot (a) illustrates the LV cavity and Myo areas (A1 and A2). The plots for LV blood pool dimensions and RWTs are shown in b-c. The Bland-Altman plots
are computed using a confidence interval of 95%. The blue line indicates the mean and the dashed red lines indicate the level of agreement.

loss function after a greedy search. We believe incorporating

a more methodical multi-task loss weighting strategy could

improve the performance of our pipeline even further. Further-

more, the LVQuan benchmark dataset is preprocessed a priori,

and LV ROIs are extracted from Cine-MR sequences, which

is not common in a real clinical scenario. We aim to extend

our method to include LV detection within the pipeline and

design a fully automated computer-aided diagnosis system that

eliminates the need for any pre-processing step. In this study,

all quantification indices are 2D, while the most important

cardiac functional/morphological indices are 3D metrics like

ejection fraction and LV volumes. As future work, we also

aim to extend our method to include these metrics as well.

VI. CONCLUSION

In this study, we proposed a robust, efficient, and light-

weight network architecture for fully automatic LV quan-

tification in Cine-MR images. The proposed network first

segments the LV and Myo blood pool. Subsequently, the

segmented structures fed to a spatio-temporal multi-task re-

gression and classification component to estimate cardiac

LV indices. It includes the LV cavity and Myo areas, LV

dimensions, myocardial RTWs, and the cardiac cycle phase

(diastolic or systolic). Although the LV anatomical shape

and appearance are highly variable across different subjects

and the training subjects acquired in various hospitals, the

proposed method successfully learned robust representations

from the MR sequences and estimated the LV indices of

interest with high accuracy. We evaluated our method on

145 subjects, and the experimental results highlighted the

advantage afforded by our approach in comparison to the state-

of-the-art methods. The proposed method can be a promising

contribution having clinical importance both during diagnosis,

where the cardiac MR volume needs to be analyzed and during

treatment planning when the quantification of the anatomical

structure of LV needs to be accurate and fast.

REFERENCES

[1] E. S. D. Group, A. Timmis, E. Wilkins, L. Wright, N. Townsend et al.,
“European Society of Cardiology: Cardiovascular Disease Statistics
2017,” European Heart Journal, vol. 39, no. 7, pp. 508–579, 11 2017.

[2] E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das et al.,
“Heart disease and stroke statistics&#x2014;2017 update: A report from
the american heart association,” Circulation, vol. 135, no. 10, pp. e146–
e603, 2017.

[3] J. Stewart, G. Manmathan, and P. Wilkinson, “Primary prevention
of cardiovascular disease: A review of contemporary guidance and
literature,” JRSM Cardiovascular Disease, vol. 6, p. 2048004016687211,
2017.

[4] M. R. Avendi, A. Kheradvar, and H. Jafarkhani, “Automatic segmen-
tation of the right ventricle from cardiac mri using a learning-based
approach,” Magnetic Resonance in Medicine, vol. 78, no. 6, pp. 2439–
2448, 2017.

[5] H. W. Kim, A. Farzaneh-Far, and R. J. Kim, “Cardiovascular magnetic
resonance in patients with myocardial infarction: Current and emerging
applications,” Journal of the American College of Cardiology, vol. 55,
no. 1, pp. 1 – 16, 2009.

[6] M. Cantinotti and M. Koestenberger, “Quantification of left ventricular
size and function by 2-dimensional echocardiography: So basic and
so difficult,” Circulation: Cardiovascular Imaging, vol. 10, no. 11, p.
e007165, 2017.

[7] W. Bai, M. Sinclair, G. Tarroni, O. Oktay, M. Rajchl et al., “Automated
cardiovascular magnetic resonance image analysis with fully convo-
lutional networks,” Journal of Cardiovascular Magnetic Resonance,
vol. 20, no. 1, p. 65, Sep 2018.



ACCEPTED AT IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. final version available at: https://doi.org/10.1109/jbhi.2020.3046449 12

[8] T. Kurzendorfer, C. Forman, M. Schmidt, C. Tillmanns, A. Maier et al.,
“Fully automatic segmentation of left ventricular anatomy in 3-DLGE-
MRI,” Computerized Medical Imaging and Graphics, vol. 39, no. 59,
pp. 13–27, 2017.

[9] M. Afshin, I. B. Ayed, A. Islam, A. Goela, T. M. Peters et al., “Global
assessment of cardiac function using image statistics in mri,” in Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2012.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 535–543.

[10] R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong
et al., “Recommendations for Cardiac Chamber Quantification by
Echocardiography in Adults: An Update from the American Society
of Echocardiography and the European Association of Cardiovascular
Imaging,” European Heart Journal - Cardiovascular Imaging, vol. 16,
no. 3, pp. 233–271, 02 2015.

[11] M. Afshin, I. B. Ayed, K. Punithakumar, M. Law, A. Islam et al.,
“Regional assessment of cardiac left ventricular myocardial function via
mri statistical features,” IEEE Transactions on Medical Imaging, vol. 33,
no. 2, pp. 481–494, Feb 2014.

[12] Q. Tao, W. Yan, Y. Wang, E. H. M. Paiman, D. P. Shamonin et al.,
“Deep learning–based method for fully automatic quantification of left
ventricle function from cine mr images: A multivendor, multicenter
study,” Radiology, vol. 290, no. 1, pp. 81–88, 2019, pMID: 30299231.

[13] W. Wang, Y. Wang, Y. Wu, T. Lin, S. Li et al., “Quantification of full left
ventricular metrics via deep regression learning with contour-guidance,”
IEEE Access, vol. 7, pp. 47 918–47 928, 2019.

[14] A. Suinesiaputra, D. A. Bluemke, B. R. Cowan, M. G. Friedrich, C. M.
Kramer et al., “Quantification of lv function and mass by cardiovascular
magnetic resonance: multi-center variability and consensus contours,”
Journal of Cardiovascular Magnetic Resonance, vol. 17, no. 1, p. 63,
2015.

[15] B. Ruijsink, E. Puyol-Antón, I. Oksuz, M. Sinclair, W. Bai et al., “Fully
automated, quality-controlled cardiac analysis from cmr: Validation
and large-scale application to characterize cardiac function,” JACC:

Cardiovascular Imaging, 2019.
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