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As inkjet technology develops to produce smaller droplets, substrate features such as
accidental scratches or manufacturing defects can potentially affect the outcome of
printing, particularly for printed electronics where continuous tracks are required. Here,
the deposition of micro-droplets onto a scratch of commensurate size is studied. The
scratch is considered as a groove of rectangular cross-section, with rectangular side ridges
representing material displaced from the substrate, and seven equilibrium morphologies
are identified as a result of inertial spreading, contact line pinning, imbibition into the
scratch and capillary flow. A regime map is constructed in terms of scratch depth and
width, and theoretical estimates of the regime boundaries are developed by adapting
droplet spreading laws for flat surfaces to account for liquid entering the scratches.
Good agreement is seen with numerical results obtained using a GPU-accelerated 3D
multiphase lattice Boltzmann model validated against published experiments, and the
influences of Reynolds number, Weber number and advancing and receding contact angles
are explored. Negative and positive implications of the results for printing applications
are discussed and illustrated via multiple-droplet simulations of printing across and along
scratches.

1. Introduction

The impact and coalescence of inkjet droplets on a solid substrate are of paramount
importance to several industries including printed electronics, ceramic and tile deco-
ration, and printing biological materials. Inkjet technology in the printed electronics
industry has received increasing interest due to the method’s potential to reduce the
manufacturing costs of some devices (Soltman 2011). Example devices include passive
circuit elements, organic transistors, organic light-emitting diodes, sensors, and radio
frequency identification tags (Kwon et al. 2018; Soltman 2011). Small imperfections in
the substrate surface can arise through small variations during manufacturing, or as a
result of unintended damage, such as scratching during transportation and/or handling of
the substrate. These can pose a challenge for printing continuous tracks to form electrical
circuits (Chilton 2012), particularly as the droplet sizes are progressively decreasing in
the quest for higher resolutions. Topographical features can also be added to substrates
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Figure 1: Maps of previous studies of single and multiple droplet impact onto
surfaces with and without topographical features in terms of: (a) Reynolds
number and Weber number; and (b) droplet diameter and size of feature on the
substrate.

to control the flow of the droplets (Seemann et al. 2005; Kant et al. 2017). This makes
understanding the behaviour of the fluid and the morphologies formed in the presence of
such topographical features important.
A significant amount of experimental, computational, and theoretical work has focused

on the impact of single and multiple droplets onto smooth or nominally flat rough
substrates, making these parts of the problem relatively well studied; for reviews on
the topic refer to Josserand & Thoroddsen (2016); Yarin (2006); Khojasteh et al. (2016).
The dynamics of a single droplet impacting a solid smooth surface can be classified into
three stages. In the first stage, the droplet spreads due to inertia on an air layer which
prevents direct contact with the substrate. This air layer is either expelled or trapped in
the droplet as a bubble when the droplet eventually makes contact with the substrate.
In the second stage, surface tension causes the droplet to oscillate or relax depending on
the degree of viscous dissipation. In the final stage, the droplet spreads under capillary
forces reaching an equilibrium that minimises free energy. The three stages were labelled
by Rioboo et al. (2002) as kinematic and spreading, relaxation, and wetting/equilibrium.
Droplet impact conditions are typically described in terms of the Reynolds number

and Weber number, defined respectively as

Re =
uD0

ν
and We =

ρu2D0

γ
, (1.1)

where u is the impact velocity, D0 is the in-flight droplet diameter, ν is the kinematic
viscosity, ρ the density, and γ the surface tension. To set the current work in context,
figure 1(a) presents a Re-We map of key previous studies of droplet impact onto solid
surfaces. By necessity, inkjet printing systems operate under non-splashing conditions,
and the typical range of Re and We is indicated by the dashed rectangle. Micro-droplet
studies are indicated by red-filled symbols in figure 1. Interestingly, micro-droplets (i.e.
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droplets with diameter below about 100 µm) have been shown not to splash, even
at conditions well above the splashing threshold (Visser et al. 2012). Hence micro-
droplets do not necessarily behave in the same way as much larger droplets despite
dynamic similitude. In fact there is still uncertainty in how splashing is triggered at high
speeds, though it is an active area of interest for aerospace applications (Cimpeanu &
Papageorgiou 2018).
There are many studies of the spreading of single droplets impacting on flat surfaces,

resulting in a wide collection of models for important characteristics such as the maximum
spreading diameter. These are discussed in §2.2, where they are used to develop estimates
of critical conditions relevant to droplet deposition on a scratch.
The printing of multiple interacting droplets has received increasing attention in the

literature. For example, the printing of elongated liquid beads has been investigated since
the 1980s (Davis 1980; Sekimot et al. 1987; Duineveld 2003; Stringer & Derby 2010) — for
recent reviews on the topic refer to Thompson et al. (2014) and Kwon et al. (2018). Key
findings include: printed liquid beads/lines require contact angle hysteresis and contact
line pinning for stability (Davis 1980), they are only stable for contact angles less than
90◦ (Davis 1980) and that nano-inks used in inkjet printing have an approximately zero
receding contact angle (Duineveld 2003). Bulging instabilities can occur (Duineveld 2003)
and can only be explained by considering viscous as well as capillary and inertial effects
(Thompson et al. 2014). The present work therefore focuses on advancing contact angles
below 90◦ and a very low receding contact angle.
Other studies have also focused on the interactions of consecutively deposited droplets

(Yarin & Weiss 1995; Roisman et al. 2002; Ashoke Raman et al. 2017; Wang & Bourouiba
2018; Sykes et al. 2020a). Yarin & Weiss (1995) experimentally investigated the impact
of a train of droplets (without offset) on a surface, and studied the size distribution of
secondary droplets generated from splashing of the primary droplets. Roisman et al.

(2002) considered the impact of two adjacent droplets with overlap and derived an
expression for the thickness of the lamella and the maximum height. More recently, Wang
& Bourouiba (2018) used a combination of experiments and modelling to show how a
partially wetting surface leads to dramatically different regimes of coating and splashing
from those in isolated impacts. They found four possible regimes: head-on collision,
crescent-moon fragmentation, touch-and-flop collision and no collision. Castrejón-Pita
et al. (2013) and Sykes et al. (2020a) focused on the internal mixing when a falling droplet
impacts on a sessile one. All of these studies focused on millimetre-scaled droplets which
are an order of magnitude larger than typical inkjet droplets that are the focus here.

Fewer studies have examined the effect of droplet impact on substrates with topo-
graphical features. These are indicated in figure 1 by blue symbols. With the exception of
Kant et al. (2017, 2018), these have considered millimetre-scale droplets interacting with
millimetre- or micro-scale features, rather than micro-droplets impacting on micro-scale
features. Bussmann et al. (1999) studied, experimentally and numerically, the impact of
millimetre-sized droplets onto a substrate with a sharp step. They found that a droplet
can split due to the presence of a corner. De Jong et al. (2015) studied experimentally
the impact of similar-sized droplets near closed pits and open-ended pores and their
effect on splashing. Rashidian et al. (2019) developed an analytical model and used
lattice Boltzmann method (LBM) simulations to investigate how the presence of a small
protrusion can cause the rupture of a droplet’s spreading lamella and the effect of impact
velocity, wettability and protrusion dimensions on this phenomenon. It was found that
the presence of a small protrusion can rupture the lamella of the spreading droplet,
possibly resulting in a non-continuous coating.
Kant et al. (2017) studied experimentally the spreading of a micro-droplet on a
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substrate with a recessed pixel and found that the presence of its side wall can either
enhance or hinder spreading depending on the gradient of the topography ahead. They
found that topography can be used to restrict small volumes of liquids to a specific region;
a droplet spreading with the topography ahead sloping downhill will be pinned. Using a
model developed in Thompson et al. (2014), Kant et al. (2018) then studied numerically
the printing of sequential droplets into a recessed region and found that the presence of
the walls enhances spreading but does not guarantee containment within the region. Kant
et al. (2017, 2018) focused on the low Re regime where the impact velocity is negligible.
Jackson et al. (2019) used LBM simulations to explore the effects of misalignment
between droplets and small cavities and the filling of the cavities. Seemann et al. (2005)
experimentally studied the wetting of micro-structured surfaces using regular grooves
separated with ridges, but using vapour condensation rather than droplet deposition.
Two main morphologies were observed, namely an overspilling droplet that extends onto
the ridges and neighbouring grooves, and extended filaments that run parallel to the
grooves.
As droplets decrease in size, it is expected that substrate topographical features will

have a greater effect on the printed morphology and product quality. There have been
no studies of how such minor variations or defects on a substrate change the morphology
of an impacting droplet. Therefore, we study the effect of a generic 2-D feature (defined
in §2) that can be deliberately designed or accidentally caused by scratching. We begin
(§2) by considering possible single droplet impact outcomes based on capillary flows and
contact-line pinning on topographical features, then adapt existing spreading models for
droplets on uniform surfaces to account for the presence of a scratch, and use these to
postulate a regime map. In §3 we provide details and validation of a lattice Boltzmann
numerical method that is used in §4 to test the theoretical estimates of critical scratch
dimensions and to explore the associated dynamics of single micro-droplet impacts on the
scratch. Section 5 considers the influences of the flow and surface parameters on droplet
morphologies. Finally, we discuss the implications of our findings for printing applications
in §6, which includes multiple-droplet simulations, and we present conclusions in §7.

2. Idealised scratch and anticipated single droplet dynamics

The specific surface geometry feature considered here is shown in figure 2. A scratch on
the substrate is idealised as a continuous uniform groove of rectangular cross-section, with
a rectangular ridge on each side representing solid material displaced during formation
of the scratch. Hence the combined cross-sectional area of the side ridges matches that
of the groove below the original substrate surface level. The relative dimensions of the
groove and side ridges would in practice depend on the substrate material and scratching
mechanism. Here, each side ridge is assumed to have the same width, w, as the groove,
and a height of 1

2 d̄, where d̄ is the depth of the groove below the original surface. Hence
the total depth of the groove from the top of the side ridges is d = 3

2 d̄. As well as
representing a scratch, the geometry also mimics micro-structured surfaces such as those
studied by Seemann et al. (2005), with the side ridges akin to the edges between two
neighbouring grooves. Throughout this study, the groove width, w, and depth, d, are
scaled by the in-flight diameter, D0, of a droplet impacting on the solid surface. We
will use the words ‘groove’ and ‘scratch’ interchangeably in what follows. Note that in
practice scratch sizes can range from nanometers to tens of microns (Brostow et al. 2004;
Chen et al. 2008; Dasari et al. 2009).
In considering possible outcomes of a single droplet impact on this topography, there

are some obvious limiting behaviours. If the groove is much wider than the droplet,
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Figure 2: The geometry used to represent an idealised scratch. The groove has width w
and the side ridges are assumed to have the same width as the groove. The bottom of
the groove is a depth d̄ below the original substrate surface, and its total depth from the
top of the side ridges is d = d̄+ 1

2 d̄. These dimensions conserve the volume of displaced
material.

i.e. w ≫ 1, and the droplet lands away from the side walls, the impact is simply that
of a droplet on a flat surface, which has been widely studied (see §2.2). If instead the
droplet impacts the side wall, the situation corresponds to impact on a step as previously
considered by e.g. Bussmann et al. (1999) and more recently by Jackson et al. (2019)
in the context of droplet deposition into square cavities. As the groove width becomes
closer to the droplet diameter, i.e. w ∼ 1, the dynamics are expected to become more
complicated. If the droplet lands in the centre of the groove, full imbibition of the droplet
into the groove would be expected, but only for sufficient groove depths and substrate
wettability. At the other extreme, if w ≪ 1 and the scratch is shallow, i.e. d ≪ 1, it is
expected to have a negligible effect on the spreading dynamics of the droplet, and we
have again the well-studied scenario of droplet impact on a smooth flat surface. However,
if d is sufficiently large compared to the scratch width, one would expect capillary flow
to occur along the narrow channel if the substrate is sufficiently wetting, i.e. θ < π/2.

In this work we therefore focus on the range 0 < w 6 1, i.e. where the droplet diameter
is of a similar size to or larger than the scratch. The droplet impact regime is taken to
be non-splashing, non-bouncing deposition as required for a successful inkjet printing
operation. It is also important to note that the advancing static contact angle is assumed
to be less than 90◦ and the receding contact angle to be close to zero, again as is typical
in printing systems. In all cases, the droplet initially spreads on impact due to inertia.
Given the presence of ridges and edges in the geometry, it is expected that overspill,
splitting and/or pinning of the droplet contact line on different edges will occur for certain
conditions. A postulated regime map showing outcomes of single-droplet deposition on
the centre of the scratch for different widths and depths is given in figure 3. The different
droplet morphologies and estimates of the conditions under which they occur are explored
and developed in the following subsections.

2.1. Capillary flow along narrow scratches

A scratch much narrower than the impinging droplet diameter (w ≪ 1) is expected
to have little effect on the early stage inertial spreading of the droplet. However, once
deposited, the drop becomes a source of liquid from which capillary flow can occur
over a longer time scale along sufficiently narrow and deep scratches. Capillary flow
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Figure 3: A postulated regime map for the outcome of a single droplet impact centred
on the idealised scratch shown in figure 2 in terms of the scratch width and depth
scaled by the droplet’s in-flight diameter. The lines and curves indicate theoretically
estimated critical conditions for behaviours including capillary flow, contact-line pinning
on edges, droplet splitting and full imbibition into the scratch. The inset top-view images
within each region show examples of corresponding final printed droplet shapes predicted
by numerical simulations, indicating possible different droplet morphologies. These are
named: I ‘capillary’; II ‘quasi-spherical cap’; III ‘inertial’; IV ‘semi-imbibed’; V ‘split semi-
imbibed’; and VI ‘fully-imbibed’. Note that the inset images are shown at different scales.
The vertical dashed lines in each image indicate the outer edges of the side ridges of the
scratch. Equations (2.2) and (2.3) employ predictions of maximum spreading diameters
indicated by asterisks in table 1, and the three curves for each equation are obtained
using the mean of those predictions and one standard deviation either side.

has been extensively studied, including in cylindrical micro-channels, since the early
twentieth century (Washburn 1921; Bell & Cameron 1906; Lucas 1918). With the advent
of microfluidics, recent attention has been paid to other micro-channel geometries; most
relevant to our geometry is the work on open rectangular micro-channels by Yang et al.

(2011) who, based on experiments and a model balancing capillary and viscous forces,
proposed a critical channel width below which capillary flow occurs:

wcap = 2d cos θA/(1− cos θA). (2.1)

The line given by (2.1) is shown in figure 3, with θA having a representative value of
75◦. Below this line, i.e. where w < wcap, the final printed droplet shape will consist
of a localised droplet (since the small receding contact angle prevents full contraction
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of the droplet) with liquid filaments extending in both directions along the scratch. An
example numerical simulation result (discussed later) is shown in figure 3 as image I. As
a result of the mechanism producing it, we label this the ‘capillary’ morphology. The
long filament within the scratch has been observed by Seemann et al. (2005), but not the
liquid outside the scratch because they used vapour condensation rather than droplet
deposition. Above the line (2.1), i.e. for shallow, narrow scratches for which w > wcap,
there will be only a small deviation from perfect sphericity, as indicated by image II in
figure 3. This shape will be referred to as the ‘quasi-spherical cap’.

2.2. Predicting edge pinning and overspill

The impacting droplet will spread over the top of the side ridges while at the same time
penetrating the scratch. Depending upon the width and depth of the scratch, overspill
from the side ridges onto the original substrate may occur. To develop an estimate of
conditions under which this will happen, we need to consider the expected maximum
spreading diameter, Dmax, of the droplet on a flat substrate with the same advancing
and receding contact angles.
For a droplet impacting a planar surface, the maximum spreading diameter (nor-

malised as βmax = Dmax/D0) has been extensively studied and found to depend on the
impact velocity and fluid properties captured in the Reynolds and Weber numbers (1.1).
Pasandideh-Fard et al. (1996) showed, using experiments and numerical simulations,
that for low Weber and Reynolds numbers, surface wettability also becomes a significant
variable. Clanet et al. (2004) showed experimentally that there are two regimes for droplet
deposition: one is the capillary regime with lowWe and high Re, where viscous effects are
negligible, and the other is the viscous regime with high We and low Re, where capillary
forces can be ignored. Early studies reported two conflicting βmax scalings with We in
the capillary regime: studies that used an energy balance predicted a We1/2 dependence
(Madejski 1976; Chandra & Avedisian 1991; Bennett & Poulikakos 1993), while those
using a momentum balance predicted We1/4 (Clanet et al. 2004).

In the viscous regime, most studies predict a Re1/5 dependence (Madejski 1976;
Chandra & Avedisian 1991; Bennett & Poulikakos 1993). Eggers et al. (2010) showed,
using a dynamical model with a viscous boundary layer, that if the We1/2 scaling holds,
then βmax = Re1/5F (P ), where F is a function of P =WeRe−2/5. Laan et al. (2014) used
experiments with three different viscosity fluids and showed thatWe1/2 holds rather than
We1/4 and used Padé interpolation to approximate f(P ) for We > 10. Lee et al. (2015)
extended this to We > 1 by incorporating surface wettability. In fact, some models
developed earlier than Eggers et al. (2010), including Roisman (2009) and Scheller &
Bousfield (1995), can be written in the form βmax = Re1/5F (P ). Wildeman et al. (2016)
recently used extensive simulations and modelling to bridge the energy balance and
the momentum balance approaches and developed a model for βmax. All these models
(summarised in table 1) have shown agreement with experimental and numerical data
for certain (different) parameter ranges (Josserand & Thoroddsen 2016; Wildeman et al.

2016; Lee et al. 2015), see also the rightmost columns of table 1. We will compare the
models with new numerical data for micro-droplets in §3.4.
Although originally developed for axisymmetric conditions, maximum spreading laws

like the above can be modified by introducing a correction factor to account for the
presence of the scratch, and hence used to estimate when overspill occurs. For ease
of implementation we consider only models that can be written explicitly as βmax =
f(We,Re) or βmax = f(We,Re, θA). In particular, we use the models of Scheller &
Bousfield (1995); Pasandideh-Fard et al. (1996); Roisman (2009); Laan et al. (2014); Lee
et al. (2015) listed in table 1.
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Assuming that the droplet spreads on the tops of the side ridges and the inner scratch
walls at the same rate, a correction factor can be derived by subtracting from the initial
droplet volume the volume of liquid that will go into the scratch before the droplet
reaches the outer edges. The new volume available for spreading can then be used to
derive a new equivalent ‘initial’ droplet diameter to be used in the maximum spreading
laws. Assuming that d 6 w, the dimensional volume to be subtracted is approximately
dD0×wD0×D0 = wdD3

0, so the new volume of liquid available for spreading over the side
ridges is Vnew = 1

6 (πD
3
0 − 6dwD3

0) =
1
6D

3
0 (π − 6dw). This is equivalent to a free droplet

of dimensional diameter D0,new = π−1/3D0 (π − 6dw)
1/3

. The maximum spreading laws
are of the form Dmax/D0 = f(Re,We, θA), so using the new diameter D0,new to account

for the presence of the scratch gives Dmax/D0,new = Dmax/
(

π−1/3D0 (π − 6dw)
1/3
)

=

f(Re,We, θA). Hence the new dimensionless maximum spreading diameter allowing for
liquid entering the scratch is given by

βmax = Dmax/D0 = π−1/3D0 (π − 6dw)
1/3

f(Re,We, θA).

This holds when d 6 w, otherwise the droplet reaches the outer edges of the side ridges
before the entire depth is covered by the impacting droplet. If d > w, the dimensional
volume to be subtracted will be w2D3

0 and hence D0,new will not depend on d, and the
adjusted βmax will be the same value as that when d = w for the entire range d > w.
The condition for the droplet contact line reaching the outer edges of the side ridges is
βmax = 3w, i.e. the dimensionless width of the scratch and the two side ridges. Hence
the outer edges of the side ridges will be reached only for scratches with widths wpin
satisfying the condition

3wpin = π−1/3f(We,Re, θA) ·
{

(π − 6dwpin)
1/3

if d 6 w
(

π − 6w2
pin

)1/3
if d > w

. (2.2)

The five different explicit spreading models listed (with asterisks) in table 1 give
different predictions for f(We,Re, θA). Therefore, in plotting the values of wpin in figure
3, the three solid black lines correspond to the mean and standard deviation of the five
predictions.

Note that equation (2.2) simply provides an estimate of scratch widths for which the
droplet can reach the outer edges of the side ridges. Since we assume that the receding
contact angle is close to zero, the contact line will not recede from the edges if it is able
to reach them. However, the droplet contact line may continue spreading beyond the
outer edges of the ridges if it has sufficient momentum. If βmax > 3w, the droplet will
continue spreading horizontally while the contact line remains pinned on the edge. This
will increase the dynamic contact angle θd (i.e. the angle of the free surface measured
from the horizontal top of the ridges) until either the droplet stops spreading and recoils
or θd > θA + 90◦, i.e. θd exceeds the Gibbs criterion for pinning. In the latter case,
the droplet will then advance down the vertical outer walls of the side ridges and spill
onto the original substrate surface; the final droplet morphology will look like image III

in figure 3. This will be referred to as the ‘inertial’ morphology, since the droplet has
sufficient inertia to spill over the side ridges. Hence equation (2.2) provides an estimate
for conditions under which the droplet contact line will pin on the outer edge of the side
ridges. This will be discussed again with the benefit of numerical simulations in §4.1.
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2.3. Droplet splitting and imbibition

For w > wpin, the droplet does not cross the outer edges of the side ridges. For
sufficiently shallow scratches, its final shape is expected to be one where the continuous
liquid volume rests on top of side ridges while also filling the scratch. This morphology is
labelled ‘semi-imbibed’, and an example is shown in image IV in figure 3. As the scratch
depth increases, more of the liquid volume will occupy the scratch. Given that the low
receding contact angle prevents significant contraction of the droplet contact line from
the side ridges, for a deep enough scratch the droplet may split along the inner edges
of the side ridges such that the liquid on the top of the side ridges and that in the
scratch become separated. Splitting along the inner edges is expected when the cross-
sectional area of the scratch multiplied by Dalong, the length of spreading along the
scratch, results in a greater volume than the droplet. Thus the critical width corresponds
to when wD0 × dD0 × DAlong = 4

3π(D0/2)
3. Assuming that DAlong = βmaxD0, where

βmax is again the maximum spreading on a flat surface, this gives the following estimate
of the critical width for which splitting will occur:

wsplit =
π

6dβmax
. (2.3)

Again the different explicit models asterisked in table 1 have been used to give a spread
of estimates of βmax (for θA = 75◦) and these result in the blue dotted curves in figure
3. For depths below these curves and w < 1, the final droplet shape will be a ‘split
semi-imbibed’ morphology where most of the liquid occupies the scratch, but separate
small droplets remain on the upper surfaces of the side ridges. See the example image V

in figure 3.
The droplet fully imbibes into the scratch without spreading on the side-ridges when

w > 1 and the scratch depth is sufficient to contain the entire liquid volume. The result is
a ‘fully-imbibed’ morphology as indicated in image VI in figure 3. By a similar argument
to that above for droplet splitting, the condition for full imbibition into the scratch is:

w > 1, and d >
π

6βmaxwsplit.
(2.4)

This corresponds to the region to the right of the vertical dash-dot line in figure 3.

3. Computational methodology

There are several possible methods that could be used to simulate deforming droplets
on surfaces, see e.g. Wilson & Kubiak (2016) for a review. A key requirement of any such
method is the ability to represent and determine the shape of the liquid free-surface as it
deforms. One possibility is to use an interface tracking approach, where the computational
mesh is fitted to and deforms with the free surface — for example as in the finite
element technique used by Feng (2015). While this approach provides excellent sharp
representations of free surfaces, it cannot track surfaces that break apart or intersect
without remeshing, which can lead to instability (Furlani 2015). This makes the method
challenging when simulating systems with critical phenomena such as the break up or
coalescence of small droplets. A more common approach is to use an interface capturing
method, of which there are many types, such as the volume-of-fluid (VOF), level-set
and phase-field methods — see Mirjalili et al. (2017) for a classification and review. In
such methods, the liquid-fluid interface moves through the computational mesh, allowing
greater flexibility in terms of severe interface deformations and topological changes in
the liquid volume, subject to sufficient mesh resolution.



Micro-droplet impact onto a scratch 11

VOF is used frequently for droplet deposition onto surfaces, with work by Wildeman
et al. (2016) being a recent example. However, a key limitation in VOF approaches —
and Navier-Stokes based approaches in general — is that the dynamic contact angle θd
usually has to be prescribed as an input. For relatively well-behaved systems, empirical
relations between θd and the contact line velocity U can be used (Yokoi et al. 2009; Sykes
et al. 2020b). However, for a complex 3D geometry evolving in time, as considered here,
this is not straightforward.

The lattice Boltzmann method (LBM) is increasingly used to simulate the fluid
mechanics of multiphase systems. The mesoscopic nature of the method, which retains
some molecular-scale physics via probability density distributions, makes it well suited to
multiphase simulations, with interface motion, break-up and coalescence readily captured
in 3D. Multiphase LBM does not require a relation between θd and U , but just the static
contact angle θs in the case without contact angle hysteresis (CAH), and the advancing
θA and receding θR contact angles in cases with CAH. The dynamic contact angle results
naturally from the statistical mechanical nature of the method. LBM is localised and lends
itself to parallel computing with GPUs (Krüger et al. 2016); we make use of this feature
to run an extensive parametric study here. A disadvantage of LBM is that macroscopic
variables such as density, viscosity, velocity, and surface tension are derived quantities,
see below. It is also a memory intensive method, putting limits on domain size when
using GPUs, and local grid refinement is still a developing area. These disadvantages did
not affect this work.

There are various approaches to including multiphase and/or multicomponent effects
into the LBM framework, including methods based on ‘colour gradients’ (Gunstensen
et al. 1991), free energy functionals (Swift et al. 1995), mean-field approximations (He
et al. 1999), and the ‘pseudo-potential’ model (Shan & Chen 1993). For a comprehensive
review refer to Huang et al. (2015).

In this paper, we use the single-component pseudo-potential (SCPP) model due to
its relative simplicity and efficiency, but incorporate several modifications suggested in
the literature to allow simulations under real inkjet printing conditions. These include
the form of pseudo-potential required to include arbitrary equations of state (Yuan &
Schaefer 2006), specifically the Carnahan-Starling equation of state which enables high
density ratio and manipulation of surface tension, the force correction by Li et al. (2013)
which was later extended to 3D in Li et al. (2019), and the collision matrix in Li et al.
(2019). More detail of these, and the method in general, is provided in section 3.1.
To capture the wetting phenomena and contact angle hysteresis (CAH), a geometric
boundary condition (Ding & Spelt 2007; Connington & Lee 2013) is employed and this
is described in section 3.2.

3.1. The lattice Boltzmann method solver

Lattice Boltzmann methods solve the Boltzmann Equation on a lattice that discretises
the spatial and velocity domains to form the lattice Boltzmann Equation so that the
probability distribution density function f at position x and time t evolves according to

fα(x+eαδt, t+δt) = fα(x, t)−Ωαβ(fβ(x, t)−feqβ (x, t))+δt(Sα(x, t)−0.5ΩαβSα(x, t)).
(3.1)

Here δt is the time step, eα are velocities chosen according to the velocity discretisation
used in the model such that x + eαδt moves the particle distribution density function
to a neighbouring lattice site, and α and β are indices for the velocity vector space. In
this paper, we use the D3Q19 velocity discretisation (that is 3 space dimensions and 19
velocity vectors) detailed in Appendix A. Ω in equation (3.1) is the collision operator,
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which mimics the effect of molecular collisions and is how viscosity is captured; for more
detail on the role of the collision operator, refer to Krüger et al. (2016). The multiple
relaxation time (MRT) collision operator used here is written as

Ωαβ = (M−1ΛM)αβ , (3.2)

where M is the collision matrix and Λ is a diagonal relaxation matrix used to relax the
various moments of the distribution density function at various rates. The most commonly
used collision matrix is that derived using the Gram-Schmidt procedure (D’Humières
et al. 2002), however, an equivalent but more efficient and easier to implement matrix has
been derived by Li et al. (2019), which is used in this work. Instead of a single relaxation
time for all moments, moments are relaxed at different rates in MRT simulations. The
corresponding diagonal relaxation matrix is given by

Λ = diag(1, 1, 1, 1, sζ , sν , sν , sν , sν , sν , sq, sq, sq, sq, sq, sq, sπsπ, sπ, sπ), (3.3)

where sζ and sν determine the bulk and kinematic shear viscosities respectively. sπ and
sq are relaxation rates for non-hydrodynamic moments that can be tuned to ensure the
stability of the simulation. The term Sα(x, t) in equation (3.1) is a source term used here
to incorporate inter-molecular forces needed to produce coexistence of liquid and vapour
phases. To simulate multiphase flow, Shan & Chen (1993) introduced local attractive
interaction forces written in discrete form as,

F (x, t) = −Gψ(x, t)
∑

α

wαψ(x+ eαδt, t+ δt)eα, (3.4)

where G is the strength of the interactive force, ψ(x, t) is the pseudo-potential used to
prevent the force from diverging at high densities, and wα are weights that depend on the
velocity directions; they are w0 = 1/3, w1, . . . , w6 = 1/6 and w7, . . . , w18 = 1/12. This
interaction force is incorporated differently into Sα(x, t) in the original Shan & Chen
(1993) model compared to Li et al. (2013), where the latter solves the thermodynamic
inconsistency in the former. The source term used in this work is that proposed by Li et al.
(2013), and is detailed in appendix A. This model results in a pressure, p = c2sρ+

1
2ψ

2c2sG,

supporting two phases, where cs = 1/
√
3 is the speed of sound of the lattice (Shan &

Chen 1993). Yuan & Schaefer (2006) showed that this equation of state, with the choice
of ψ(x, t) = ρ0(1− exp (−ρ/ρ0)) originally proposed by Shan & Chen (1993), is limited
in terms of achievable density ratio between the liquid and vapour phases and instead
proposed using a different expression for ψ(x, t),

ψ(x, t) =

√

2(p− c2sρ(x, t))

c2sG
. (3.5)

This enables using different equations of state for pressure such as the Carnahan-
Starling equation of state used in this work,

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3
− aρ2, (3.6)

where T is temperature, R is the universal gas constant (set to 1), a = 0.49963R2T 2
c /pc

and b = 0.18727RTc/pc, with Tc and pc being the critical temperature and pressure
respectively. The parameter a physically represents the strength of the molecular interac-
tion in the EOS and lowering it results in a thicker interface and a more stable simulation
at higher density ratios (Li et al. 2013). Reducing T in (3.6) increases the density of the
liquid and lowers that of the gas, hence increasing the density ratio. The parameter b
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represents the volume occupied by the material’s atoms and is chosen arbitrarily and
kept constant. In this study, we use equation (3.6) with a = 0.05, b = 4 and T = 0.00472
which permit a density ratio of O(1000); see appendix §A.3 for more details on a and
b. The macroscopic variables of density, pressure, and velocity are calculated from the
moments of the probability density function using the following equations respectively,

ρ(x, t) =
∑

α

fα(x, t), (3.7)

p(x, t) = c2sρ(x, t) +
c2sG

2
ψ2(x, t), (3.8)

ρ(x, t)u(x, t) =
∑

α

eαfα(x, t) + 0.5δtF , (3.9)

while the kinematic viscosity is given by

ν = c2s(s
−1
ν − 0.5δt). (3.10)

3.2. Wetting and contact angle hysteresis boundary condition

Various methods can be used to prescribe a contact angle at a wall boundary, such as
introducing an interaction force between the solid and fluid nodes (see for example Li
et al. (2014)) or prescribing a constant density at the wall to achieve a predetermined
contact angle (see for example Castrejón-Pita et al. (2013)). These methods work well at
relatively low density ratios but become unstable at higher values. The prescription of a
density at the wall also requires calibration to give a specific contact angle whenever the
density ratio or the equation of state is changed (Wilson & Kubiak 2016). An alternative
is to use the geometric boundary condition developed by Ding & Spelt (2007), which has
been used to simulate inkjet printed droplets at high density ratio without loss of stability,
and hence it is used in this study. This condition was originally developed for the volume
of fluid method and adopted in the phase field multiphase lattice Boltzmann methods by
Connington & Lee (2013) and has been used for the pseudo-potential multiphase models
by Zhang et al. (2018). A derivation detailed in Appendix A.2 results in the equation

tan
(π

2
− θ
)

=
−∇ρ · n

|∇ρ− (∇ρ · n)n| , (3.11)

where n is the unit normal to the solid surface and ρ is the density. This can be discretised
and used to calculate a density to assign to the solid wall locally to satisfy a given contact
angle. The discrete form for our geometry is detailed in Appendix A.2.
Contact angle hysteresis was implemented by calculating the local contact angle using

the inverse of equation (3.11). If the value of the local contact angle is lower than the
receding contact angle (θR) then θ is replaced with θR and similarly, if the local contact
angle is higher than the advancing contact angle, it is replaced with θA. Assigning the
density on the wall controls the interaction pseudo-potential in equation (3.5) to satisfy
the contact angle θ. In order to capture CAH, the wall lattice sites are initialised with θ
in equation (3.11) set to θA. This allows the droplet to spread provided that the contact
line forms a local contact angle of θ > θA. Once a lattice site has been wetted, the value
of θ in equation (3.11) is replaced with θR for this lattice site. This will stop the droplet
from dewetting or the contact line receding unless the local contact angle at the contact
line is θ 6 θR. This is implemented by rearranging equation (3.11) for θ and calculating
in every time step locally in every wall lattice site. Note that the values of θ assigned
at the wall are used to control the interaction force, while the contact line can have
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any contact angle. The Shan & Chen (1993) model with these additions can capture a
range of contact angles, contact angle hysteresis, coalescence and breakup, and contact
line dynamics at high density ratio up to 103. The simulation is numerically stable for
45◦ 6 θA 6 140◦ in the smooth surface case and 55◦ 6 θA 6 130◦ in the case with the
scratch.

To enable the extensive parametric study presented in section 4, the code was acceler-
ated using CUDA to run on GPUs. A simulation (of size 256×256×576 lattice cells) that
would take up to 3 days on a single CPU then ran in under two hours. On a 24-core CPU
high-performance computing node (Intel Xeon Gold 6138 @ 2GHz) speeds of 5 million
lattice updates per second (MLUPS) were achieved, compared with 200 MLUPS on an
NVIDIA P100 GPU and 500 MLUPS on an NVIDIA V100 GPU.

3.3. Validation of simulations against experimental data

For the impact of a single droplet falling onto a smooth solid surface we compare
our simulations to experimental data from Lim et al. (2009), who examined droplets
with in-flight diameter D0 = 48.1 µm hitting a smooth surface at speed u = 1.9m s−1

corresponding to a Reynolds number Re = uD0/ν = 107, Weber number We =
ρu2D0/γ = 2.4, and Ohnesorge number Oh =

√
We/Re = 0.015, where γ is the surface

tension. The advancing and receding contact angles were reported to be θA = 60◦

and θR = 40◦ respectively. The normalised spreading diameter of the droplet Ds/D0

and height Hs/D0 were tracked over time. Lim et al.’s (2009) data are compared
with equivalent simulations in figure 4. To give an indication of the sensitivity of the
simulations to the resolution of the lattice, several different lattices were tested, with
the resolution expressed in terms of the number of cells per initial droplet radius. Note
that in the lattice Boltzmann method, testing the sensitivity to lattice resolution is
not as straightforward as for direct discretisations of the Navier-Stokes equations, since
the lattice discretises both coordinate space and the molecular velocity space. Hence
modifications of the lattice node spacing require adjustments of other parameters to
ensure that the same physical system is being simulated.
In general terms, good agreement is achieved between the simulations and both sets

of experimental data as the lattice resolution increases; oscillations in height agree well
particularly for the first few periods, while the spreading rate and final diameter are
close, with some small variation in experimental data due to experimental noise. There
is still some sensitivity in the time scales of the simulations using different lattices, which
becomes more evident at later times, but the same equilibrium state is reached in each
case. In the non-axisymmetric simulations presented in §4, the finest resolution was used
and, for a random sample of the conditions considered, simulations were repeated with the
other lattice resolutions. The same equilibrium shapes were obtained with each lattice.

3.4. Comparison with analytical models

In addition to the models for the maximum spreading diameter (see table 1), theoretical
models have been developed to predict the equilibrium diameter βeq for a given static
contact angle θ (in the absence of hysteresis). Using conservation of volume, Van Dam
& Le Clerc (2004) identified an expression for Deq in terms of the in-flight diameter of
the droplet D0 and θ:

βeq =
Deq

D0
=

(

8

tan θ
2 (3 + tan2 θ2 )

)1/3

. (3.12)
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Figure 4: Comparison between the experimental results by Lim et al. (2009) and
corresponding simulations of a 48.1 µm droplet impacting a flat surface at 1.9m s−1

(Re = 107; We = 2.4) using different lattice resolutions. The data show the spreading
diameter (in red) and height (in blue) of the droplet, all scaled by the initial droplet
diameter.

As further validation for the simulation methodology, and to provide a baseline simula-
tion for more complex topographies, a typical inkjet droplet impacting a smooth surface
was simulated. The droplet was 48.8 µm in diameter falling at 3.74m s−1, with density
1000 kgm−3, surface tension 26Nm−1, and dynamic viscosity 9×10−4 Pa s (i.e. Re = 204
andWe = 26). Several simulations were run without contact angle hysteresis for various θ
and using different lattice resolutions. The resulting equilibrium diameters are compared
to values predicted by equation (3.12) in figure 5(a), which shows very good convergence
of the numerical simulations to the analytical result.

Figure 5(b) shows the maximum spreading diameter of a droplet (scaled by its initial
diameter) obtained from numerical simulations with contact angle hysteresis included
(θA = 75◦; θR = 1◦) for different values of the Weber number. For comparison, the
models from table 1 are plotted, showing that the simulations are consistent with the
collective predicted behaviour. The more recent models (Roisman 2009; Laan et al. 2014;
Lee et al. 2015; Wildeman et al. 2016) produce similar values to each other, and — despite
being developed for larger droplets — agree quite well with the numerical simulations
of micro-droplets, particularly for the larger values of Weber number. For the lowest
Weber numbers considered, the model by Chandra & Avedisian (1991) fits our data
most closely, but agreement with this model is poor for larger We. Overall, based on
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Figure 5: Comparison of simulation predictions with analytical models for droplet
spreading diameters on a flat surface. In (a), the equilibrium diameter is determined
(without contact angle hysteresis) using different lattice resolutions and compared with
equation (3.12) for different contact angles. The inset plot shows the L∞-norm of the
error. In (b), the maximum spreading diameter from simulations using the finest lattice
is shown for different Weber numbers, with θA = 75◦ and θR = 1◦. This is compared
with the predictions using the models in table 1.

our micro-droplet simulations, the model of Roisman (2009) is arguably the best both in
terms of its agreement but also because it is an explicit model that is easier to use.
Further comparison with the models in table 1 is given in figure 6 for the specific case

We = 26. The figure highlights the effect of contact angle hysteresis on the spreading.
With hysteresis accounted for (again with θA = 75◦ and θR = 1◦), the contact line
expands as the droplet spreads and becomes pinned essentially at the maximum spread
diameter since the receding contact angle is so low. Such pinning is important in printing
applications and is seen in practice with the colloidal inks used in the printed electronics
industry (Duineveld 2003). The grey shaded band again corresponds to the predictions
of maximum spreading diameter from the models in table 1. In contrast, when contact
angle hysteresis is not included in the simulation, the droplet recoils and contracts after
reaching its maximum extent, then overshoots and oscillates in diameter as it settles to
an equilibrium diameter consistent with equation (3.12).

4. Numerical simulations of single micro-droplet impact on a scratch

The droplet deposition scenario considered is as described in §2 and shown in figure
2. To provide a representative specific impact condition, simulation results are presented
here for Re = 204 and We = 26, which are relevant to inkjet printing applications as
indicated in figure 1(a). The advancing and receding contact angles are set to θA = 75◦
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Figure 6: The spreading diameter as a function of time for a single droplet on a smooth
surface. These are results from simulations with and without contact angle hysteresis
compared to predictions of the maximum spread diameter from the models in table 1
(grey shaded area) and the equilibrium diameter given by equation (3.12) (grey dashed
line).

and θR = 1◦, again to be relevant to inkjet printing (Davis 1980; Duineveld 2003). The
effect of variations in these four key parameters are considered in §5.

4.1. Printed droplet morphologies

Figure 7 presents a map of the scratch width-depth parameter space showing the
outcomes of droplet impact simulations that were run until an equilibrium morphology
was formed. Different symbols indicate the morphology obtained at each width-depth
combination, and corresponding examples of the equilibrium shapes for the same Re,
We, θA and θR are given in figure 3. In addition, figure 7 shows an example of an
‘edge-pinned’ final droplet, where the droplet has spread over the tops of the side ridges,
reaching the outer edge with insufficient momentum to spill onto the original substrate
surface. The contact line remains pinned on the outer edge as the very low receding
contact angle prevents recession and the Gibbs pinning criterion is satisfied.

The theoretically estimated regime boundaries developed in §2 are superimposed in
figure 7 and show generally very good agreement with the outcomes of the numerical
simulations. Recall that the three curves corresponding to equations (2.2) and (2.3) give
the mean and standard deviations of the predictions based on the five explicit maximum
spreading models in table 1. There is slight deviation between equation (2.1) and the
boundary of the capillary regime identified from simulations because equation (2.1)
assumes an infinite source of liquid and does not capture the force due to the Laplace
pressure resulting from curvature of the droplet, which becomes significant when the
source droplet is of commensurate width to the groove. However, the criterion (2.2) for
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Figure 7: Numerically determined regime map for morphologies formed by printing a
single droplet centred on the idealised scratch shown in figure 2. Simulation parameters:
Re = 204, We = 26, θA = 75◦, θR = 1◦. The overlaid lines and curves give the
theoretically estimated regime boundaries developed in §2. Equations (2.2) and (2.3)
employ predictions of maximum spreading diameters from table 1; the three curves for
each equation represent the mean and standard deviation due to the models.

pinning of the contact line on the edges of the side ridges captures very well the numerical
predictions. Note that similar pinning has been observed even on rounded edges (Kant
et al. 2017).
The splitting boundary of equation (2.3) also fits well with the simulation results but

has a slight deviation at larger depths. This is likely due to the assumption that the entire
depth of the scratch is filled when deriving equation (2.3), i.e. the simple geometrical
argument does not account for the non-trivial shape of the liquid free-surface within
the scratch. Similarly, the conditions for full imbibition of the droplet into the scratch
are quite well identified by the criteria in (2.4), with some discrepancy in the critical
depth due to the crude approximation of the free-surface shape within the scratch. The
delineation of the ‘quasi-spherical cap’ region of figure 7 is somewhat subjective. Here
we define this to be where the final droplet shape deviates from a spherical cap by less
than 10% in the lateral dimensions.

4.2. Droplet spreading dynamics

Although seven different equilibrium morphologies have been identified in figures 3 and
7, essentially only two types of flow dominate the spreading dynamics, namely inertia-
driven spreading and capillary flow. Front views of the droplet spreading process at
different times are shown in figure 8 for a selection of scratch widths and depths that lead
to each of the seven equilibrium morphologies, while figure 9 illustrates how the horizontal
and vertical dimensions of the droplet change in time for different morphologies. There,
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Regime Time Evolution (ms)

Quasi-
spherical
d̄ = 0.05
w = 0.1

t = 0 t = 0.03 t = 0.039 t = 0.048 t = 0.072 t = 0.138

Inertial
d̄ = 0.1
w = 0.4

t = 0.03 t = 0.036 t = 0.042 t = 0.048 t = 0.069 t = 0.12

Edge
pinned
d̄ = 0.15
w = 0.5

t = 0 t = 0.036 t = 0.045 t = 0.048 t = 0.066 t = 0.12

Semi
Imbibed
d̄ = 0.1
w = 0.8

t = 0.033 t = 0.036 t = 0.042 t = 0.048 t = 0.066 t = 0.12

Split
Semi
Imbibed
d̄ = 0.45
w = 0.7

t = 0.033 t = 0.036 t = 0.042 t = 0.048 t = 0.066 t = 0.12

Fully
Imbibed
d̄ = 0.5
w = 1

t = 0.036 t = 0.045 t = 0.048 t = 0.054 t = 0.057 t = 0.066

Capillary
with
3D view
d̄ = 0.25
w = 0.2

t = 0.033 t = 0.036 t = 0.048 t = 0.066 t = 0.195 t = 5.7

Figure 8: Front view snapshots of the different regimes evolving in time measured in
milliseconds. The images are to scale, the zoom scale is constant and the droplet diameter
(hence also volume) is kept constant. The last row contains 3D views to demonstrate the
capillary flow along the scratch.
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Figure 9: Evolution with time of the morphology height and dimensions along and across
a scratch for the (a) quasi-spherical cap, (b) edge-pinned, and (c) capillary flow cases
shown in figure 8.

DAlong refers to the length of the liquid in the direction of the scratch, DAcross is the
diameter perpendicular to the scratch, and H is the droplet height measured at the
centre of the scratch from the bottom of the scratch to the free surface. These quantities
are normalised by the equilibrium spreading diameter of an equivalent droplet on a flat
surface, Dflat and height Hflat of a corresponding droplet after impact on a smooth
flat surface, i.e. with no scratch, from section 3.4. Note that in most cases considered
here Dflat ≈ βmax = Dmax/D0 (the expected maximum spreading diameter, Dmax, of
the droplet on a flat substrate with the same advancing and receding contact angles
normalised by the in-flight diameter D0) since the very low receding contact angle
prevents contraction of the contact line, but for other values of θR these values are
generally different.
In the quasi-spherical cap regime, the scratch is filled and covered very quickly, the

droplet spreads to reach a maximum diameter and then oscillates, as seen in the H
curve in figure 9(a), before relaxing more slowly to its equilibrium shape. The resulting
horizontal dimensions DAlong and DAcross are similar to the corresponding spherical cap
formed on a smooth flat surface. However, the slight extension of the droplet along the
scratch results in a lower equilibrium height.
In the inertial regime, the droplet touches the side ridges, then penetrates to the

bottom surface of the scratch. The liquid spreads on the side ridges and spills over onto
the original substrate surface, as seen in the second row of figure 8. Compared to the
quasi-spherical cap case, there is greater spreading along the scratch and slightly shorter
spreading in the direction perpendicular to the scratch. The wider scratch results in a
greater volume of liquid occupying the scratch, and consequently a slightly reduced final
droplet height. In the edge-pinned regime, i.e. for wider scratches, the droplet contact
line reaches the outer edges of the side ridges, but, as noted in §4.1, there is insufficient
momentum to carry the free surface past the edges, and the contact line remains pinned
as seen in figure 8. Figure 9(b), which corresponds to w = 0.5, shows the increased
inertia-driven spreading along the scratch and the subsequent halting of the contact line
producing a constant DAlong as a result of the very low receding contact angle. The
extent of the droplet in the direction across the scratch is reduced by the enhanced flow
along the direction of the scratch and the pinning on the ridge edges.
Under conditions leading to the semi-imbibed morphology, the droplet impacts the

bottom of the scratch and spreads along and across the scratch and then impacts onto
the side ridges, see figure 8. The droplet spreads on the top of the side ridges but the
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contact line does not reach the outer edges; it becomes pinned somewhere on the top
of the ridges because of the very low receding contact angle. In the split-semi-imbibed
regime, the droplet impacts the side ridges first, and then penetrates into the scratch,
reaching the bottom and spreading along it. As the droplet spreads into the scratch, it
splits along the inner edges of the side ridges, leaving separated droplets sitting on the
top of the side ridges. These droplets are almost flat because of the very low receding
contact angle. In the fully imbibed regime, the droplet never impacts on the top surface
of the side ridges but falls into the scratch and spreads until an equilibrium is reached.

Finally, as shown in the 3D view included in the bottom row of figure 8, for scratches
producing capillary flow, the droplet initially spills over the side ridges onto the original
substrate as in the quasi-spherical cap and inertial regimes. However, the liquid then
spreads along the scratch by capillary action until there is no more liquid to supply
further flow. This can be clearly seen in the evolution of both DAlong and the droplet
height in figure 9(c). Note the different scale on the vertical axis in this plot compared
to the others in figure 9.

The rate of capillary propagation has been studied extensively starting with work by
Washburn (1921), Bell & Cameron (1906) and Lucas (1918) on cylindrical capillaries.
The main finding is that the propagation length x increases as the square root of time,
that is x ∝

√
t. More recently this analysis has been extended to other geometries

including capillary flow in open rectangular micro-channels, studied theoretically and
experimentally by Yang et al. (2011). They followed a similar approach to that used to
derive the Washburn model except that they applied the procedure to an open rectangular
micro-channel. The reservoir droplet in their experiments was large enough relative to
the micro-channel to ignore its Laplace pressure in the model. Although the capillary
flow seen here initially follows the propagation rate predicted by their model, the limited
volume of fluid in the droplet supplying the flow soon results in a more rapid decrease in
the speed of propagation and the corresponding flattening of the DAlong curve in figure
9(c).

4.3. Groove without ridges

Removing the side ridges from the topography in figure 2 reduces the number of
possible equilibrium morphologies from seven to five, and alters the combinations of
groove width and depth at which the morphologies arise. The corresponding regime map,
constructed from simulations for groove widths ranging from 0.1–1 and depths of 0.05–
0.75 with increments of 0.1 and 0.05 respectively, is shown in figure 10. The morphologies
caused by the presence of the ridges, namely edge-pinned and inertial (where the droplet
spills over the ridges), are not seen with this topography. These both merge into the
semi-imbibed morphology, where the equilibrium shape of the droplet occupies both the
groove and the nearby region of the substrate surface, and is the dominant morphology
for sufficiently shallow grooves. For narrow and shallow grooves, the morphology can
still be classed as a quasi-spherical cap, and for narrow and deep grooves, the capillary
morphology is still seen. The fully imbibed, and split semi-imbibed morphologies are
again seen for sufficiently wide and deep grooves.

The theoretical estimates (2.1), (2.3) and (2.4) for the boundaries of the regions in the
regime map are readily adapted by using the appropriate depth d̄, and these are included
in figure 10. Again, good agreement is seen between these estimates and the results of
the simulations.
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Figure 10: Regime map of equilibrium morphologies formed by printing a single droplet
centred on a groove of width w and depth d with no side ridges. Simulation parameters:
Re = 204,We = 26, θA = 75◦, and θR = 1◦. The overlaid lines and curves are theoretical
estimates of the regime boundaries based on conditions (2.1), (2.3) and (2.4). Equation
(2.3) employs predictions of maximum spreading diameters from table 1, the three curves
representing the mean and standard deviation of the predictions.

5. Effect of flow and substrate parameters

The regime maps in figures 7 and 10 were constructed using a single set of material and
flow parameters θA, θR, Re, and We to illustrate the effects of the scratch geometry and
the relationships among the morphologies. For this case, the boundaries of the regions
within the regime maps are found to be represented very well by the theoretical estimates
(2.1)–(2.4) that are more broadly applicable. Apart from the criterion for capillary flow,
these expressions are based on the maximum spreading diameter, for which many models
exist that account for the effects of Reynolds number, Weber number and advancing
contact angle (see table 1). Hence it is possible to predict new regime boundary estimates
for other values of these parameters. As noted in §3.4, the Roisman (2009) model appears
to be most suitable for our micro-droplets, but all models show the same trends withWe
in figure 5b.

5.1. Effect of Reynolds number and Weber number

Increasing Re and/or We promotes greater spreading of the droplet on impact and
the droplet is therefore able to spill over wider side ridges. Hence wpin — the critical
scratch width for edge pinning in (2.2) — increases and the ‘inertial’ region of figure 7 will
expand to the right. This effect is illustrated in the specific case shown in figure 11, for
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Re = 62 Re = 102 Re = 204
‘semi-imbibed’ ‘edge-pinned’ ‘inertial’

Figure 11: Effect of Re on the morphology resulting from a droplet impact on a scratch
of dimensions d = 0.15 and w = 0.5 at We = 26, with θA = 75◦ and θR = 1◦.

a scratch geometry given by d = 0.15 and w = 0.5. A droplet impact at Re = 62 results
in a ‘semi-imbibed’ morphology, whereas an impact on the same scratch at Re = 102
produces the ‘edge-pinned’ morphology, and at Re = 204 the ‘inertial’ morphology arises,
consistent with the increase in the value of wpin.
The greater inertia of the droplet will also result in greater penetration into and along

the scratch, resulting in a smaller liquid height within the scratch and consequently
a greater tendency for the droplet to split along the inner edges of the scratch and
leave separate small droplets on the outer surface. From the form of equation (2.3) it
is clear that the boundary of the ‘split semi-imbibed’ region in both figures 7 and 10
will expand upwards and to the left — i.e. towards narrower, shallower scratches. The
critical condition (2.1) for the onset of capillary flow is independent of Re and We since
capillary flow is not inertia-driven and continues long after the initial spreading of the
droplet. It is of course greatly influenced by θA, and this is discussed below.

5.2. Effect of the advancing contact angle, θA

The effect of θA on the initial spreading of a droplet on a flat surface is captured in
some of the models of maximum spreading diameter in table 1. It is well known that
contact angles below 90◦ promote spreading and those above hinder it. Hence increasing
θA results in reduced spreading both along and perpendicular to the scratch, and a
consequently increased droplet height (unless of course the droplet is fully imbibed).
However, θA also influences the shape of the liquid free surface within the scratch, as can
be seen in figure 12, which shows just the liquid volume with the confining solid made
invisible.

The contact line on the bottom of the scratch, which is generally concave at θA = 75◦,
becomes convex when θA = 115◦ as the side walls of the scratch then act to hinder
rather than assist spreading. The non-trivial shape of the liquid free surface in the
‘semi-imbibed’ and ‘split semi-imbibed’ cases illustrate why there is a small discrepancy
between the predicted regime boundary given by equation (2.3) and that observed from
the simulations.

In the ‘quasi-spherical cap’ regime, the liquid volume that runs along the scratch
decreases with increasing θA until it no longer extends beyond the diameter perpendicular
to the scratch, and for θA = 115◦ (figure 12) the liquid inside the scratch does not extend
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Figure 12: Effect of θA on final droplet shape for Re = 204, We = 26 and θR = 1◦. The
images show just the liquid volume(s) within and around each scratch.

as far as that above the scratch. Moreover, capillary flow will no longer occur for θA > 90◦,
and as a consequence the region in figures 7 and 10 where capillary flow exists moves to
smaller values of w/d as θA increases, until the capillary flow region vanishes.

For a scratch that produces the ‘inertial’ morphology when θA = 75◦, the reduced
spreading that occurs when θA is increased can mean that the droplet no longer has
sufficient momentum to spill over the side ridges, and the droplet becomes ‘edge-pinned’
or ‘semi-imbibed’. A similar effect is seen for wider scratches, and we conclude that the
boundaries within the regime map in figure 7 shift towards lower widths as θA increases,
with the capillary flow region eventually disappearing.

5.3. Effect of the receding contact angle, θR

If, as the droplet shape changes, the contact angle falls below the receding contact
angle, the contact line will recede. Changes in θR are therefore be expected to have a
significant influence on the droplet morphologies discussed above. Figure 13 highlights
this via top-view plots of the final droplet shape for five different values of θR from the 1◦

value used to create figures 7 and 10 up to θR = 75◦, which corresponds to the case where
there is no contact angle hysteresis. For scratch dimensions leading to the quasi-spherical
cap morphology, the droplet remains quasi-spherical, but its footprint becomes smaller
as θR increases because the contact line recedes until an equilibrium is reached where the
contact angle is everywhere equal to or greater than θR. The conditions for capillary flow
to occur are independent of θR, but as θR increases, the contraction of the droplet above
the scratch means that more liquid is available to feed the capillary flow and the final
extent of the capillary flow is therefore increased. However, for intermediate θR, as the
droplet recedes from the top of the side ridges and original surface, small amounts of liquid
are left behind in the corners between the outer wall of the side ridges and the original
surface of the substrate. When there is no contact angle hysteresis (θR = θA = 75◦), the
entire droplet is pulled into the scratch by capillary action.
The ‘inertial’ morphology in figure 7 arises when the droplet spills over the side ridges

of the scratch onto the original surface, but no capillary action occurs. When θR is larger,
the contact line recedes after reaching its maximum spread, and climbs back onto the side
ridges to reach a different equilibrium. Hence the ‘inertial’ morphology becomes ‘edge-
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Figure 13: Effect of θR on final droplet shape. The images show top views for θA = 75◦,
Re = 204, and We = 26.

pinned’ and ‘semi-imbibed’ for θR values of 50◦ and 75◦ respectively. The liquid inside
the scratch also recedes with higher θR. The ‘semi-imbibed’ morphology becomes ‘fully-
imbibed’ due to the recession of the footprint outside the groove into it. The ‘edge-pinned’
morphology turns into a ‘semi-imbibed’ and then ‘fully-imbibed’ as θR approaches θA.
The fully imbibed morphology only changes in its extent along the scratch. Increasing the
receding contact angle generally results in an equilibrium morphology that is less spread
in the direction perpendicular to the scratch, and also shorter in the direction along the
scratch. The exceptions are the capillary and edge-pinned regimes, where the lack of
contact-line pinning on the upper substrate releases more liquid to penetrate along the
scratch. All the regime map boundaries shift to lower widths, except the capillary regime
because it is governed by θA.

6. Implications for printing applications

In printing an electrical circuit, a key requirement is continuity of the printed track.
Achieving a stable, continuous printed line requires consistent droplet spreading be-
haviour and a careful balance of droplet generation frequency and printing speed to
achieve the correct droplet spacing (Stringer & Derby 2010). Variations in the droplet
spreading caused by a scratch could therefore destabilise the line or cause a break in
continuity. Hence quantitative measures of the spreading behaviour on a scratch are
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Figure 14: DAcross, the length of the final single-droplet morphology in the direction
perpendicular to a scratch following deposition of a droplet on the scratch shown in
figure 2 at Re = 204, We = 26, with θA = 75◦ and θR = 1◦. The plots show variation
with scratch width and depth, and the coloured symbols indicate the type of morphology
following the same labelling as in figure 7.

potentially useful. Here, for simplicity, the two simplest configurations will be considered,
namely printing perpendicular to a scratch and printing along a scratch.

6.1. Line printing across a scratch

With the prospect of a break in line continuity, a key quantity to consider is the extent
of single-droplet spreading in the direction perpendicular to the scratch. Figure 14 shows
the behaviour of DAcross, i.e. the length of the resulting single-droplet morphology in the
direction perpendicular to the scratch (see figure 7), as a function of scratch width and
depth. The plots show DAcross normalised by Dflat, the equilibrium spreading diameter
of an equivalent droplet on a flat surface. Recall that the scratch width and depth are
scaled by the impacting droplet’s in-flight diameter. While narrow, shallow scratches
cause only a small change in the extent of spreading, it is clear that as the droplet
and scratch become similar in size, a significant shortfall in the spread length occurs.
Depending on the degree of overlap between consecutive droplets, which determines the
printed line width (Stringer & Derby 2010), such a reduction in spreading could prevent
coalescence of a droplet with the rest of the line and hence a break in continuity. Note
that the convergence of the lines in figure 14(a) and the sudden drop in the w = 0.4
line in figure 14(b) are a result of pinning of the contact line on the outer edge of the
side ridges. The upturn between w = 0.9 and w = 1.0 in figure 14(a) is because for the
‘fully-imbibed’ morphology, DAcross = w.
Beside the prevention of coalescence due to the reduction in spreading, another mecha-

nism by which line continuity could be broken is through the splitting of the droplet along
the inner edge of the scratch. This is illustrated in figure 15, which shows simulations of
printing a series of five droplets across two scratches with the same depth but different
widths. Both scratches appear in the ‘split semi-imbibed’ region of figure 7, and the
third droplet, landing on the scratch centre, splits along the inner edges of the scratch,
as expected — see figure 15(b) and (f). For the wider of the two scratches, this splitting
is irrecoverable and the printing continues with a separate line on the other side of the
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Figure 15: Simulations of printing consecutive droplets across scratches of depth d̄ = 0.4
(d = 0.6) and widths w = 0.6 (images a-d) and w = 0.45 (images e-h).

scratch. However, for the slightly narrower scratch, when the fourth droplet is printed,
it pushes back on the pre-existing liquid on the substrate, making the liquid coalesce
and become continuous again, see figure 15(g). This illustrates that the dynamics of the
consecutively printed and coalescing droplets can be subtly different from the single-
droplet dynamics. Note that while the narrower scratch does not cause a break in
continuity, the thinner parts of the printed line could cause problems such as higher
resistance or local heat generation.
The extent of liquid spreading along a scratch due to a single droplet impact, DAlong

(see figure 7), is also an important consideration in line printing, and this is captured
in figure 16. For a line crossing the scratch, spreading along the scratch would create
a variation in the thickness of the line that could potentially lead to instability and
formation of bulges along the line. As can be seen in figure 16, all dimensions of scratch
lead to enhanced spreading along the scratch direction, with the most significant extent
being of course that corresponding to the deep, narrow scratches where capillary flow
occurs. The long filaments of the capillary morphology could be problematic if, for
instance, two parallel lines are being printed in close proximity for a printed circuit:
they could cause the two lines to connect unintentionally, resulting in a short circuit.
However, because of the slower time-scale of the capillary flow, as seen in figure 9(c), this
issue could perhaps be avoided using a fast enough curing mechanism or by creating a
larger advancing contact angle. On the other hand, this morphology can be exploited to
connect two lines by designing such a feature and using a slowly evaporating ink.

6.2. Printing along a scratch

The edge-pinned morphology is an example of how structured substrates can be
exploited to print lines with sharp edges. To demonstrate this effect, five droplets are
printed into a groove with depths of d̄ = 0.3 and d̄ = 0.45 and width w = 0.4, both
corresponding to the edge-pinned morphology. The results are visualised in figure 17. In
the first simulation, (d̄ = 0.3 and w = 0.4), although the first droplet forms a sharp edge
as expected, subsequent droplets spill over as seen in figure 17(c) and (d). This occurs
because the precursor droplet inside the groove is in the spreading path of the subsequent
droplet; this causes it to spill over. Increasing the depth to 0.45, however, allows more
volume for droplet spreading inside the groove, so overspill does not occur and a sharp
line is formed along the outer edges of the side ridges, as seen in figure 17(h). These two
simulations demonstrate how challenging printing a sharp line can be.
The simulations of printing along and across a scratch show that topographical features

of commensurate size to droplets have a significant effect not only on a single droplet
but also a series of droplets.
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Figure 16: DAlong, the length of the final single-droplet morphology in the direction along
a scratch following deposition of a droplet on the scratch shown in figure 2 at Re = 204,
We = 26, with θA = 75◦ and θR = 1◦. The plots show variation with scratch width
and depth, and the coloured symbols indicate the type of morphology following the same
labelling as in figure 7.
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Figure 17: Simulations of printing five consecutive droplets along scratches with width
w = 0.4 and depths d̄ = 0.3 (images a-d) and d̄ = 0.45 (images e-h).

7. Conclusions

The deposition of micro-droplets onto a scratched substrate has been investigated
using an idealised scratch comprising of a groove of rectangular cross-section, with
rectangular side ridges representing material displaced from the groove. Seven distinct
equilibrium morphologies arise as a result of inertial spreading, contact-line pinning on
various features of the topography, imbibition of the droplet into the scratch and capillary
flow along it. These morphologies occur for distinct ranges of scratch depth and width,
relative to the droplet size, which define regions of a regime map.
Adapting existing models for the maximum spreading diameter of a droplet on a flat

surface to account for liquid entering the scratch, theoretical estimates of the boundaries
within the regime map have been obtained that show good agreement with numerical
predictions using a 3D multiphase lattice Boltzmann model implemented on a GPU
architecture and validated against relevant previously published experiments.
Despite being developed for much larger droplets, some of the theoretical models for

droplet spreading diameter showed good agreement with the micro-droplet simulation
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predictions, suggesting that they can be successfully applied to micro-droplet impact.
In particular, the model of Roisman (2009) is arguably the best both in terms of its
predictions and its explicit nature, making it easier to use than more complicated models.

From a practical perspective, the interaction of droplets with a scratch of commen-
surate size can be detrimental in different ways. When inkjet printing a track across a
scratch, the shortening of the spreading in the direction perpendicular to the scratch
means droplets may not join as intended, resulting in line breaks. Alternatively, for
sufficiently deep and narrow scratches, capillary flow along the scratches could lead to
unintentional connections between parallel tracks; in the case of printed electronics this
can result in malfunctioning circuits. However, this also suggests opportunity to exploit
intentional features (such as those described by Nie & Kumacheva (2008), or Seemann
et al. (2005)) to control spreading and maintain a uniform track on the substrate. As
printing resolutions improve, and droplet sizes decrease, the results show that considera-
tion of the substrate’s topographical features becomes increasingly important in achieving
desired printing outcomes.
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Appendix A. Computational details

A.1. Discrete velocities

The discrete velocities used are the D3Q19 ones written as,

eα =





0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1





The source term used to incorporate the interaction force can be written as,
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. (A 1)

where F is the total force with components Fx, Fy, and Fz.

A.2. Geometric Wetting Boundary Condition

Consider a droplet spreading on a solid surface with unit normal n. The unit normal
and unit tangent to the droplet surface are ns and t respectively. Since the droplet is
made of the liquid (heavy) phase submerged in the gas (light) phase, the density gradient
at the droplet surface will point in the direction of −ns. Therefore,

ns = − ∇ρ

|∇ρ| . (A 2)

Looking at figure 18, an expression for θ is derived,

tan
(π

2
−θ
)

=
ns ·n

|ns−(ns ·n)n|
. (A 3)

Substituting equation (A 2) into (A 3) and simplifying,

tan
(π

2
−θ
)

=
−∇ρ·n

|∇ρ−(∇ρ·n)n| . (A 4)

Equation (A 4) was discretised differently for the various parts of the geometry de-
pending on the local normal n. The geometry is illustrated through a cross-section seen
in figure 19, with the various geometry types numbered. Similar boundary conditions are
labelled with similar patterns. The fluid domains are surrounded by ghost lattice sites
whose density is calculated to satisfy a pre-determined contact angle. The density at
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Figure 18: Schematic of the geometry at the three-phase contact line where n is the unit
normal to the solid surface, and ns and t are the unit normal and unit tangent to droplet
surface. The unit normal to the fluid surface can be calculated using the density field
which in turn can be used in geometric arguments to calculate the density on the solid
surface to satisfy the contact angle θ.

ghost lattice sites of type 1 can be calculated using equation (A 4), giving

ρijk = ρij+2k+tan
(π

2
−θ
)

ζ, (A 5)

where,

ζ =
√

(ρi+1jk−ρi−1jk)2+(ρijk+1−ρijk−1)2. (A 6)

A similar form can be used for lattice sites of type 2,3 or 4. For corner 7,

ρijk = ρi+2j+2k+tan
(π

2
−θ
)

ζ, (A 7)

where,

ζ =
√

(ρi+1j+3k−ρi+3j+1k)2+2(ρi+2j+2k+1−ρi+2j+2k−1)2. (A 8)

A similar form is used for all other corners. Equations (A 7) and (A 8) cannot be used for
solid lattice sites directly adjacent to corner lattice sites because a solid lattice site might
be used to update another solid lattice site. Instead, a second order accurate forward
difference scheme is used for lattice sites of type 11,

ρijk = ρij−2k+tan
(π

2
−θ
)

ζ, (A 9)

where,

ζ =
√

(−ρi+3j−1k+4ρi+2j−1k)2−3(ρi+1j−1k+1−ρij−1k−1)2. (A 10)

A similar form was used for all solid lattice sites neighbouring a corner.

A.3. Constants in the Carnahan-Starling equation of state

Here we clarify our choice of values for the constants a and b in the equation of state
(3.6). Surface tension is an emergent property in the pseudo-potential model, rather than
an input parameter, so to calculate surface tension, the Young-Laplace law is used. A
series of droplets with varying radii R are simulated and the pressure difference (∆p)
between the inside of the droplets and their surrounding is calculated. Plotting ∆p as a
function of 1/R, a linear relationship is seen, with the gradient being twice the surface
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Figure 19: The fluid domain is surrounded by adjacent ghost lattice sites to apply the
boundary conditions.

tension γ in 3D. Doing this for various values of the a constant in equation (3.6), we can
see in figure 20 that surface tension increases with a, because a represents the strength of
interaction between molecules. It was also observed that the simulations are more stable
for lower a values. We therefore choose a value of a = 0.05 that is low enough to be stable
and high enough to capture sufficiently large surface tension to simulate micro-droplets
in the inkjet parameter space. For more information on the constant a, refer to Li et al.
(2019). The value of b is set to 4 in this work. A different value can be chosen and it should
not affect the scheme. The particular choice of b = 4 simplifies equation (3.6) and reduces
the number of arithmetic operations; it is the conventionally used value in multiphase
pseudo-potential LBM simulations that employ the Carnahan-Starling equation of state.
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Figure 20: Young-Laplace test of the pseudo-potential model with the modifications from
Li et al. (2013, 2019). a is the parameter from the Carnahan-Starling equation of state
(3.6). Increasing a increases surface tension γ (all quantities given in lattice units).
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