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Abstract 
 

In this work, a simple and effective Rigid Beam Model recently introduced for studying the dynamic 

behaviour of ancient freestanding stone columns is extended to the case of cantilever unreinforced 

masonry walls, considered along their thickness and subjected to out-of-plane loading. Both 

monolithic and multi-block walls were investigated. The proposed model assumes each block of the 

wall as a rigid beam element and each interface as a node. By assuming no sliding along the interfaces 

and small displacements of blocks, rocking can be simulated by a bi or tri-linear moment rotation 

non-linear constitutive law. Different in geometry monolithic and multi-block masonry walls were 

developed in the numerical model and subjected to different in magnitude and frequency harmonic 

loading. Their response was compared against those from the literature and good agreement was 

found. From the analysis results, it was found that monolithic walls can overturn with acceleration 

magnitudes larger than their corresponding static load multipliers, if input frequency values increase. 

However, overturning accelerations of multi-block walls increase less rapidly for increasing input 

frequency with respect to the corresponding equivalent monolithic walls. Collapse mechanisms 

involving wall portions above the base were found in addition to traditional overturning ones with 

respect to the base. To ensure reproducibility of results, input and output files will be made publicly 

available.  
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1 INTRODUCTION 
 

There are several buildings with primary structural wall systems of unreinforced masonry walls which 

have suffered damage from past earthquakes [1-8]. Potential collapse of such walls possesses a 

significant threat to anyone that would be next to the wall at the time of earthquake. It is well known 

that in-plane wall failures, if occur, will reduce the lateral load capacity of the walls. However, out-

of-plane wall failures can result in collapse of the wall, which could lead in some cases to partial or 

total collapse of the building. It is often the case that out-of-plane wall failures occur due to inadequate 

anchorage of the wall to the floor diaphragms. When there is no anchorage of the wall to the 

diaphragm, the wall behaves as cantilever. In this case, collapse of the wall occurs when the 
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magnitude of inertial forces on the wall are such that stability of the wall is lost. However, when 

anchorage of the wall to the diaphragm exists, then the wall will behave as vertical beams in bending, 

since inertial forces will be distributed to the diaphragms. Now, since unreinforced masonry walls are 

characterized by limited strength at the mortar joints, when subjected to out of plane loading, they 

will crack at the bed joints and often just above the mid-height of the wall. In this case, the top and 

bottom wall segments will rock in the out of plane direction. If the magnitude of displacement induced 

by the seismic motion is large, the wall can become unstable and eventually collapse. Also, it is 

expected that walls at top storey are the most vulnerable to failure as they are withstanding lower 

axial loads. 

 

From the above, understanding of out-of-plane response of masonry walls is essential for the 

structural assessment and vulnerability of existing buildings and the investigation of this problem 

represents an extremely active field of research in the structural engineering field. For instance, a 

literature review related to masonry out-of-plane behaviour and to the corresponding numerical 

models was done by Ferreira et al. [9], and more recently by Sorrentino et al. [10] by also focusing 

on several national design codes, whereas a more general deep review on different modelling 

strategies for masonry was done by D’Altri et al. [11]. As well known, the out of plane behaviour of 

masonry panels is governed by many parameters, such as boundary conditions, constraint quality, 

blocks arrangement, materials, loads, geometry, and slenderness. Many contributions dealing with 

these aspects and involving different numerical strategies can be found in literature [12-33]. 

 

Many experimental tests have been performed up to recent years [34-41] for assessing the out-of-

plane behaviour of masonry walls. Several tests characterized by strong ground motions applied by 

shaking tables demonstrated that given sufficient anchorage to the diaphragms, unreinforced masonry 

walls subjected to out of plane actions can maintain stability [34-39]. In particular, Gulkan et al. [34] 

tested single storey masonry houses and found large displacements when the out of plane walls rocked 

at mid-height crack without collapse. However, when the structure subjected to in-plane and out of 

plane ground motions, the out of plane response of walls did not increase. Moreover, Griffith et al. 

[37] found that the magnitude of ground motion significantly affects the out of plane rocking response 

of the wall. Ground motions with low peak ground demand would damage the wall specimens. 

However, walls subjected to high peak ground demand resulted in rocking beyond the stability limit 

and collapse. 

It is worth remembering that the first and probably the largest laboratory experimental campaign on 

walls subjected to out-of-plane dynamic excitation is that performed by the Agbabian–Barnes–
Kariotis (ABK) consortium [42]. 

 

Freestanding walls can be considered in some cases as single rigid block structures resting on ground. 

Focusing on the analytical and numerical assessment of the dynamic performance of freestanding 

walls, many authors suggested several approaches in the last decades. The first scientific 

considerations on rigid bodies overturning due to seismic actions were carried out by Milne [43] and 

Omori [44]. However, the most important contribution in this field was proposed by Housner [45], 

who analytically investigated the behavior of moderately slender rigid bodies subjected to horizontal 

excitations, in order to estimate the minimum horizontal acceleration at the base causing the 

overturning of the system. This problem was then studied up to recent years by means of analytical, 

numerical and laboratory experimentations [46-58]. In particular, the rocking response of blocks 

subjected to harmonic loading was studied by Spanos and Koh [50], that identified ‘safe’ and ‘unsafe’ 
regions depending on acceleration and frequency of the excitation. Their study was extended by 

Hogan [59,60]. Research on walls considered as monolithic ones by means single-degrees-of-

freedom (SDOF) models subjected to dynamic loading was carried out also by Doherty, Griffith, Lam 

and co-workers [61-64], Sorrentino et al. [65]. However, SDOF models are able to predict collapse 

mechanisms characterized by the overturning of the entire wall with respect to its support, whereas 
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models having at least two aligned rigid blocks can investigate potential collapse mechanisms 

involving the overturning of wall portions above the base. 

Several research activities considered freestanding walls composed of a small number of vertically 

aligned rigid blocks [66-70], which were able to simulate the rocking of a block with respect to 

another one [68]. However, these cases often do not realistically represent the behavior of a masonry 

wall made of natural or artificial blocks. 

Considering multi rigid block, or multi-degree of freedom (MDOF), structures, several authors [71-

76] have successfully used the discrete element method (DEM) to study the rocking motion of 

freestanding walls. However, most of the contribution in this field, even if performed in a two-

dimensional framework, are mainly focused on simulating the behaviour of freestanding columns, 

rather than masonry walls [77-81]. 

The importance of using multi-block models was effectively highlighted by D’Ayala and Shi [82]. 

Observing experimental tests, they stated that single blocks can move at the top level and that walls 

can be divided into portions with varying geometric ratios, rocking and sliding with respect to each 

other. In some cases, the bottom portion of the wall does not move and remains rigidly jointed to the 

base. 

A recent literature review dedicated to both SDOF and MDOF models for studying out-of-plane wall 

behavior was proposed by Casapulla et al. [83]. 

 

Now, with respect to international standards and codes used for the seismic assessment of the out of 

plane failure mechanism of existing unreinforced masonry walls, these involve force-based and 

displacement-based methods. The two methods are based on the static analysis and make use of the 

kinematic approach of limit analysis. The force-based method can be used to predict the acceleration 

that leads the wall to collapse by means of the force capacity of the wall and the behavior factor q. 

The displacement-based method considers the entire force-displacement behavior of the wall and 

predicts the acceleration that leads the wall to collapse by comparing its displacement capacity with 

displacement demand [85]. The Italian standards [86] are the only code which considers both force-

based and displacement-based methods. Moreover, the seismic vulnerability standards addressed by 

ASCE/SEI 41 [84], specifies acceptable collapse prevention criteria based on the height-to-thickness 

ratio for out of plane walls with sufficient anchorage to the diaphragms. Such limits are related to the 

spectral acceleration (Sa) for a period of 1.0s. Such provisions were based on an experimental test of 

22 wall specimens with varying height-to-thickness ratios subjected to dynamic loading at both top 

and bottom and undertaken by ABK joint venture [42].  

 

The performance of force-based and displacement-based seismic assessment methods for evaluating 

the out of plane behavior of unreinforced masonry walls evaluated on the bases of refined numerical 

models. In the study of Godio and Beyer [87], a DEM of a vertically spanning wall was developed 

and validated against experimental finding. The numerical model was based on the commercial code 

Itasca [88] developed by Cundall [89]. A large range of wall with different dimensions were analysed. 

Both static pushover analysis and incremental dynamic ones were undertaken to determine the 

capacity of the wall. It was found that the displacement-based method is more accurate, robust, and 

safer than the force-based method. In addition, walls characterised by a relatively high ratio of axial 

load to Euler's critical load, both assessment methods lead to an overestimation of the wall capacity. 

A year later, a trilinear model describing the force-displacement response of vertically spanning 

unreinforced masonry walls was investigated by Godio and Beyer [90]. The various factors 

influencing the response of the walls (e.g. the support conditions, the level of applied axial load, the 

slenderness ratio, and the deformability of the wall) were investigated. The model was validated 

against experimental results from shake table tests while the force and displacement parameters of 

the model were described by analytical expressions. Al Shawa et al. [58] compared the force-based 

and displacement-based methods against results obtained from shake table tests and from non-linear 

time history analyses developed by numerical and analytical models. Pre-damaged URM walls 
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subjected to out of plane ground motions and undergoing rocking were undertaken; the numerical 

model consisted in a discrete element model in which the wall was idealized as a single rigid block. 

The analytical model used the force based and displacement-based assessment using a single degree 

of freedom system with a trilinear force-displacement relationship. Both numerical and analytical 

models were calibrated on the tested configurations and then used to perform a sensitivity study. The 

force-based and the displacement-based assessment methods undertaken in [58] were found to be 

conservative by 99% and 90% of the cases, respectively. The study was extended by Sorrentino et al 

[10] in which a single degree of freedom with trilinear force-displacement relationship was used to 

study free standing cantilever walls as well as walls spanning vertically between two supports. From 

the analysis results, it was found that the displacement-based method yielded less scattered results 

with respect to the force-based method and, for this reason, it was considered more efficient in 

predicting the peak dynamic response of the walls. 

 

In order to suggest a new simple and efficient approach to understand and simulate the behavior of 

freestanding masonry walls out-of-plane loaded, a Rigid Beam Model, already introduced by authors 

for studying the dynamic behavior of monolithic and multi-drum freestanding columns [91], is here 

extended for representing freestanding walls subjected to out-of-plane dynamic actions. The model 

is introduced in plane state conditions, hence by considering the transversal section of the wall, 

whereas the blocks arrangement along wall depth is not taken into consideration. Monolithic or multi-

block walls are investigated, in the latter case by assuming equally-spaced wall portions in vertical 

direction, which may represent on one hand actual stone, clay or concrete blocks connected by mortar 

joints, on the other hand they can represent portions of wall made of irregular stones, where the 

interfaces may represent potential horizontal cracks. The rigid beam model assumes each block or 

wall portion as a rigid beam element and each interface between the blocks as a node of the model. 

Small displacements hypothesis is introduced and no sliding at the interfaces is considered; then, 

model displacements are given by block rigid rotations and the nonlinear behavior of the system is 

lumped at interface or nodal level, by accounting for the potential rocking between the blocks by 

means of bi- or tri-linear moment-rotation constitutive laws. An infinite compressive strength and a 

negligible tensile strength is also assumed at interface level. The no-sliding turns out to be more 

appropriate for masonry walls instead of freestanding ancient columns, originally considered for 

introducing the model. 

 

A set of numerical tests is performed by applying harmonic accelerations at the base of monolithic 

and multi-block cantilever walls, by varying input frequency and acceleration magnitude, and by 

considering several case studies having different wall slenderness. The term ‘cantilever’ is used for 

describing a freestanding wall connected to a base foundation and free to move at its top. The 

manuscript is organized as follows. The rigid beam model for cantilever walls is introduced by 

highlighting the hypotheses adopted for its definition and by describing its kinematics; then, the 

equations of motion of the model are presented and the corresponding matrix representation is 

highlighted, together with the nonlinear behavior considered at interface level. The numerical tests 

are then presented, starting with thick monolithic walls, considering slender monolithic walls, and 

ending with a more realistic case study represented by a multi-block wall made of hollow concrete 

blocks. The last case study is further investigated by performing a sensitivity analysis varying several 

geometrical parameters of the model, in order to highlight different types of overturning collapse 

mechanisms that may arise during the dynamic tests, in agreement with the considerations of D’Ayala 
and Shi [82]. 

Finally, some comments on model simplicity and effectiveness are done, together with some 

considerations on possible further developments and improvements of the current version of the 

model. 
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2 RIGID BEAM MODEL FOR CANTILEVER WALLS 

 

In this work, a freestanding or cantilever unreinforced masonry wall (or parapet) subjected to out-of-

plane actions is considered. The wall is resting on a rigid foundation, without side supports and free 

to move at its top. This wall typology is probably the most vulnerable to overturning out-of-plane 

failure mechanisms (Fig. 1a), as shown by the pioneering considerations done by Rondelet [92]. 

Considering the vertical cross-section of the freestanding wall, it can be subdivided into n layers of 

blocks or wall portions. Interfaces between the layers or portions can represent the actual horizontal 

joints of a regular texture of blocks connected by dry or mortar joints (Fig. 1b,c), in case of a well-

built masonry wall made of prismatic blocks, or they can represent potential horizontal cracks into a 

wall made of irregular stones (Fig. 1d). 

 

 
Figure 1: Freestanding masonry wall subjected to an overturning collapse (a); vertical sections of multi-block 

freestanding/cantilever walls derived from a one-headed masonry wall (a), a two-headed masonry wall (b), and from a 

wall made of irregular stones (b). 

 

The wall has an overall height H and the block layers or wall portions, at this stage of the research, 

are assumed to be equally spaced, hence hi = H/n is the height of the generic i-th block or wall portion. 

A two-dimensional coordinate system Oxy is introduced, since analyses are performed in plane state, 

accounting for a uniform wall depth along its height. Wall thickness is defined by B and it is assumed 

to be uniform along wall height (Fig. 2a); however, the model is also able to consider a linearly 

variable thickness of the wall, hence the dimensions B1 and B2 are equal to the width of the lower 

cross-sections at the base and at the top of the wall, respectively (Fig. 2b). As it will be underlined in 

the final section of this contribution, the proposed model can be easily improved for considering walls 

composed by block layers having different height; furthermore, different thickness values along wall 

height can be taken into consideration, in order to simulate, for instance, the behaviour of an entire 

multi-storey masonry façade with a small thickness at the top level and a large thickness at the 

foundation level. 

a b c d
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a b 
 

Figure 2: 2D model for a multi-block cantilever wall having uniform width along its height (a) and linearly varying 
width along its height (b). 

 

2.1 Model hypothesis and kinematics 
 

The rigid beam model is introduced by defining n rigid beam elements and n + 1 nodes at the ends 

of the beam elements as shown in Fig. 3a, b. Each beam element represents a block or a uniform wall 

portion and each intermediate node between the beam elements represents an interface or a joint 

between the blocks or wall portions. In particular, the first node represents the contact interface 

between the ground and the first block, whereas the last node represents the tip of the wall. In case of 

wall thickness linearly varying along its height, the cross-section of each beam element is assumed 

to be constant, hence each wall portion has an average cross section width di, leading to a stacked 

rigid block wall. 

 

The kinematics of the model is defined by horizontal nodal translations, velocities, and accelerations 

ui, /
i i

u du dt& , and 2 2/
i i

u d u dt&& , respectively. Small displacements hypothesis is assumed, hence, 

together with to the rigid beam hypothesis, vertical translations of the nodes are neglected, and the 

rigid rotation of the generic beam element can be defined as function of the corresponding upper and 

lower horizontal translations and beam element height: 

 

 1i i
i

i

u u

h
  
  (1) 

   

H

B B1

B2

n

1

n

1

y

O x

y

O x

hii i

H

B1

B2

θ

di

n

i

1

θ

i

n+1

1

i+1

Ti+1

ui

hi

θi

ui+1

Mi

Mi+1

Ti

mi

Pi

Ni+1

Ni
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a b c 

Figure 3: Multi-block (stacked) cantilever wall (a), corresponding rigid beam model (b), generic beam element (c). 

 

The potential sliding between the wall portions is neglected by the proposed model, whereas the 

relative rotations between the wall portions and the consequent rocking are taken into consideration. 

This hypothesis turns out to be more suitable for masonry walls instead of ancient columns originally 

considered for introducing the rigid beam model. At this stage of model development, interfaces 

between the portions have an infinite compressive strength and a negligible tensile strength. 

 

2.2 Equations of motion 

 

Each i-th beam element is characterized by a mass mi, which is equal to the mass of the corresponding 

block or wall portion. Internal forces of the beam elements are given by a shear force Ti, and a bending 

moment Mi, acting at each i-th node of the model (Fig. 2c); a normal force Ni is also present due to 

wall self-weight. At this stage of development of the model, no further vertical loads are considered. 

The translational equation of motion in horizontal direction and the rotational equation of motion for 

the generic i-th beam element may be written as follows: 

 

 

1
1

, 1 1

2

2 2

i i
i i i

i i
i G i i i i i

u u
m T T

h h
I M M T T




 


 

    

&& &&

&&
 (2a,b) 

 

And the equilibrium in vertical direction is given by: 

 

 1i i i i
P V g N N      (3) 

 

where i = 1, … , n + 1, Pi is the weight of the generic block, depending on block volume Vi and 

material density γ, and IG,i is its polar inertia. 

 

2.2.1 – Translational equations of motion 

 

Considering a freestanding wall subjected to a horizontal ground acceleration ag(t), equations of 

motion (2a,b) have to follow the subsequent boundary conditions at wall base (1st node) and wall top 

(n+1 node): 

 

 

1

1

1

( )

0

0

g g

n

n

u u a t

T

M





 




&& &&

 (4a,b,c) 

 

According to such conditions, the translational equations of motion (Eq. 2a) for the last and 

penultimate (n-th and n-1-th) beam elements turn out to be: 

 

 

1

1
1 1

2

2

n n
n n

n n
n n n

u u
m T

u u
m T T




 


 


 

&& &&

&& &&
 (5a,b) 

 

Substituting the 1st of the previous equations into the 2nd one, the following expression is obtained: 
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1 1 1
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 (6) 

 

More generally, the shear force acting at the generic i-th node of the rigid beam model can be written 

as function of the nodal accelerations of nodes from i to n+1 and of the masses of the beam elements 

from i to n. In particular, the translational equation of motion for the 1st beam element is given by: 

 

 

2

1 2 1

2

1 2 1

( )

2

( )

2

g

g

u a t
m T T

u a t
T T m


 


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&&

&&
 (7a,b) 

 

where T1 turns out to depend on the nodal accelerations and masses of the whole rigid beam model. 

Hence, the translational equations of motion of the entire rigid beam model can be written in matrix 

extended form as follows: 

 

 

1 1 1 2 2 1 1 2 1

2 2 2 1 1 3

1 1 1

1
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0 .. 0
1 1

.. .. .. .. .. .. .. .. ..
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            
            

&&

&&

&&

&&





 (8) 

 

and in matrix compact form as follows: 

 

 
1

[ ]
2

g
  t Mu a&&  (9) 

 

where the vector t collects the shear forces of the model t = [T1 T2 … Tn]
T, vector u&& collects horizontal 

accelerations from node 2 to n+1: 
2 3 1[ ... ]T

n
u u u u&& &&&& && , and matrix M can be defined as a mass 

coefficient matrix of the multi-block wall. 

 

2.2.2 – Rotational equations of motion 
 

Following the approach adopted for the nodal shear forces and according to the boundary conditions, 

the rotational equations of motion (Eq. 2b) for the last and penultimate (n-th and n-1-th) beam 

elements turn out to be: 

 

 
,

1
1 , 1 1 1

2

( )
2

n
n G n n n

n
n G n n n n n

h
I M T

h
I M M T T 

   

 
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&&

&&




 (10a,b) 

 

Where the height of the wall portions is detailed for each portion, but at this stage of model 

development it is always equal to H/n. 
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The equations above can be re-written by introducing the definition of block rotation (Eq. 1) 

 

 

1
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2
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 (11a,b) 

 

Substituting the 1st of the equations above into the 2nd one, the following expression is obtained: 

 

 1 1 1
1 1 , , 1

1
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 (12a,b) 

 

More generally, the generic bending moment at the i-th node can be written as function of the nodal 

accelerations and shear forces of nodes from i to n+1, and of the polar inertia and height of the beam 

elements from i to n. In particular, the rotational equation of motion for the 1st beam element is given 

by: 

 

 

2 1
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where M1 turns out to depend on nodal accelerations, shear forces, polar inertias and drum height of 

the whole rigid beam model. 

Hence, the rotational equations of motion of the entire rigid beam model can be written in matrix 

extended form as follows: 

 

 

1 1 1 2 2 1 1 1

2 2 2 1 1 2

1 1 1 1

,1 ,2 ,2 , 1 , ,

1 2 2 1

..

0 ..
1

.. .. .. .. .. .. ..
2

0 0 ..

0 0 .. 0

..

n n n n

n n n n

n n n n n

n n n

G G G G n G n G n

n n n

M h h h h h h h T

M h h h h h T

M h h h T

M h T

I I I I I I

h h h h h h

  

  

   





       
           
       
          
          

 



,1

,2 ,2 ,3 , 1 , , 2

1

2 2 3 1 3

, 1 , 1 , ,

11 1

, ,

( )

..

0
.... .. .. .. ..

..

0 .. 0

0

0 .. 0

g G

G G G G n G n G n

n n n

nG n G n G n G n

nn n n n

G n G n

n n

a t I
I I I I I I u

h
h h h h h h u

uI I I I

uh h h h

I I

h h





 

 

 
 
                                      

 
 

&&

&&

&&

&&











 (14) 

 

And in matrix compact form as follows: 
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1

2
G g

   m H t I u b&&  (15) 

 

where vector m collects nodal bending moments from node i to n, m = [M1 M2 … Mn]
T, and vectors 

t and u&& have already been introduced with the translational equations of motion (Eq. 9). Matrices H, 

and IG can be called, respectively, geometric coefficient matrix, and polar inertia coefficient matrix. 

Vector bg is similar to ag in Eq. 9, since it is characterized by null values except the first one, 

representing the rotational acceleration at the base of the column: 1 1[ ( ) / 0 ... 0 0]T

g g G
a t I hb . 

Substituting Eq. 9 into Eq. 15, the system of differential equations to be solved for obtaining the 

displacements of the masonry wall turns out to involve the nodal bending moments only, together 

with mass, inertia and geometric characteristics of the multi-block wall: 

 

 
1 1

4 4
g G g

   m H Mu Ha I u b&& &&  (16) 

 

Such a system of equations can be re-written in a more compact and simple form as follows: 
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where i = [1 0 … 0 0]T. 

The system of differential equations above is solved by means of a Runge-Kutta ODE solver for stiff 

differential equations, low order method, by accounting for the nonlinear behavior of the interfaces 

between the blocks described in the upcoming sub-section. 

 

2.3 Nonlinear behavior 
 

Each bending moment Mi in m depends on the rotation θi of the corresponding i-th block (Eq. 1). 

Hence, Eq. 17 can be detailed as follows: 
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where 
1 2 1[ ... ]T

n nθ      collects block or wall portion rotations. 

 

At this stage of development of the model, the nonlinear behavior that can affect the masonry wall is 

given by the rocking phenomenon at each interface between the blocks, whereas, following Housner’s 
hypothesis [45], shear failure cannot occur, and sliding is neglected. The bending moment Mi at each 

interface follows a bilinear moment-rotation constitutive law, which defines the maximum stabilizing 

moment as function of block rotation (Fig. 4). The constitutive law adopted by the proposed rigid 

beam model is slightly modified with respect to Housner’s law by means of an initial elastic stiffness 

KM,i instead of an infinitely rigid behavior, together with a smoothing parameter ξ ≤ 1, which reduces 

the ultimate bending moment Mu,i, allowing to obtain a tri-linear law. 
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Figure 4: Moment-rotation relationship. 

 

The maximum stabilizing moment in Fig. 3 is given by: 
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where di is the width of the i-th drum, hence di/2 represents the maximum eccentricity of the normal 

force admitted at the i-th joint, since an infinite compressive strength is assumed, together with no 

tensile strength at interface level. Interface bending stiffness KM,i depend on the elastic modulus of 

masonry E, on the moment of inertia of the interface Ii and on its thickness ei, KM,i = E Ii / ei. The 

angle αi represents the critical angle of the generic block [45], αi = di/hi in case of slender blocks. 

 

3 DEVELOPMENT OF THE NUMERICAL MODELS AND RESULTS OBTAINED 

 

The effectiveness the proposed Rigid Beam Model is evaluated by performing a set of numerical tests 

on monolithic and multi-block freestanding walls, by applying different simple ground excitations. 

For this purpose, several existing analytic and numerical results are taken into consideration in order 

to highlight differences and similarities of the proposed Rigid Beam Model with respect to existing 

formulations and numerical models. In particular, the numerical tests performed by Spanos and Koh 

[50] on simple rectangular monolithic walls subjected to harmonic excitations are reproduced and 

further parametric tests dedicated to wall slenderness are performed. Furthermore, the moderately 

slender monolithic wall studied in [50] is subdivided into equally spaced blocks or wall portions, in 

order to highlight the influence of potential rocking between the blocks in the dynamic behavior of 

the wall. Finally, a more realistic case study of a multi-block wall is considered by adopting a slender 

cantilever wall made of concrete hollow blocks subjected to harmonic excitations with varying input 

frequency and acceleration magnitude. 

 

3.1 Monolithic walls 
 

The analysis of monolithic walls may turn out to be generally more accurate with respect to multi-

block walls due to the no-sliding hypothesis adopted by the proposed model, which may be ineffective 

in some conditions for representing the actual dynamic response of walls characterized by a large 

number of blocks, especially in case of dry joints between the blocks. However, many laboratory tests 

have demonstrated that well-built stone walls often behave as monolithic ones. 

 

3.1.1 Thick and moderately slender monolithic walls subjected to harmonic excitation 

 
The numerical tests performed by Spanos and Koh [50] on monolithic rectangular walls are 

considered. A thick and a moderately slender wall, having height to width ratio H/B equal to 2 and 4, 

    

ξ    

Mi

θi

Mu,i

αi
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respectively, are subjected to harmonic excitations with varying input frequency and acceleration 

amplitude. Such specimens are here reproduced by means of the proposed Rigid Beam Model and 

considering a single rigid beam element. Harmonic excitations are applied for 10 seconds. 

Starting with the thick wall case modelled with the proposed Rigid Beam Model, Figure 5 shows the 

deformed configurations at the end of the harmonic tests with several values of acceleration and 

frequency. The corresponding wall top and base displacements versus time are collected in Figure 6. 

Overturning conditions are obtained with 0.5g and 1Hz and with 1.0g with frequency values less than 

1Hz. 
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Figure 5: Deformed configurations for a thick monolithic wall (H/B = 2) subjected to several harmonic excitations 
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Figure 6: Base (red continuous line) and top (black dashed line) displacements for a thick monolithic wall (H/B = 2) 

subjected to several harmonic excitations 
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Figure 7: Safe-unsafe domain for a thick monolithic wall subjected to harmonic excitations 

 

Figure 7 shows the safe-unsafe domain obtained with the Rigid Beam Model, which is significantly 

different with respect to that obtained in [50], probably due to the small H/B ratio of the case study 

considered and also due to the restitution factor close to 0.5 adopted in the reference work. In this 

case, both domains are characterized by a collapse acceleration equal to 0.5g for small frequency 

values, which is correctly coincident with the static collapse multiplier of the thick wall, namely ag0 

= (B/H) g = 0.5g. For increasing frequency, the Rigid Beam Model allows to obtain overturning 

accelerations increasing to 1g with 2Hz and 1.5g close to 3Hz, whereas the collapse acceleration 

values obtained by Spanos and Koh increase rapidly to 1.5g close to 1Hz.  

Focusing then on the moderately thick wall, Figure 8 shows several deformed configurations at the 

end of the numerical tests and Figure 9 collects base and top horizontal displacements versus time. 

Both the deformed configurations and the horizontal displacements at the top show overturning 

conditions obtained with 0.5g and 0.5Hz and 1Hz. More information about the possible overturning 

of the column are collected in Figure 10, which shows the safe-unsafe domain obtained with the Rigid 

Beam Model compared with that obtained in [50], who assumed in this case a restitution coefficient 

close to 1. Probably due to this condition, the two safe-unsafe-domains are in excellent agreement, 

both starting with a collapse acceleration equal to 0.25g, correctly corresponding to the static load 

multiplier for overturning the column, namely ag0 = (B/H) g = 0.25g, and with an increasing collapse 

acceleration for increasing frequency, up to 1.5g with 2Hz. 
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Figure 8: Deformed configurations for a moderately slender monolithic wall (H/B = 4) subjected to several harmonic 

excitations 

 
  0.5 Hz 1.0 Hz 2.0 Hz 

0
.2

 g
 

d
 [
m

] 

   

0
.5

 g
 

d
 [
m

] 

    

 time [s] time [s] time [s] 

 

Figure 9: Base (red continuous line) and top (black dashed line) displacements for a moderately slender monolithic wall 

(H/B = 4) subjected to several harmonic excitations 

 

 
 

Figure 10: Safe-unsafe domain for a moderately slender monolithic wall (H/B = 4) subjected to harmonic excitations. 
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It is worth noting that the discrepancy with Spanos and Koh [50] work highlighted in Figure 7 is 

responsibility of the authors because the model is based on simplifications for the non-linear dynamic 

behavior made in such a way to linearize the displacements. As a consequence, if the wall/block is 

not slender, this implies errors that progressively increase. This aspect is evident by comparing Figure 

7 with Figure 10, since in the latter one the fitting between the proposed and the existing models is 

very good. 

 

3.1.3 Monolithic walls with increasing slenderness subjected to harmonic excitations 

 
The case studies proposed in [50] are taken as preliminary reference for performing a parametric 

analysis on the effects of wall slenderness on the dynamic behavior of monolithic walls. For this 

purpose, starting from the geometric slenderness values H/B equal to 2 and 4 considered in the 

previous section, more slender monolithic walls having H/B equal to 8 and 12 are taken into 

consideration. 

Figure 11a and b shows, respectively, the safe-unsafe domains obtained with the monolithic walls 

having H/B equal to 8 and 12. In both cases, collapse accelerations with input frequencies tending to 

zero are quite close to the static load multipliers of each load (ag0 = (B/H) g); in the less slender case 

such initial value does not increase significantly for small frequency values, for instance up to 0.5 Hz 

and a similar behavior can be found with the thick and moderately slender walls considered 

previously. However, the collapse acceleration amplitudes for the two slender walls increase rapidly 

for input frequencies larger than 0.5 Hz; for instance, collapse accelerations close to 1g are obtained 

with 2 Hz with H/B equal to 8 and with 2.5 Hz if H/B is equal to 12. 

 

Safe-unsafe domains are obviously depending on wall slenderness and, as can be expected, for a given 

value of input frequency, thick or moderately slender walls are characterized by an overturning 

acceleration larger than that typical of the slenderer walls. In order to appreciate the influence of wall 

slenderness on the collapse accelerations obtained for varying input frequency, Figure 12 a and b 

collects the safe-unsafe domains obtained with the four slenderness cases taken into consideration in 

this contribution. In particular, the dimensionless representation adopted in Figure 12 b allows to 

highlight a common behavior for the four slenderness cases considered. 

 

a   b 

 
Figure 11: Safe-unsafe domains for two slender monolithic walls having H/B equal to 8 (a) and 12 (b) subjected to 

harmonic excitations. 
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a   b 
Figure 12: Safe-unsafe domains for monolithic walls having H/B equal to 2, 4, 8, and 12 subjected to harmonic 

excitations. 

 

3.2 Multi-block walls 

 

3.2.1 Influence of the number of wall portions on a moderately slender wall subjected to harmonic 

excitation 
 

Starting from the numerical results obtained with the moderately slender wall (H/B = 4), which turned 

out to be in excellent agreement with the results by Spanos and Koh [50], here attention is devoted to 

the dynamic behavior of the multi-block walls equivalent to the monolithic ones. In particular, two 

and four equally spaced blocks or wall portions are considered and harmonic tests with varying input 

frequency and acceleration amplitude are performed. 

Figure 13 a, b shows, respectively, the safe-unsafe domains obtained with n equal to 2 and 4. In both 

cases, the collapse acceleration obtained with frequencies tending to zero is close to the static collapse 

load multiplier of the monolithic wall, equal to ag0 = (B/H) g = 025g. With two equally spaced blocks, 

the initial collapse accelerations do not increase significantly up to 1 Hz, then accelerations rapidly 

increase to 0.5g with 1.5 Hz. Considering the case having four equally spaced blocks, collapse 

accelerations start to decrease from 0.25g to 0.15g up to 1 Hz, then they increase rapidly to 0.5 g with 

1.5 Hz. 

 

a   b 
Figure 13: Safe-unsafe domains for monolithic walls having H/B equal to 4 and composed of 2 (a) and 4 (b) equally 

spaced blocks, subjected to harmonic excitations. 
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3.2.2 Slender hollow blocks concrete wall subjected to harmonic excitation 

 

In order to show the effectiveness of the proposed rigid beam model in representing the dynamic 

behavior of a more realistic case study with respect to the cases considered in the previous sub-

sections, a slender cantilever wall made of hollow concrete blocks is considered. The wall is made of 

hollow concrete blocks having length b = 0.60 m, thickness t = 0.40 m, and height a = 0.40 m. Ten 

blocks along the height of the wall are considered, hence an overall height H = 4 m and thickness B 

= 0.40 m are assumed for the wall, together with a unitary wall depth (Figure 14). Due to the plane 

strain hypothesis, the blocks arrangement in the in-plane direction of the wall is not taken into 

consideration, whereas the bed joints of the wall are assumed as interfaces of the rigid beam model 

corresponding to the wall, since such bed joints may represent potential cracks in case of a total or 

partial overturning of the wall. Wall density γ is equal to 1200 kg/m3 and interface bending stiffness 

is defined by assuming an elastic modulus E = 2 GPa and interface thickness e = 0.01 m. 

 
 

Figure 14: Slender multi-block wall composed of 10 hollow concrete blocks along its height. 

 

Figure 15 collects several deformed configurations obtained at the end of the numerical tests or before 

the final collapse due to overturning of the wall or a wall portion. With an acceleration amplitude of 

0.15 g, the wall collapses with 0.5 Hz showing an overturning mechanism involving the entire wall, 

and with 2.0 Hz, showing a mechanism involving a few blocks of the upper portion of the wall. With 

a harmonic excitation having frequency 1.0 Hz and amplitude 0.15 g, the wall turns out to remain in 

a safe condition, characterized by a small bending. On the other hand, three different overturning 

conditions are obtained with an acceleration equal to 0.25 g and varying input frequency; in particular, 

different wall portions are subjected to overturning in the three cases considered. 

Figure 16 shows the safe-unsafe domain of the multi-block wall subjected to harmonic excitations 

with varying input frequency and acceleration magnitude. Collapse accelerations do not increase 

monotonically for increasing input frequency, but they are characterized by several increasing-

decreasing phases up to 7 Hz. In particular, for very small frequency values, collapse accelerations 

increase from 0.04g to 0.2g up to 1.5 Hz, then they decrease to 0.1g with 2.5 Hz. A second increasing 

phase to 0.36 g is observed up to 5 Hz, whereas a reduction of collapse acceleration values to 0.3 Hz 
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is found at 6 and 7 Hz. Finally, for frequency values larger than 7 Hz, collapse accelerations rapidly 

increase to 0.6 g with 10 Hz. 
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Figure 15: Deformed configurations for a slender multi-block concrete wall having H = 4 m B = 0.4 m and composed 
by 10 hollow concrete blocks along its height. 

 

 
 

Figure 16: Safe-unsafe domain for a multi-block concrete wall having H = 4 m B = 0.4 m and composed by 10 hollow 

concrete blocks along its height. 

 

3.2.3 Sensitivity analyses on hollow blocks concrete walls 

 

In order to highlight the influence of the main geometric parameters of the slender wall considered in 

the previous sub-section on its dynamic behavior and the corresponding collapse mechanisms for 

varying input frequency, a set of sensitivity analyses is performed by varying wall thickness B and 

block height h, keeping fixed wall overall height H. In particular, on one hand, wall thickness B is 

varied from 0.40 m to 0.60 m and 0.80 m keeping fixed block and wall height h = 0.4 m and H = 4 

m; on the other hand, h is varied from 0.4 m to 0.8 m and 2.0 m keeping fixed wall thickness and 

height B = 0.4 m and H = 4 m, leading to walls made of n equal to 5 and 2 portions, respectively. 
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a  b 
 

Figure 17: Safe-unsafe domain for a multi-block concrete wall having H = 4 m, composed by 10 hollow concrete blocks 

along its height and having thickness B = 0.60 m (a) and B = 0.80 m (b). 

 

a b 

 
Figure 18: Safe-unsafe domain for a multi-block wall having H = 4 m B = 0.4 m, composed by 5 (a) and 2 (b) portions 

along its height. 

 

a   b 

 
Figure 19: Safe-unsafe domains for a multi-block wall with varying several geometric parameters. 
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Figure 17 a and b collects safe-unsafe domains obtained with B = 0.6 and 0.8 m, respectively, which 

are compared to the domain obtained in the previous sub-section in Figure 19a. Figure 18 a and b 

collects safe-unsafe domains obtained with h = 0.8 and 2.0 m, respectively, which are compared to 

the domain obtained in the previous sub-section in Figure 19b. 

In the first case, the influence of the wall and block thickness is quite significan the safe-unsafe 

domain of the walls with respect to the original one, this is justified by the slenderness variation of 

the proposed cases (H/B = 0.67 and 5.0 with B = 0.6 m and 0.8 m, respectively) with respect to the 

original one (H/B = 10). 

In the second case, the height of wall portions, which is related to the number of rigid beam elements 

of the model, plays an important role only if a small number of portions is adopted. The case 

characterized by portion height h = 0.8 m has a safe-unsafe domain very close to that of the original 

wall, whereas the case having h = 2.0 m leads to a completely different safe-unsafe domain, with 

larger acceleration amplitudes with respect to those obtained with the original case. 

Several collapse mechanisms obtained with frequencies increasing from 0.5 Hz to 8 Hz are collected 

in Figure 20. It is clear that collapse mechanisms obtained with small frequency values are 

characterized by the overturning of the entire panel, whereas for increasing input frequency, the 

collapse mechanisms are characterized by the subdivision of the wall into 2-3 portions, with the upper 

ones rocking with respect to each other and the base one remaining fixed. This aspect is also evident 

if the h increases and, consequently, the number of subdivisions n along wall height is reduced from 

10 to 5 and 2, since overturning mechanisms for the entire wall are obtained with small frequency 

values, whereas the relative rotations of wall portions with respect to each other are obtained for 

increasing frequency. 
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Figure 20: Deformed configurations and corresponding collapse accelerations for a slender multi-block wall with 

varying several geometric parameters. 

 

4 CONCLUSIONS AND FURTHER DEVELOPMENTS 

 
In this contribution, a simple and effective rigid beam model, recently introduced by authors for 

studying the dynamic behavior of freestanding monolithic and multi-drum columns, is extended to 

the analysis of cantilever unreinforced masonry walls subjected to out-of-plane dynamic actions. 

The model is introduced for representing out-of-plane loaded walls in plane state, hence by 

considering their transversal section along the wall thickness, whereas the blocks arrangement along 

wall depth is not taken into consideration. Monolithic and multi-block walls are investigated, in the 

latter case by subdividing the wall section into equal portions in vertical direction which may 

represent on one hand actual stone, clay or concrete blocks connected by mortar joints, on the other 

hand they can represent portions of wall made of irregular stones, where the interfaces may represent 

potential horizontal cracks. 

 

The proposed rigid beam model assumes each block or wall portion as a rigid beam element and each 

interface as a node of the model. By assuming small displacements and no sliding at the interfaces, 

potential rocking between the blocks is taken into account by assuming a bi- or tri-linear moment-

rotation nonlinear constitutive law. 

 

Harmonic tests on monolithic and multi-block cantilever walls are performed by varying input 

frequency and acceleration magnitude, and by considering several case studies having different wall 

slenderness. The proposed model turned out to be in very good agreement with some of the existing 

numerical results assumed as reference [50]. Furthermore, a set of parametric tests dedicated to the 

influence of wall slenderness on the dynamic behavior of monolithic walls, together with the 

assessment of the harmonic response of a multi-block wall made of hollow concrete blocks, allowed 

to highlight the effectiveness of the model and its applicability to a wide range of case studies. 

 

Numerical results showed, as expected, that monolithic walls can overturn with acceleration 

magnitudes larger than their corresponding static load multipliers if input frequency values increase. 
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However, overturning accelerations of multi-block walls increase less rapidly for increasing input 

frequency with respect to the corresponding equivalent monolithic walls. 

 

Numerical tests performed on a more realistic slender wall composed of ten hollow concrete blocks 

along its height allowed to better highlight the capability of the rigid beam model in activating non-

standard failure mechanisms, such as the overturning of an upper portion of the wall or the formation 

of two plastic hinges along wall height. This behavior has been confirmed by a subsequent sensitivity 

analysis with varying wall thickness and block height and keeping fixed wall height. Collapse 

mechanism generally turned out to be overturning ones of the entire wall with respect to its base only 

with small input frequency values, with collapse acceleration values very close to the static load 

multipliers of the corresponding walls. Increasing input frequency,  

 

Thanks to the simple and effective matrix representation of the system of equations of motion adopted 

for the model, further developments of the current version of the rigid beam model will be taken into 

consideration. On one hand, more complex boundary conditions for the wall, namely a wall with 

fixed or pinned base and also pinned at the top for representing the effect of a roof or an intermediate 

slab, will be investigated, in order to numerically simulate the huge set of laboratory dynamic tests 

performed up to recent years by many authors [34-41]. On the other hand, the mass, geometric and 

polar inertia matrices will be better detailed in order to simulate more realistic case studies of masonry 

walls subjected to additional vertical loads and made of blocks having different size along wall height. 
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