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S U M M A R Y
Observations from different disciplines have shown that our planet is highly heterogeneous
at multiple scale lengths. Still, many seismological Earth models tend not to include any
small-scale heterogeneity or lateral velocity variations, which can affect measurements and
predictions based on these homogeneous models. In this study, we describe the lithospheric
small-scale isotropic heterogeneity structure in terms of the intrinsic, diffusion and scattering
quality factors, as well as an autocorrelation function, associated with a characteristic scale
length (a) and RMS fractional velocity fluctuations (ε). To obtain this characterization, we
combined a single-layer and a multilayer energy flux models with a new Bayesian inference
algorithm. Our synthetic tests show that this technique can successfully retrieve the input
parameter values for 1- or 2-layer models and that our Bayesian algorithm can resolve whether
the data can be fitted by a single set of parameters or a range of models is required instead,
even for very complex posterior probability distributions. We applied this technique to three
seismic arrays in Australia: Alice Springs array (ASAR), Warramunga Array (WRA) and
Pilbara Seismic Array (PSAR). Our single-layer model results suggest intrinsic and diffusion
attenuation are strongest for ASAR, while scattering and total attenuation are similarly strong
for ASAR and WRA. All quality factors take higher values for PSAR than for the other two
arrays, implying that the structure beneath this array is less attenuating and heterogeneous than
for ASAR or WRA. The multilayer model results show the crust is more heterogeneous than
the lithospheric mantle for all arrays. Crustal correlation lengths and RMS velocity fluctuations
for these arrays range from ∼0.2 to 1.5 km and ∼2.3 to 3.9 per cent, respectively. Parameter
values for the upper mantle are not unique, with combinations of low values of the parameters
(a < 2 km and ε < ∼2.5 per cent) being as likely as those with high correlation length and
velocity variations (a > 5 km and ε > ∼2.5 per cent, respectively). We attribute the similarities
in the attenuation and heterogeneity structure beneath ASAR and WRA to their location on
the proterozoic North Australian Craton, as opposed to PSAR, which lies on the archaean
West Australian Craton. Differences in the small-scale structure beneath ASAR and WRA
can be ascribed to the different tectonic histories of these two regions of the same craton.
Overall, our results highlight the suitability of the combination of an energy flux model and
a Bayesian inference algorithm for future scattering and small-scale heterogeneity studies,
since our approach allows us to obtain and compare the different quality factors, while also
giving us detailed information about the trade-offs and uncertainties in the determination of
the scattering parameters.

Key words: Structure of the Earth; Australia; Statistical methods; Coda waves; Seismic
attenuation; Wave scattering and diffraction.
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1 I N T RO D U C T I O N

The Earth is heterogeneous on a variety of scales, ranging from the
grain scale to scales of hundreds of kilometres. This heterogene-
ity is evident in data from geo-disciplines with varying sensitivity
to different scales, such as geochemistry, mineralogy or seismol-
ogy (e.g. Wu & Aki 1988). Due to the seismic wavelengths, most
seismological earth models are laterally homogeneous or smoothly
varying, with a lack of small-scale heterogeneity (e.g. Helmberger
1968; Dziewonski & Anderson 1981; Kennett & Engdahl 1991;
Randall 1994). This limits our understanding of high-frequency
seismic wave propagation and challenges in seismic imaging of
small-scale heterogeneities remain.

Many seismic studies published before the 1970s were based
on laterally homogeneous Earth models (e.g. Alexander & Phinney
1966) which were able to explain the propagation of long period sig-
nals, but failed to explain high frequency seismograms. Aki (1969)
showed that the power spectra of coda waves for a given station are
independent of epicentral distance and earthquake magnitude. He
proposed that codas were caused by backscattered energy from dis-
crete heterogeneities randomly distributed beneath the stations. The
presence and shape of the coda strongly depends on the heterogene-
ity structure and, therefore, the geology beneath the station. Later
studies (e.g. Aki & Chouet 1975; Rautian & Khalturin 1978) showed
that the stable decay in coda wave amplitude was also independent
of epicentral distance and source mechanism, fully supporting the
scattering hypothesis.

Methods to study heterogeneity and scattering within the Earth
vary depending on the type of the heterogeneity. Many seismological
studies use deterministic methods to characterize the structure of
the Earth (e.g. Christensen & Mooney 1995; Zelt & Barton 1998)
or to find individual scatterers and try to obtain their particular
characteristics and locations (e.g. Etgen et al. 2009). Marchenko
imaging (e.g. van der Neut et al. 2015; Thorbecke et al. 2017)
or migration techniques (e.g. Etgen et al. 2009) are often used in
reflection seismology to study shallow structure and are a good
example of deterministic methods. These techniques tend to have
limited spatial resolution due to the wavelength of the studied waves
and do not always take into account small-scale heterogeneities (on
the order of magnitude of the wavelength or smaller), therefore
failing to explain or reproduce the complex coda waves we see in
seismograms. A different approach that partially overcomes these
issues uses a stochastic description of the heterogeneity (e.g. Korn
1990, 1997; Ritter et al. 1998; Hock et al. 2004; Margerin 2005).
This approach (e.g. Frankel & Wennerberg 1987; Shapiro & Kneib
1993; Hock et al. 2004; Sato & Emoto 2018) provides a statistical
description of the structure and determines the integrated effect of
heterogeneity on propagating seismic waves, so the characteristics
and locations of individual scatterers are not relevant. Studies show
the crust and lithospheric heterogeneity to be statistically complex
and the necessity of heterogeneous Earth models that are capable of
explaining not only the main waveforms but also coda waves (e.g.
Aki 1973; Flatté & Wu 1988; Langston 1989).

Several methods allow us to study the propagation of seismic
waves through heterogeneous stochastic media and characterize the
scattering and attenuation properties of the Earth. Single-scattering
perturbation theory (e.g. Aki & Chouet 1975; Sato 1977, 1984)
was one of the first methods designed for this purpose. It considers
scattering to be a weak process and coda waves the superposi-
tion of single scattered waves generated at randomly distributed
heterogeneities within the Earth. It often makes use of the Born

approximation (e.g. Sato et al. 2012), a first-order perturbation con-
dition which does not take into account the energy loss from the
primary waves. As a result, energy is not conserved in the scat-
tering process (e.g. Aki & Chouet 1975). Sato (2006, 2007) and
Emoto et al. (2010) later set the basis for future synthesis of vector
wave envelopes studies by extending the Markov approximation for
scalar waves and developing a series of algorithms to synthesize
vector wave envelopes in 3-D Gaussian random elastic media. Re-
cently, many studies have used radiative transfer theory (RTT), a
technique initially developed for light propagation (Chandrasekhar
1950) which has been significantly improved and expanded (e.g.
Margerin et al. 1998; Przybilla & Korn 2008; Nakahara & Yoshi-
moto 2011; Sanborn et al. 2017; Sato & Emoto 2017, 2018; Hirose
et al. 2019; Margerin et al. 2019) since its first applications to seis-
mology (e.g. Wu 1985; Gusev & Abubakirov 1987). In particular,
the development and improvement of Monte Carlo simulations and
analytical approaches to solve the radiative transfer equations have
made it possible to apply RTT to a wide variety of tectonic and geo-
logical settings (e.g. Margerin & Nolet 2003; Gaebler et al. 2015b,
a; Fielitz & Wegler 2015; Hirose et al. 2019). Other methods to
analyse coda energy and study lithospheric heterogeneity have been
proposed and are also widely used (e.g. coda normalization method
(Aki 1980), multiple lapse time window analysis (e.g. Fehler et al.
1992), coda wave interferometry (e.g. Snieder 2006, etc.). While
these methods are able to characterize the heterogeneity structure
of the Earth, they all use approximations or are computationally
expensive.

In this study, we combine two stochastic methods, the single layer
modified energy flux model (EFM, Korn 1990) and the depth de-
pendent energy flux model (EFMD, Korn 1997), with a Bayesian
inversion algorithm which allows us to characterize small-scale
lithospheric heterogeneity by fully exploring the scattering param-
eter space and obtain information about the trade-offs and uncer-
tainties in the determination of the parameters. We applied these
methods to a large data set of teleseismic events recorded at three
seismic arrays of the Australian National Seismic Network: Pilbara
Seismic Array (PSAR), and Alice Springs Array (ASAR) and War-
ramunga Array (WRA), which are also primary seismic arrays from
the International Monitoring System (IMS) network, the worlwide
network built to ensure compliance with the Comprehensive Test
Ban Treaty (CTBT).

2 M E T H O D S

We use the random medium approach, which considers the prop-
agation of seismic waves through a medium with constant back-
ground velocity and density and random heterogeneities distributed
according to a given autocorrelation function (ACF) and linearly
related through Birch’s law (Birch 1961). The ACF depends on
the RMS fractional velocity fluctuations, ε, and the characteris-
tic or correlation length, a, which defines the spatial variation of
the heterogeneities. By obtaining these parameters, it is possible
to obtain a statistical description of the sampled structure that re-
veals the strength of the scattering experienced by seismic waves.
The modified energy flux model (EFM) and depth-dependent en-
ergy flux model (EFMD) can be used for both weak and strong
scattering (e.g. Korn 1990; Hock & Korn 2000; Hock et al. 2004)
and allow determining the best-fitting ACF of the heterogeneous
medium. Both methods work under the assumption of planar wave
fronts and vertical or near-vertical incidence from below on a single
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scattering layer (EFM) or stack of layers (EFMD), conditions well
met by teleseismic events, allowing the study of the heterogeneity
structure in seismically quiet regions.

Here we present a short introduction to the EFM and EFMD.
Full details about the methods can be found in Korn (1990), Korn
(1997), Hock & Korn (2000) and Hock et al. (2004).

2.1 The modified EFM for a single scattering layer

When a plane wave front enters a heterogeneous unlayered medium
from below, part of the energy propagates with the ballistic wave
front, while part forms the forward scattered coda energy that arrives
later at the surface and some energy scatters back into the half-space.
Total energy Etot is conserved in this process and we can write it in
terms of frequency, ω, and time, t, as

Etot(ω, t) = Ed (ω, t) + Ec(ω, t) + Ediff (ω, t), (1)

with Ed being the energy of the direct wave, Ec the energy trans-
ferred from the direct wave into the coda (forward scattered) and
Ediff the energy diffusion (backscattering) from the current layer
back into the half-space. The energy that is transferred from the
incoming wave front to the scattered coda and the backscattering
to the half-space can be expressed as an energy loss for the direct
wave, controlled by a quality factor Qs for scattering and Qdiff for
diffusion. To take into account anelastic (intrinsic) attenuation, we
use the quality factor Qi. The EFM assumes spatially homogeneous
coda energy within the scattering layer. Energy transfer into the
coda due to scattering or anelastic losses stops once the ballistic
wave leaves the scattering layer after totally reflecting at the free
surface, while diffusion out of the scattering layer can continue after
that.

A linear least-squares fit of the theoretical coda power spectral
density allows us to calculate the coda decay rate, a1, and its ampli-
tude at zero time, a0 (Korn 1990, 1993). The values of Qi and Qdiff

at 1 Hz, Qi0 and Qd0, can be obtained from values of a1 at different
frequencies via

a1(ω) = −2π [Q−1
d0 + Q−1

i0 (ω/2π )1−α] log10 e, (2)

where α is the exponent controlling the frequency dependence of
Qi (Korn 1990). To determine Qdiff and Qi at different frequency
bands, we then use:

Qdiff (ω) = Qd0ω/2π (3)

Qi (ω) = Qi0(ω/2π )α. (4)

Laboratory measurements of α have shown that it probably re-
mains below 1 for most of the frequency range considered here
(Korn 1990, and references therein). Our attempts at obtaining α

as a third free parameter in the least-squares inversion of eq. (2)
revealed a very complicated trade-off with Qi0 and Qd0, with high
values of α corresponding to negative values of Qi0 and/or Qd0.
Therefore, we limited α to the range of 0.0–0.6, in steps of 0.1, and
chose the value that minimized the misfit to the data. The impossi-
bility to fully invert for α makes it difficult to accurately calculate
Qi within the EFM, but has a minor effect in the determination of
Qdiff (Korn 1990). For our range of source distances, Qi is generally
much larger than Qdiff (Korn 1990), which reduces the impact of
this limitation of the EFM inversion.

The coda amplitude at zero time, a0, is related to Qs through

Qs(ω) ≈ 2IDω10−a0 , (5)

ID being the integral of the squared amplitude envelope, A2(t; ω),
over the time window of the direct wave arrival (Hock & Korn
2000). We can then use the relationships between Q−1

s and the
structural parameters for different types of ACFs obtained by Fang
& Müller (1996) to determine the type of ACF that fits the data
best, as well as a first estimation of the correlation length (a) and
the RMS velocity fluctuations (ε) for a single scattering layer. The
eight one octave-wide frequency bands we used in our analysis
for both methods are shown in Table 1. Given the similarity be-
tween different ACFs within our frequency range of interest, and
despite the possibility to determine the type of ACF of the scatter-
ing structure using the EFM, we decided to assume an exponen-
tial ACF for this study, since previous studies have proposed it as
an appropriate ACF for teleseismic scattering studies (Shearer &
Earle 2004).

Finally, we calculated the combined quality factor, Qcomb, as the
combination of all three quality factors:

1

Qcomb
= 1

Qdiff
+ 1

Qi
+ 1

Qs
(6)

Please note that Qcomb, as opposed to other quality factors, is not
related to the energy decay of the wavefield nor it is applied to any
specific part of the seismogram. Its only intent is to summarize the
total coda attenuation and make it easier to compare our results
from the different arrays.

2.2 The EFM for depth-dependent heterogeneity

Korn (1997) modified the EFM to include depth-dependent het-
erogeneity. In this model, a plane wave front enters a stack of N
heterogeneous layers from below. Each layer j has its own char-
acteristic transit time δtj and scattering quality factor Qs j , which
is calculated from the structural parameters aj and εj (Fig. 1) us-
ing the analytical approximation for isotropic exponential media
obtained by Fang & Müller (1996). The stack of layers is sym-
metric with respect to the free surface, which is located at the
centre of the stack to take into account the reflection of the wave
front.

For a given angular frequency ωc, the normalized coda energy
envelope of a velocity seismogram at the free surface is com-
puted from the squared amplitude envelope A2(t; ωc) and is re-
lated to the energy balance within the different layers in the model
through

√
A2(t ; ωc)

ID
=

√
2ECN (t ; ωc)

tN ED(tN ; ωc)
, (7)

with ECN (t ; ωc) being the spectral coda energy density of the layer
containing the free surface, tN the traveltime from the bottom of the
stack of layers to the free surface and ED(t; ωc) the energy density
of the direct wave at the free surface. Qs and Qi control the decay
of the direct wave energy over time due to scattering and intrinsic
attenuation via

ED(t j ; ω) = ED(t j−1; ωc)e
−ω(t j −t j−1)(Q−1

s j +Q−1
i j

)
, (8)
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Table 1. List of all frequency bands used in this study.

Frequency band A B C D E F G H

Minimum frequency (Hz) 0.5 0.75 1 1.5 2 2.5 3 3.5
Maximum frequency (Hz) 1.0 1.5 2 3 4 5 6 7

Figure 1. Total energy balance for layer j, according to the EFMD. (After
Korn, 1997).

where tj represents the one-way travel time through each layer. The
energy balance within layer j (j = 1,..., N) is represented by

dEC j

dt
= − 1

4δt j
EC j (t) H

(
t − t j

)
− 1

4δt j
EC j (t) H

(
t − t j−1

)
+ 1

4δt j−1
EC j−1 (t) H

(
t − t j−1

)
+ 1

4δt j+1
EC j+1 (t) H

(
t − t j

)
− ω

Qi j

EC j (t) H
(
t − t j−1

)
+ ω

Qs j

ED (t) H
(
t − t j−1

)
H

(
t j − t

)
, (9)

where H is the Heaviside function. The first two terms of eq. (9)
describe the energy flux from layer j to the layers above and below,
while the next two terms describe the opposite flux from the neigh-
bouring layers into layer j. The last two terms represent the anelastic
or intrinsic energy loss and the direct wave energy input into the
layer. In practice, for a given model m, comprising a single value
of a and ε for each layer in the stack, ED is calculated for each time
sample using eq. (8), starting from the measured energy value at
the free surface. Then, the system of linear differential equations in
eq. (9) is solved for each layer in the model. Finally, synthetic coda
envelopes are calculated for each frequency band using eq. (7).

2.2.1 Bayesian inference

We use a Bayesian approach to obtain the values of the structural
parameters for each layer in the model (e.g. Tarantola 2005). In
this approach, the aim is not to obtain a best fitting model, but to
test a large number of models with parameters drawn from a prior
probability distribution p(m) (or prior) defined by our previous
knowledge on them. In our case, we assume we have no previous
knowledge on the value of the parameters and use a uniform prior.

The likelihood associated with model m, p(d|m), is the probabil-
ity of observing our data, d, given the model parameters in m. We
used the Mahalanobis distance �(m) (Mahalanobis 1936) between

d, with variance–covariance matrix C, and the synthetic envelopes
g(m), to calculate the fit to our data:

�(m) = (g(m) − d)T C−1(g(m) − d), (10)

which we then applied to the calculation of the likelihood of model
m:

p(d|m) = 1√
(2π )n|C| exp

(−�(m)

2

)
. (11)

Bayes’ theorem (Bayes 1763) allows us to calculate the correspond-
ing sample of the posterior probability distribution (or posterior),
that is, the probability density associated with model m, or p(m|d):

p(m|d) ∝ p(d|m)p(m). (12)

We create an initial model by selecting a random value for the
correlation length and velocity fluctuations in all layers in the (amin,
amax) or (ε min, ε max) intervals, with amin = 0.2λmin [m], amax = 2λmax

[m] (λmin and λmax being the minimum and maximum wavelengths in
the layer, depending on signal frequency and background velocity),
ε min = 4.5 × 10−3 per cent and ε max = 10 per cent. These maximum
and minimum values were chosen considering the relevant range for
detectable scattering while being geologically feasible (e.g. Korn
1993; Hock et al. 2004).

We then applied the Metropolis–Hastings algorithm (Metropolis
& Ulam 1949; Metropolis et al. 1953; Hastings 1970) to sample
the posterior probability distribution and generate our ensemble of
solution models. This way, at every time step, this Markov Chain
Monte Carlo (MCMC) algorithm generates a new model m′ by ran-
domly choosing one of the parameters in the previous model (m)
and updating its value by adding a random number in the (− δa,
δa) or (− δε, δε) interval, with δa and δε being the step size for
correlation length and RMS velocity fluctuations respectively. In
case the new value of the parameter exceeds the boundaries defined
by (amin, amax) or (εmin, εmax), the distance 	 to the boundary is cal-
culated and the new parameter value is forced to bounce back into
the valid parameter range by the same distance 	. The algorithm
then takes model m′ and uses eqs (9) and (7) to obtain the corre-
sponding synthetic envelopes. In order to decide whether to accept
or reject the new model, the algorithm uses the posterior proba-
bility exponent (eq. 11), �(m)/2, called here the loglikelihood, L,
associated with model m, as an estimator of the likelihood and the
goodness of the fit to the data. Thus, if L(m)/L(m′) ≥ 1, m′ will be
accepted. If L(m)/L(m′) < 1, however, it will only be accepted if
exp(L(m) − L(m′)) ≥ q , q being a random number between 0 and
1. This algorithm ensures that parameter values closer to the true
value have high likelihoods and are accepted more often than values
further from the true value. The acceptance rate (AR) represents the
percentage of times new parameter values were accepted through
the Markov chain. There are several criteria defining what the value
of the AR should be, most of them making assumptions about the
properties of the target distributions (e.g. Brooks et al. 2011). In
our case, since we do not have any a priori information about the
posterior distributions, we aimed at AR values between 30 and 60
per cent. Finally we calculate the 5- to 95-percentile range (PR) for
each parameter in each layer in the model from our ensemble of
accepted models.
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For more detailed descriptions of Bayesian inference and MCMC,
we refer the reader to Tarantola (2005) or Brooks et al. (2011).

2.2.2 Synthetic tests

Previous studies have tested the validity of both the EFM and
EFMD: Frankel & Wennerberg (1987) and Korn (1990) used a
2-D acoustic finite difference code to check the validity of their
respective versions of the EFM; Korn (1997) and Hock et al. (2004)
tested their approaches by obtaining synthetic seismograms from a
fully elastic 2-D finite difference method and comparing them with
synthetic envelopes obtained from the EFMD. Here, we tested our
Bayesian inversion code with five different synthetic data sets, with
varying number of layers and parameter values. Synthetic envelopes
for these five models were calculated using the EFMD algorithm.
Parameter values for each one are shown in Table 2, together with a
summary of our synthetic tests results. In all of them, we used Pil-
bara Seismic Array (PSAR, Section 3) as a test array and obtained
its velocity model and Moho depth from the Australian Seismolog-
ical Reference Model (AuSREM, Kennett & Salmon 2012; Kennett
et al. 2013; Salmon et al. 2013b) and AusMoho model (Kennett et al.
2011) respectively, although our results should be applicable to all
arrays. Based on the lower bound of the lithosphere–asthenosphere
boundary (LAB) for this array (Yoshizawa & Kennett 2015; Kennett
2015), we set the bottom depth of all models to 200 km. Frequency
bands used are listed in Table 1.

Figs 2, 3, 4, S1 and S2, illustrate the results from our synthetic
tests for Models 1 to 5 (Table 2). In order to test the convergence
of our algorithm, we ran three independent Markov chains for each
model, with a total of 3 million iterations (parameter combinations
tested) for the single layer model, 9 million for the 2-layer models
and 15 million for the 3-layer model. For each chain, we discarded
the models corresponding to the burn-in phase, during which the
algorithm is not efficiently sampling the posterior probability dis-
tribution and models are still affected by the random initialization
of the Markov chain. In order to define the point at which the al-
gorithm reached convergence and the burn-in phase ended, we first
calculated the mean loglikelihood value in the second half of the
chain (during which the algorithm is stable) and then subtracted
5 per cent off that value. We consider the algorithm has converged
the first time it accepts a model with loglikelihood L equal or higher
than this value. Our threshold was defined based on the observa-
tion, in test runs of the EFMD, that L generally remained stable after
reaching the defined threshold for the first time. L provides an esti-
mation of the goodness-of-fit of the synthetic data to our real data
and takes negative values, meaning fits improve as L gets closer to
zero (eq. 11). In terms of parameter values, we consider that a nar-
row 5–95 percentile range (PR) points to clearly determined values
of the structural parameters, while wide 5–95 PRs would suggest
multiple parameter values are equally likely and good at fitting our
data.

For Model 1, with a single layer encompassing the entire litho-
sphere, all three chains reached stability and converged within
10 000 iterations. Panels (d)–(f) in Fig. 2 show our posterior prob-
ability density functions (PDFs) for each parameter, as well as
the joint PDF. In both cases, the distributions are approximately
Gaussian and symmetric, with the 5–95 PR being ∼0.06 km and
∼0.01 per cent wide for the correlation length and RMS velocity
fluctuations respectively (Table 2), which indicated that the range of
suitable values of the parameters is very well defined. The algorithm
slightly overestimates the correlation length and underestimates the

RMS velocity fluctuations, with the input value of the parameter
being included in the 5–95 PR for the latter but not for the former
(Table 2, Fig. 2). However, the difference between the central value
of the PDFs and the true value of the parameter is <0.4 per cent
for both the correlation length and the RMS velocity fluctuations.
Graphs on the right-hand side of Fig. 2(panels (g)–(n)) show his-
tograms of the synthetic envelopes for our ensemble of accepted
models for all frequency bands. As frequency increases, both enve-
lope amplitudes and width of the ensemble of synthetic envelopes
increase too. However, in all cases, the highest density of envelopes,
indicated by a dark brown colour, is found in a very narrow line that
matches the input data envelopes, not only in the time window used
for the fit (shadowed area in the plots), but also outside of it.

Model 2 contains two layers, representing the crust and litho-
spheric mantle. Our three chains converged in less than 120 000
iterations and remained stable for the rest of the inversion, as shown
in panels (a)–(c) in Fig. 3. Panels (d)–(i) in this figure summarize
our results. In this case, the PDFs for the parameters in both lay-
ers are narrow (the 5–95 PR is <0.7 km wide at most for a and
<0.5 per cent for ε) and approximately centred around the input
values, even if they are not Gaussian and show some local maxima.
The true values of the parameters lie within the 5–95 PR in all
cases, near the centre of the joint PDFs, and the maximum differ-
ence between the input values and the absolute maxima of the PDFs
is 2 per cent. Panels (j)–(q) in Fig. 3 indicate fits to the synthetic
data are good, since they show again that the largest concentration
of synthetic envelopes for all frequencies coincides with the input
data envelopes.

Models 3 and 4 have the same interface structure as model 2
(Table 2) and investigate high contrast situations in which a strong
heterogeneity layer is above or below a layer containing weak het-
erogeneities, respectively. Figs S1 and S2 summarize our results
and can be found in the Supporting Information. In both cases, the
chains reached stability within 11 000 iterations. Posterior PDFs
for the strongly scattering layer are approximately Gaussian and
narrow for both models 3 and 4, with maxima that deviate from
the input parameter values by 0.4 per cent at most (Table 2). The
weakly scattering layer, however, is poorly resolved for both mod-
els. The posterior PDFs for this layer are very similar in both cases
and clearly non-Gaussian. They show multiple maxima that do not
correspond to the input parameter values, which widens the 5–95
PR, especially for a. The RMS velocity fluctuation values seem
to be constrained to the range from 0.5 to 1.9 per cent for both
models, while the shape of the PDFs suggests any value of the cor-
relation length would be equally acceptable, even if large values
(>5 km) are favoured. The stability of the chains, shown in panels
(a)–(c) in Figs S1 and S2, together with the ensemble of synthetic
envelopes on panels (j)–(q), indicate that all these models provide
similarly good fits to the data and have similar loglikelihoods. This
observation points to solutions being highly non-unique, and to the
scattering parameters of the weakly heterogeneous layer not being
easily recoverable for these high contrast cases.

Finally, model 5 contains three layers, with boundaries corre-
sponding to upper and lower crust and lithospheric mantle. Our
results are shown in Fig. 4 and Table 2. Chains converged in less
than 130 000 iterations. In all cases, PDFs are clearly non-Gaussian
(panels d–l on Fig. 4) and have complex shapes, which widens the
5–95 PR and increases the range of suitable values of the param-
eters. The correlation length PDFs show clearly defined maxima
near the true values of the parameter in all layers (the maximum
distance between the maximum and the input parameter value being
0.35 per cent). RMS velocity fluctuations PDFs are more complex
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Table 2. Summary of the synthetic model layering and our synthetic tests results. For each model, we include the 5–95 percentile range (PR) and the acceptance
rate (AR) for each parameter, as well as the maximum loglikelihood (L) found during the inversion.

Model
Number Layer Input model Correlation length (a) RMS velocity fluctuations (ε) Maximum
of layers number a (km) ε (%) 5–95 PR (km) AR (%) 5–95 PR (%) AR (%) L

1 1 1 5.0 5.0 4.99–5.05 23 4.99–5.00 8 -2.5

2 2 1 2.0 5.0 1.7–2.4 12 4.8–5.3 47 -0.02
2 3.0 4.0 2.8–3.4 3.9–4.1

3 2
1 1.0 7.0 1.00–1.01

51
6.95–7.02

47 -0.03
2 6.0 1.0 7–32 1.0–1.8

4 2
1 6.0 1.0 6–25

50
1.0–1.8

51 -1.3
2 1.0 7.0 0.998–1.002 6.998–7.003

5 3
1 1.0 4.0 1–23

52
0.1–4.7

31 -0.022 2.0 3.0 1–21 0.6–6.1
3 4.0 2.0 3–30 1.8–3.3

and neither of them show clear maxima near the input parameter
values. Fig. S3 contains the marginal PDFs for all parameters in all
layers, as well as the PDF for each individual parameter. It shows a
strong trade-off between parameter values in different layers of the
model, especially the two crustal layers, and allows us to identify
two independent sets of parameters from our results (see Section
S.1 in the Supporting Information for details). This interaction be-
tween the parameters is caused by two main factors: first, the energy
balance the EFMD is based on (eq. 9) is strongly dependent on the
layering of the model, since the maximum energy that can be present
within a layer at any time depends on its thickness (i.e. energy leaks
out of thinner layers faster); secondly, correlation length values have
a much smaller effect on coda amplitudes, compared with RMS ve-
locity fluctuations, so the algorithm uses ε to compensate the excess
or lack of energy within a layer and match data coda amplitudes.
Since panels (m)–(t) on Fig. 4 do not show two clearly different sets
of envelopes in our ensemble of synthetic envelopes, and given that
the loglikelihood values remained stable throughout the three inde-
pendent chains we ran for this example, we conclude that both sets
of parameters we obtained from our inversion provide equally good
fits to the data, even if neither of them match our input parameter
values.

Overall, our results show that our Bayesian algorithm is capable
of successfully fitting our data and retrieving the input parameter
values for our 1-layer and 2-layer models. For our 3-layer model,
however, the method provides good fits to the data but fails to ob-
tain the correct parameter values, so we cannot trust results from
this model for real data inversions, since we do not know what the
scattering parameters are beforehand. Our observations illustrate
the usefulness of the Bayesian approach we took in this study. It
provides detailed information about the parameter space and indi-
cates whether a single set of parameters that fits our data exists or
a range of models can equally match the data. Any estimation of
scattering parameters in a maximum-likelihood framework would
therefore have led to erroneous conclusions about the physical pa-
rameters in this system, which we have avoided. The joint PDFs
highlight the complicated relationships and trade-offs between the
model parameters in the different settings explored here, which had
not been observed in previous studies using the EFMD. We do not
observe systematic overestimation of a in the EFMD, as reported by
Hock et al. (2004). This observation might be related to the limited
number of models tested in grid search approaches and the observed
trade-offs between parameters.

3 DATA S E L E C T I O N A N D P RO C E S S I N G

Our data set consists of seismic recordings from teleseismic events
from 1 January 2012 to 31 December 2018, with epicentral dis-
tances between 30◦ and 80◦ from the arrays, source depths greater
than 200 km and magnitudes from 5 to 7. These conditions ensure
vertical or nearly vertical incidence angles and prevent near-source
scattering and unwanted deep seismic phases from appearing in our
time window of interest.

After removing the instrument response, we calculate the signal-
to-noise ratio (SNR) for each trace and frequency band using the
peak-to-peak amplitude in two separate time windows: for noise,
we used a 20 s long window, starting ∼25 s before the theoretical
P-wave arrival [as estimated from PREM (Dziewonski & Anderson
1981)], while for the signal we chose a time window starting 1 s
before the theoretical first arrival and ending 40 s later. Only traces
with signal-to-noise ratio equal to or higher than 5 were used.

Hock et al. (2004) pointed out that the EFMD generally overesti-
mated the RMS velocity fluctuations by up to 3 per cent when using
only vertical-component data and that a mix of 1-component and
3-component data produced unstable results, both of them caused
by the difference in coda amplitudes between 1-component and
3-component data. However, the International Monitoring System
arrays are dominantly vertical component, with WRA having three
3-component stations and ASAR a single 3-component central sta-
tion. All PSAR stations are 3-component. To address this issue, we
tried calculating a correction factor to approximate 1-component to
3-component coda levels. We used several different approaches to
obtain this correction factor, all of them based on the ratio between
every available 3-component coda envelope A(t; ωc) or normalized
envelope (left-hand side on eq. 7) and its 1-component (vertical)
counterpart. However, we found that these ratios varied signifi-
cantly from event to event and frequency band to frequency band
and followed complicated probability distributions, even after us-
ing our large datasets to calculate them. The corrected 1-component
envelopes did not, in general, fully match the 3-component coda am-
plitudes using this approach. Our tests also showed the correction
factors needed for the normalized envelopes were different than for
the unnormalized ones and that small variations in coda amplitudes
affected the results we got from both the EFM and EFMD. We also
used the ‘corrected’ 1-component data in our EFM-EFMD algo-
rithm and compared the results in different settings with those from
our 3-component data for PSAR. In both cases, the distribution of
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1688 I. N. González Álvarez et al.

Figure 2. Summary of the results obtained from our EFMD algorithm for synthetic model 1 from Table 2 from three separate chains, adding up to a total of
3 million iterations (parameter combinations tested). Panels (a)–(c) show the loglikelihood (or posterior probability exponent) for each accepted model in the
chain, once the burn-in phase was removed. Panels (d)–(f) contain the posterior PDFs of the structural parameters, as well as the joint PDF. Dotted blue lines
in these plots represent the input parameter values and the shaded area corresponds to the 5–95 percentile range (PR). Panels (g)–(n) on the right-hand side
show 2-D histograms of the synthetic envelopes for all accepted models and frequency bands, with colour bars indicating the number of models that produced
a data sample within each bin. Vertical scale is the same in all plots. The shaded area here indicates the time window used for the fitting and blue dotted lines
are the input data envelopes.

the heterogeneity followed similar patterns, but the values of the
scattering parameters and the posterior PDFs differred. Therefore,
we only analyse 3-component data in this study.

Table 3 shows the number of events and traces used for each
array and frequency band. For PSAR, we only kept events with ≥5
good quality 3-component traces. For WRA and ASAR, we used
all available 3-component data. This allowed us to test this method
with different station configurations, from a full array (PSAR) to a
small group of stations (WRA) or even a single station (ASAR). In
all cases, our large event data set guarantees a thorough sampling

of the structure beneath the stations and allows us to obtain robust
results.

For each array, the data processing prior to the EFM/EFMD
analysis was carried out as follows:

(i) Computation of 3-component envelopes for each frequency
band, station and event. All traces were trimmed to the time window
going from tN seconds before to 3tN seconds after the theoretical
P-wave arrival (tN being the travel time through the lithosphere,
∼25 s for all arrays). These were then stacked by event, normal-
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Figure 3. As Fig. 2 but for synthetic model 2 from Table 2 (2-layer model).

ized using eq. (7) and stacked by frequency band. Unnormalized
envelopes for all events were also stacked by event and frequency
band. The variance of both normalized and unnormalized envelopes
was calculated sample by sample from all individual event stacked
envelopes and used as the uncertainty of our data.
(ii) Estimation of Qs, Qi, Qdiff , a and ε for a single scattering layer
using the EFM.
(iii) Bayesian inversion for the structural parameters of each layer
in each model type from Fig. 5 by applying the envelope modelling
technique from EFMD, as described in Section 2.2, and using the
Qi values obtained from the single layer EFM. The bottom depth
of these models was set to 200 km in all cases to make it easier
to compare our results from the three arrays. In order to speed up
this process, our data were resampled to a common sampling rate
of 10 Hz (original sampling rates were 40 Hz for PSAR and WRA
and 20 Hz for ASAR) before applying the EFMD algorithm.

Background lithospheric P-wave velocities (Fig. 5) and Moho
depths for each seismic array were obtained from the Australian
Seismological Reference Model (AuSREM, Kennett & Salmon
2012; Salmon et al. 2013a, b; Kennett et al. 2013) and AusMoho
model (Kennett et al. 2011), respectively.

4 T E C T O N I C S E T T I N G

ASAR and WRA are located on the North Australian Craton (NAC),
one of the Proterozoic cratons in the Precambrian westernmost two-
third of the Australian continent (e.g. Myers 1990; Simons et al.

1999; Wellman 1998; Cawood & Korsch 2008, Fig. 6). The NAC
consists of late Archaean to Proterozoic cratonic blocks overlaid by
Proterozoic and Phanerozoic orogenic belts and basins. PSAR is
located on Archaean lithosphere part of the West Australian Cra-
ton (WAC), which includes both the Pilbara and Yilgarn Archaean
cratons, as well as some Proterozoic orogens and basins (Cawood
& Korsch 2008, Fig. 6). Present day tectonic activity in Australia
is concentrated along the active plate boundaries in the north and
east, with continental regions presenting only moderate seismicity
(Fichtner et al. 2009).

Previous studies have investigated crust and lithospheric thick-
nesses and structure around the three arrays studied here. Thick
crust (Lc > 40 km) with a wide and smooth Moho transition has
generally been found in the Proterozoic shields of Central Aus-
tralia while the Archaean regions of western Australia have thinner
crust (Lc < 40 km) and sharper crust-upper mantle transitions (e.g.
Clitheroe et al. 2000; Kennett et al. 2011; Salmon et al. 2013a;
Kennett & Saygin 2015; Sippl 2016). This difference in crustal
thickness between Archaean and Proterozoic regions seems not to
fit the trend of crustal thickness increasing with age suggested for
Australia (e.g. Clitheroe et al. 2000). It has been attributed to post
Archaean tectonic activity underplating material at the base of the
crust in these regions, as opposed to the Archaean cratons being lo-
cated at passive margins and, therefore, not being affected by more
recent tectonics (e.g. Drummond & Collins 1986).

Sippl (2016) and Kennett & Sippl (2018) imaged a series of
Moho offsets along a north–south profile in the NAC. One of these
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Figure 4. As Fig. 2 but for synthetic model 5 from Table 2 (3-layer model).

offsets is associated with the Redbank Shear Zone, which separates
the Aileron Province and the location of ASAR from the Amadeus
Basin, just south of the array (e.g Goleby et al. 1989; Korsch et al.
1998; Sippl 2016). The profile used in Sippl (2016) and Kennett &
Sippl (2018) is located roughly 50 km west of ASAR and shows an
offset of up to 20 km coinciding with ASAR latitude, even though
they show constant Moho depths beneath the array. An east–west
gravity anomaly has been found at the location of this Moho offset
(Sippl 2016, Fig. 1) and attributed to denser lithosphere at the base of
the crust caused by the uplift of the Aileron crustal block during the
Alice Springs Orogeny 400–350 Ma (Goleby et al. 1989; Aitken
2009; Aitken et al. 2009; Sippl 2016). Another offset imaged by
Sippl (2016) and Kennett & Sippl (2018), further north, shows a
north–south decrease in Moho depth of about 10 km just south from
WRA, which has been associated with a Proterozoic suture zone.
Corbishley (1970) also found evidence of a layered and dipping
structure below WRA. Gravimetric data do not show any anomalies

here (Sippl 2016), which has been attributed to a layer of sediments
near the surface isostatically compensating the mass excess at depth.

Several studies have addressed the thickness of the lithosphere
beneath the Australian continent. Some suggest similarly deep in-
terfaces across all Precambrian cratonic regions in Australia (Ll ≈
200 km, e.g. Debayle & Kennett 2000). More recent studies use a
lithosphere–asthenosphere transition (LAT) zone, defined as a me-
chanical or thermal boundary layer related to changes in rheology,
as opposed to a simple interface at the bottom of the lithosphere
(e.g. Yoshizawa & Kennett 2015; Kennett & Sippl 2018). Specif-
ically, Kennett & Sippl (2018) place the upper and lower bounds
of the LAT at 140 and 170 km depth respectively for ASAR, and
at 120 and 160 km for WRA, while Yoshizawa & Kennett (2015)
place them at 100 and 200 km depth for PSAR. Some studies have
also found evidence for mid-lithospheric discontinuities below both
ASAR and WRA which have been interpreted as vertical varia-
tions in mantle composition, grain size or fabric, for example a low

Table 3. Number of events and good quality (SNR > 5) traces for each array and frequency band.

Number of events per frequency band
0.5–1 Hz 0.75–1.5 Hz 1–2 Hz 1.5–3 Hz 2–4 Hz 2.5–5 Hz 3–6 Hz 3.5–7 Hz

PSAR
Events 86 161 213 276 343 268 212 158
Traces 973 1899 2489 3226 3179 2965 2282 1641

WRA
Events 292 355 385 407 413 410 412 406
Traces 709 843 916 977 983 984 980 965

ASAR
Events

309 375 440 429 405 397 386 374
Traces
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Figure 5. Representation of the AuSREM P-wave velocity models for each seismic array (left-hand panel) and the three types of lithospheric models used
in the EFMD (right-hand panel). The layering and bottom depth is the same we used in the models for our synthetic tests, with Model types I, II and III
corresponding to Models 1, 2 and 5 from Table 2 (Models 2, 3 and 4 have the same layering). Moho depths for each array were obtained from the AusMoho
model (Kennett et al. 2011).

Figure 6. Simplified geological map of northwestern Australia and location of the three seismic arrays used in this study [Alice Springs Array (ASAR),
Warramunga Array (WRA) and Pilbara Seismic Array (PSAR)]. Blue dashed lines represent the boundary of the West Australian Craton (WAC, light blue line)
and the North Australian Craton (NAC, dark blue line). PSAR and WRA are located on Archaean and Proterozoic basement respectively, inside the cratons,
while ASAR is situated at the southern boundary of the NAC. Panels on the right show the station configuration of the arrays, with the same scale bar shown
for PSAR being applicable to all three maps. Geological structure based on Blake & Kilgour (1998) and Raymond et al. (2018).
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Figure 7. Frequency dependence of the intrinsic (Qi), the diffusion (Qdiff), scattering (Qs) and combined (Qcomb) quality factors for all arrays.

velocity melt cumulate layer (Ford et al. 2010) and as a former
mantle detachment zone associated with the Alice Springs orogeny
(Kennett & Sippl 2018).

5 R E S U LT S A N D D I S C U S S I O N

5.1 EFM results

We calculated the coda decay rate, a1, and its value at zero time,
a0, for all frequency bands and arrays as stated in Section 2.1. We
applied the linear least-squares fit of the squared stacked envelopes
at the free surface (Fig. S4) to a time window starting tN s after the
theoretical P wave arrival (tN being the one-way traveltime through
the lithosphere), since the EFM is only applicable after the direct
wave has left the scattering layer (Korn 1990; Hock & Korn 2000).
The length of this time window varied from 42.5 to 48 s for all
arrays and frequency bands, depending on differences in P-wave
velocities and arrival times. Table 4 and Fig. 7 summarize our EFM
results for all arrays.

A least-squares fit using eq. (2) then allowed us to calculate the
quality factors for diffusion and anelasticity at 1 Hz from a1. For
all arrays, the coda decay rate for the lowest frequency band did not
follow the trend defined by the other frequency bands. Including
it in the least squares fit produced inconsistent results, and it was
excluded from the analysis (Fig. S5). The intrinsic quality factor,

Qi, takes similar, frequency independent (α = 0), values of ∼2000
for WRA and PSAR. For ASAR, our best fits to the coda decay rate
(eq. 2) correspond to α = 0.2 (Fig. S5) and Qi ∼ 1000. Diffusion
quality factor values at 1 Hz are similar for ASAR and WRA (∼400),
and higher for PSAR (∼500). Since this quality factor does not
depend on α (eq. 16, Korn 1990), this translates into Qdiff following
the same trend for all arrays but being higher for PSAR than for
WRA and ASAR.

Fig. S6 shows measured Qs values, obtained from eq. (5), to-
gether with the theoretical least-squares regression curves derived
by Fang & Müller (1996) for the relationship between the struc-
tural parameters and Qs for an exponential ACF. As explained on
Section 2.1, these parameters represent a first approximation to the
average spatial distribution and strength of the heterogeneity of a
hypothetical single scattering layer beneath the arrays. Correlation
length values are similar for the three arrays, varying from 0.92 to
1.1 km. Heterogeneities appear to be weaker beneath PSAR than
ASAR or WRA, with ε jumping from ∼3.0 per cent for PSAR to
∼4.5 and ∼4.7 per cent for WRA and ASAR, respectively.

Fig. 7 shows the frequency dependence of the different qual-
ity factors obtained from the EFM. The total quality factor, Qcomb,
and Qs follow a similar trend. They take the highest and lowest
values for PSAR and ASAR, respectively. For WRA and ASAR,
their maximum value corresponds to the 0.5–1 and 0.75–1.5 Hz
bands, respectively, and the minimum for the 1.5–3 Hz frequency
band. The frequency dependence of Qs and Qcomb for the highest
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Table 4. Summary of the main results obtained from the EFM for all arrays: intrinsic (Qi0) and diffusion (Qd0)
quality factors values at 1 Hz, intrinsic quality factor frequency dependence coefficient (α), correlation length
(a) and RMS velocity fluctuations (ε).

Array Qi0 Qd0 α a (km) ε (per cent)

PSAR 2100 ± 200 500 ± 40 0.0 0.9 ± 0.1 2.9 ± 0.1

WRA 2100 ± 100 400 ± 20 0.0 1.1 ± 0.1 4.5 ± 0.1

ASAR 1000 ± 100 400 ± 40 0.2 0.9 ± 0.2 4.7 ± 0.2

Table 5. Summary of our EFMD results for all arrays and model types.

Array
Model Frequency Layer Correlation length (a) RMS velocity fluctuations (ε)

Maximum L
type bands number 5–95 PR (km) AR (%) 5–95 PR (%) AR (%)

PSAR

I A-H 1 23–32 48 <0.01 47 <−14 × 106

II A-H
1 0.5–25

75
<0.01

47 <−450 000
2 0.5–32 <0.01

II D-H
1 0.5–0.8

59
2.3–2.5

44 −7.1
2 4–32 0.1–1.8

ASAR
I A-H 1 2–30 93 0.01–0.07 44 −10 500

II D-H
1 0.2–1.4

59
2.4–3.0

50 −2.2
2 3–32 0.1–3.7

WRA II D-H
1 0.7–1.5

60
3.1–3.9

53 −0.7
2 3–32 0.2–5.0

Figure 8. Results from Model type II and PSAR using only the five highest frequency bands from Table 1.
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Figure 9. As Fig. 8 but for ASAR.

frequencies is similar for both arrays. This indicates that the domi-
nating scale length of the heterogeneity is in the 2.6–5.3 km range
for these arrays when we consider a single scattering layer. For
PSAR, however, Qs decreases for frequencies below 1.5 Hz and
then remains approximately constant, which could be indicative of
different scale lengths of the heterogeneity being equally present
in the structure. For this array, Qcomb increases slowly over the fre-
quency range covered here.

In general, diffusion is the strongest attenuation mechanism (low-
est Q) at low frequencies, with scattering dominating at higher fre-
quencies. For WRA, this transition happens at 0.75 Hz, while for
ASAR and PSAR, the change takes place at 1.125 Hz. Anelasticity
remains the weakest attenuation mechanism (highest Q) at low fre-
quencies, up to 4.5 Hz for WRA and PSAR and 3.75 Hz for ASAR.
Above that frequency, Qdiff becomes dominant. These results agree
with the observations by Korn (1990), who obtained Qi > 1000 and
Qdiff ∼ 300–400 at 1 Hz for WRA, even if his results showed that
Qi remained larger than Qdiff up to 10 Hz. Our Qcomb results suggest
that, even if Qs, Qi and Qdiff are lower at most frequencies for ASAR
than for the other two arrays, total attenuation strength is similar
for ASAR and WRA. These lower Qcomb values could be related to
the location of these arrays on the NAC, younger in origin than the
WAC (Section 4). The location of ASAR, on the southern edge of
the NAC, in an area widely affected by the accretionary processes
that took place during the assembly of the Australian continent, as
well as major events like the Petermann and Alice Springs orogens
(Section 4), could explain the lower values of the different quality

factors obtained for this array. For PSAR, the generally high quality
factors values we obtained could be related to the location of the
array on a tectonically quiet Archaean craton (Section 4). Previous
studies (e.g. Cormier 1982; Korn 1993; Sipkin & Revenaugh 1994;
Domı́nguez & Rebollar 1997) have also found lower Q values in
regions with quiet tectonic histories, an observation that matches
our results from the EFM for all three arrays.

5.2 EFMD results

We used the 1-layer and 2-layer lithospheric models shown in Fig. 5
in our inversion of the data for all three arrays. Qi values necessary
to calculate the synthetic envelopes from eq. (7) are determined by
the EFM. As with our synthetic tests, we ran three parallel Markov
chains for each array and model type, with 1 million or 3 million
iterations for models with 1 and 2 layers, respectively. The burn-in
phase, defined as described in Section 2.2.2, was removed from
all chains. Table 5 summarizes our results. To avoid repetition, we
include here only the most relevant results for each array. Figures
from the rest of our inversions can be found in the Supporting
Information.

Inversion of PSAR data with Model type I (single layer), revealed
this model produces very large amplitude codas that barely decay
over time (Fig. S7). All chains were stable and converged within
14 000 iterations, but the maximum loglikelihood reached during
the inversion (<−106, panels (a)–(c) on Fig. S7), indicated fits to
the data are very poor, which is also obvious from the comparison
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Figure 10. As Fig. 8 but for WRA.

of the ensemble of synthetic envelopes with the data (panels (g)–
(n) on Fig. S7). The posterior PDFs suggest a nearly homogeneous
lithosphere, with ε ∼ 0 per cent and a > 20 km. This is likely due
to the large thickness of the layer (200 km) preventing diffusion
out of it and, therefore, energy levels in the heterogeneous layer
remaining high at all times, regardless of the magnitude of the
scattering parameters. We also tested model type I on ASAR data,
since coda levels for this array are higher. These results are shown
on Fig. S8. Despite the higher coda amplitudes, model type I fails to
fit our data for this array, with the maximum loglikelihood reached
being on the order of −10 000. ASAR coda amplitudes are similar
to WRA, indicating similar behaviour. Therefore, this model was
not tested for WRA.

Model type II (two layer) inversions for all three arrays showed
much better fits for frequency bands D–H (Table 1) than for A–C
(example for PSAR in Fig. S9). However, loglikelihood values are
still very low (<−4 × 105, Table 5), which indicates poor fits to
the data and, therefore, unreliable parameter estimations, even if
there is a substantial improvement with respect to model type I. Our
EFM results show scattering only becomes the dominant attenuation
mechanism above 1.5 Hz for PSAR (Fig. 7). This, together with
coda amplitudes shown on panels (j)–(q) in Fig. S9 being barely
above the noise level in the time window of interest for the lowest
frequency bands, suggests these codas are affected by large-scale
heterogeneities and might not be composed only of energy scattered
at small-scale structure. Therefore, the EFMD may not be able to
fit our coda envelopes for frequencies below this threshold. To test

this, we ran our EFMD inversion code for frequency bands D to
H (Table 1) alone. By comparing our results for PSAR in Figs S9
and 8, we observe considerable improvement in the fits to the data,
also evidenced by much higher loglikelihood values (<−10). Given
these new observations, we discard frequency bands A–C (central
frequencies below 1.5 Hz, Table 1) in future inversions of the data
for all arrays.

Figs 8, 9 and 10 summarize our results for all three arrays and
model type II. All Markov chains converged within 10 000, 7000 and
4000 iterations for PSAR, ASAR and WRA, respectively. The scat-
tering structure beneath all three arrays shows different amounts of
heterogeneity in the crust and a relatively homogeneous lithospheric
mantle. The posterior PDFs for both parameters in the top layer in
all cases are roughly Gaussian and narrow (Table 5). Maxima for
the correlation length PDFs for PSAR, ASAR and WRA are at 0.6,
0.7 and 1 km, while RMS velocity fluctuations posteriors peak at
2.4, 2.7 and 3.6 per cent respectively. PDFs for layer 2, on the other
hand, show no clear maxima and also have similar shapes for all
arrays. For PSAR, ε only takes values below ∼3 per cent, while
for WRA and ASAR, the PDF extends up to ∼8 and ∼6 per cent,
respectively. In all cases, most of the accepted models have ε <

1 per cent. The correlation length PDF, on the other hand, extends
throughout the entire parameter space. For PSAR and WRA, large
values of a (>5 km) are favoured, while small correlation lengths
(<1 km) seem to work better for ASAR. Loglikelihood values are
high (>−10) for all arrays, which suggests fits to the data are gen-
erally good. The shape of the PDFs for the bottom layer makes
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our solutions non-unique and highlights a complicated trade-off
between the scattering parameters. These results strongly resemble
the ones we obtained from our synthetic test of model 3 (Table 2),
in which our Bayesian inference algorithm successfully recovered
the input parameter values for the strongly heterogeneous layer
while pointing out similar trade-offs between the two parameters
and non-unique solutions for the more homogeneous layer. These
results suggest the lithospheric mantle beneath all three arrays is
much more homogeneous than the crust above it, where most of the
scattering and attenuation takes place.

These results agree with observations from previous studies. Ken-
nett (2015) studied P-wave reflectivity in the lithosphere and as-
thenosphere in Australia. Their results point to strong lithospheric
heterogeneity being present beneath stations in the Proterozoic NAC
and they suggest correlation lengths of at most a few kilometres and
∼2 per cent velocity fluctuations in the crust. For the lithospheric
mantle, they propose much larger correlation lengths (10–20 km)
and ε < 1 per cent. Kennett & Furumura (2016) and Kennett et al.
(2017) also addressed the presence and interaction of multiscale
lithospheric heterogeneity in the Australian continent. In their sim-
ulations, they combined large scale heterogeneities with stochastic
media and fine scale structure. Their results indicate a wide range
of heterogeneity spatial scales are present and interact within the
lithosphere. Their models contain four different layers for the fine
scale structure, two in the crust and two in the lithospheric mantle,
and different horizontal (aH) and vertical (aV) correlation lengths.
Their scattering parameters suggest a mildly heterogeneous astheno-
spheric mantle (aH = 10 km, aV = 10 km, ε = 0.5 per cent) and
an increase in the strength of the heterogeneity in the lithosphere-
asthenosphere transition zone (aH = 5 km, aV = 1 km, ε = 1
per cent). The crust is generally more heterogeneous in these mod-
els, with aH = 2.6 km, aV = 0.4 km for both crustal layers and RMS
velocity fluctuations of 0.5 and 1.5 per cent for the upper and lower
crust respectively. At resolvable scales, these values are consistent
with our results from the EFMD (Table 5).

5.3 Limitations and assumptions

A possible source of error in our inversion is the prescribed thick-
ness of the layers in our models. The EFMD is sensitive to changes
in the bottom depth of the different layers, especially for the shal-
lowest layer, as this affects the diffusion out of them. For our model
type II, we used a priori information on Moho and lithosphere–
asthenosphere boundary (LAB) depths. As discussed in Section 4,
however, there is some uncertainty in reported depths, especially
for the LAB. Our models consider the lithosphere to extend down
to 200 km depth for all three arrays, but tests of the EFMD with
shallower LABs did not produce major changes in our results.

Previous studies have shown that the strongest inhomogeneities
within our planet are found in the lithosphere, even if deeper sections
can also be heterogeneous (e.g. Shearer & Earle 2004; Shearer 2007;
Rost et al. 2015). In this study, we focused on the characterization
of small-scale lithospheric heterogeneities beneath ASAR, PSAR
and WRA, with our models extending down to 200 km depth in
all cases. We interpreted our results under the assumption that the
coda energy was generated by lithospheric inhomogeneities, even
if we are aware that we cannot rule out energy contributions from
deeper, weaker scatterers. It is unlikely that these structures are the
dominant source of coda energy throughout the time window used
in our analysis and their effect on our results is likely small.

Other limitations of our approach are the assumptions for the
determination of the different quality factors in the EFM and the
fact that neither the EFM nor the EFMD take into account phase
conversions and reflections at interfaces other than the free surface.
Eq. 15b from Korn (1990), which we use in this study, is based on
the assumption that Qs and Qdiff are of the same order of magnitude,
even if that is not necessarily always the case. The intrinsic quality
factor (Qi) value used in the EFMD was determined by the EFM,
with a limitation to a single scattering layer and a poorly constrained
frequency dependence of Qi, since α could not be fully inverted for
in the EFM (Section 2.1). Therefore, all layers in our EFMD mod-
els have the same Qi and frequency dependence as obtained in the
EFM. The heterogeneity anisotropy observed by Kennett & Furu-
mura (2016) and Kennett et al. (2017) could be included in future
approaches of Bayesian inversion for heterogeneity structure but
given the range of acceptable models we find and the trade-offs in-
herent in inverting for scattering parameters we have demonstrated,
we are unsure if anisotropy in scattering could be well resolved with
these kinds of data.

6 C O N C LU S I O N S

For three Australian seismic arrays, we applied the single layer mod-
ified EFM and depth dependent EFMD to a large data set which
includes events from a wide range of magnitudes, distances and
azimuths. This ensures we are thoroughly sampling the structure
of the lithosphere beneath the arrays and reduces azimuthal and
lateral bias. Our EFM results highlight similarities and differences
in the behaviour of the quality factors (Qi , Qdiff , Qs , Qcomb) for the
three arrays studied here and, therefore, the attenuation structure
beneath them. Generally, intrinsic and diffusion quality factors are
lower at all frequencies for ASAR than for the other two arrays,
which would indicate that attenuation caused by these two mech-
anisms would be strongest for this array. However, the scattering
and total quality factors take similar values for ASAR and WRA,
making their heterogeneity and overall attenuation structure com-
parable and different to PSAR. These results are consistent with the
tectonic histories and settings of the areas the arrays are located on.
WRA and ASAR lie on the proterozoic North Australian Craton
(NAC), but while WRA is situated near its centre, ASAR is on its
southern border, a margin with more complex and recent tectonic
history than the interior of the craton, which correlates with the
generally lower quality factor values we observe for ASAR. The
EFMD confirms some of these similarities and differences. Our re-
sults suggest the crust is more heterogeneous than the lithospheric
mantle for all arrays, which could be related to the cratonic nature of
the lithosphere in these areas. Correlation lengths in the crust vary
from ∼0.2 to 1.5 km and RMS velocity fluctuations take values in
the 2–4 per cent range. The scattering structure of the lithospheric
mantle, on the other hand, is more complex. Solutions for this layer
are not unique, with both low (<2 km) and high (>5 km) correla-
tion length values being equally possible. Low velocity fluctuation
values are favoured in the inversion results for all arrays, but the pos-
terior PDFs for ASAR and WRA extend up to ∼6 and ∼7 per cent,
respectively, and only to ∼3 per cent for PSAR, thus supporting our
hypothesis that the similarities and differences in the heterogeneity
structure beneath these arrays are caused by their different locations
on the cratons and the different tectonic histories of these areas.

These results highlight the suitability of Bayesian inversion
approaches for the characterization of lithospheric small-scale
structure. Our synthetic tests show that the combination of the
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EFMD and our Bayesian inference algorithm can effectively recover
heterogeneity parameters for 1- and 2-layer models. Our approach
provides detailed information about the parameter space and the
trade-offs and uncertainties in the determination of the structural
parameters. The study of the posterior PDFs also allows us to deter-
mine whether a single set of scattering parameters can successfully
explain our data or whether solutions are not unique.

Our study shows that energy flux models can be used for seis-
mic arrays or groups of stations (PSAR, WRA) and single seismic
stations (like the single available 3-component station at ASAR).
The methods rely on teleseismic data, which makes them suitable
for regions with limited local and regional seismicity, such as our
study areas in northern and western Australia. The strength of the
heterogeneity is not constrained, which makes this technique appli-
cable to strong and weak scattering regimes and apt to the study of
small-scale heterogeneity on Earth and other planets. Finally, the
computational efficiency of the EFMD means it can be combined
with Bayesian inference algorithms to explore wide and complex
parameter spaces. Overall, our study shows that the combination of
the EFM and Bayesian EFMD is an effective tool to quantify hetero-
geneities in the lithosphere and can contribute to our understanding
of heterogeneity distribution in the Earth.
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Supplementary data are available at GJI online.

Table S1. Summary of the two independent and equally likely fam-
ilies of parameters extracted from Fig. S3 for our synthetic model
5 from Table 2.
Figure S1. Results from our synthetic test of model 3 from Table 2,
in which a strongly scattering layer lies above a weakly scattering
one. Panels (a)–(c) show the loglikelihood for each accepted model
in the chain, while (d)–(i) contain the posterior PDFs of the struc-
tural parameters and the joint PDF. Dotted blue lines in these plots
represent the input parameter values and the shaded area indicates
the 5–95 percentile range (PR). Panels (j)–(q) on the right contain
2-D histograms of the synthetic envelopes for all accepted models,
with colour bars indicating the number of models that produced a
data sample within each bin of the grid. Vertical scale is the same
in all plots. The shaded area in these panels points to the extent of
the time window used for the fitting.
Figure S2. Results from our synthetic test of model 4. In this case,
the top layer contains weak heterogeneities, while the bottom layer
is highly heterogeneous.
Figure S3. Joint PDFs for all parameters and layers in synthetic
model 5 from Table 2. Plots in the diagonal of the figure contain the
individual PDF for the different scattering parameters.
Figure S4. Linear fit of the logarithm of the squared normalized
coda envelopes (A) for all arrays, as described in Section 2.1. The
shaded area represents the maximum time window used for the fits.
Lighter solid lines represent our data envelopes. Darker, dashed
lines show the linear fits whose equations are shown in the legend.
Figure S5. Coda decay coefficient (a1) versus frequency for all
arrays. Solid lines represent the regression curves defined by eq.
(18) from Korn (1990). The legend contains our obtained values
of the intrinsic and diffusion quality factors at 1 Hz, as well as the
indicative estimation of the thickness of the scattering layer.
Figure S6. Scattering quality factor, Qs, versus the theoretical curve
derived by Fang & Müller (1996). The legend contains our estima-
tion of the correlation length and RMS velocity fluctuations for a
single scattering layer.
Figure S7. EFMD results for PSAR and model type I.
Figure S8. EFMD results for ASAR and model type I.
Figure S9. EFMD results for PSAR and model type II using all
eight frequency bands listed on Table 1.
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