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We present a study of the effects of strain on the magnetocrystalline anisotropy energy and magnetic moments

of Y2Fe14B bulk alloy. The study has been performed within the framework of density functional theory in

its fully relativistic form under the generalized gradient approximation. We have studied seven different in–

plane a lattice constant values ranging from 8.48 up to 9.08Å with an increment of δa = 0.1Å. For each a

value we carried out an out–of–plane c parameter optimization, achieving the corresponding optimized lattice–

pair (a,c). We find a large variation in the the site resolved magnetic moments for inequivalent Fe, Y and B

atoms for different lattice expansions and a negative contribution to the total moment from the Y sites. We find

a strong variation in the magnetocrystalline anisotropy with the c/a ratio. However, the calculated variation

when coupled with thermodynamic spin fluctuations is unable to explain the experimentally observed increase

in the total magnetic anisotropy, suggesting a different physical mechanism is likely to be responsible in contrast

with previous interpretations. We show that opposing single- and two- ion anisotropy terms in the Hamiltonian

gives good agreement with experiment and is the probable origin of the non-monotonic temperature dependence

of the net anisotropy of Y2Fe14B bulk alloy.

I. INTRODUCTION

Rare-earth transitional metal permanent magnetic materi-
als play a critical role in the hybrid and electric vehicles and
electric power generation.[1] Recent concern about the impact
of climate change has renewed interest in understanding and
optimizing these materials to improve the energy efficiency
of these key technologies. The most technologically im-
portant Nd-Fe-B magnet consists of 2:14:1 phase Nd2Fe14B.
This Nd–Fe–B magnet has the highest energy product among
all known permanent magnet materials.[1] The magnetocrys-
talline anisotropy (MAE) is a key factor for understanding the
high coercivity of RE2TM14M (RE=rare earth, TM=transition
metals and M=B, C, N) permanent magnets [2]. These el-
ements form stoichiometric compounds in the 2:14:1 phase
of rare earths, transition metals and metalloids, respectively,
which allows the study of different magnetic couplings RE–
RE and RE–TM between the different sites.[3–5] Related with
the MAE is the effect of strain on these materials since the
manufacturing process could promote variations in their lat-
tice parameters and therefore some residual strain.[6–8]

In addition, rare earths have localized 4 f electrons, adding
further complexity to their study. These f electrons are rel-
atively insensitive to their environment in contrast with 3d

electrons that are quite sensitive to lattice changes due to their
itinerancy. As proposed by Torbatian et al,[8] the compound
Y2Fe14B is suitable for the study of Fe–3d electrons since Y
does not have f electrons, being a prototypical f 0 rare earth
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element keeping the same geometrical structure as the other
RE-TM bulk materials.

Due to the structural symmetry of RE2Fe14B series alloys,
studies of Y2Fe14B play an essential role in understanding the
contribution of the Fe sublattice to the overall MAE for the
case of more technologically relevant alloys including Nd or
Dy. In the majority of RE2Fe14B series alloys, the rare earth
ions dominate the MAE at low temperatures.[9] However, the
combination of the strong temperature dependence of the RE
sublattice magnetization and higher-order contributions to the
MAE lead to a strong temperature dependence of the MAE, so
that at room temperature the Fe sublattice contributes a signif-
icant fraction of the total MAE.[9] A common feature of the
so called “non-magnetic” RE2Fe14B alloys, where RE = Y,
Ce, Th is an increase of the anisotropy field with increasing
temperature, in direct contrast to the usual expectation of a re-
duction of the MAE due to spin fluctuations.[10–12] Bolzoni
et al [13] suggested that the origin of this anomalous increase
of the MAE may be due to asymmetric temperature depen-
dent lattice expansion,[14] causing an increase of the effective
MAE at elevated temperatures. Torbatian et al calculated the
MAE in Y2Fe14B for two cases: an equilibrium and a com-
pressed lattice, finding that the MAE is enhanced upon lattice
compression. However, understanding the influence of lattice
changes on the MAE in Y2Fe14B for a wider range of a and
c values is essential to ascertain whether temperature-induced
lattice expansion can account for the observed increase in the
anisotropy field at elevated temperatures.

Here we systematically investigate the effects of the lattice
parameters a and c on the magnetic properties of Y2Fe14B,
including changes in the local magnetic moments, electronic
structure and MAE. The paper is structured as follows. In
Sec. II is presented in brief the theoretical tools employed to
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perform the calculations. In Sec.III A a geometric analysis
of the optimized bulk structures is presented. The projected
density of states on each atomic species and sites is presented
in Sec. III B together with the charge transfer between differ-
ent atomic species. The analysis of the magnetic moments
is presented in Sec. III C and the magnetic anisotropy calcu-
lated values in Sec. III D. The dependence of the anisotropy
with the temperature is shown in sec. IV. Finally, in Sec. V
we summarize the main conclusions of the work.

II. THEORETICAL METHODS

We have undertaken geometrical, electronic and magnetic
structure calculations of the Y2Fe14B bulk alloy by means
of DFT using the SIESTA code. [15, 16] To describe the
core electrons we have used fully separable Kleinmann-
Bylander [17] and norm-conserving pseudopotentials (PPs)
of the Troulliers-Martins [18] type. As exchange correla-
tion (XC) potential we have employed the generalized gra-
dient approximation (GGA) following the Perdew, Burke, and
Ernzerhof (PBE) version.[19] To have a better description of
magnetic systems, pseudocore (pc) corrections were used to
include in the XC terms not only the valence charge den-
sity but also the core charge.[20] In general, the correction
will only be significant in the range where valence and core
charges overlap. As a basis set, we have employed double–
ζ polarized (DZP) strictly localized numerical atomic or-
bitals (AO). The electronic temperature –kT in the Fermi-
Dirac distribution– was set to 50 meV. Real space integrals
are computed over a three–dimensional grid with a resolution
of 1600 Ry, a mesh fine enough to ensure convergence of the
electronic/magnetic properties. To obtain the charge distribu-
tion we have used the Mulliken partitioning scheme.[21]

The MAE is defined as the difference in the total self-
consistent energy between hard and easy magnetization di-
rections. MAE values are commonly of the order of meV
and hence it is necessary to perform an accurate calculation
through the convergence of relevant DFT parameters such as
the number of k–points. For Y2Fe14B we find that the MAE
values are particularly sensitive to the k–point sampling. We
therefore carried out an exhaustive analysis of the MAE con-
vergence in order to achieve a total energy tolerance below
10−5 eV. We employed more than 500 k points in the calcula-
tions for each geometric configuration. To obtain the MAE we
have used a recent implementation of the off–site Spin–Orbit
coupling (SOC) [22–25] in the SIESTA code. This approx-
imation takes into account not only the local SOC contribu-
tions to the total energy but also the neighboring interactions
between atoms to obtain the total self–consistent energy.

Fig. 1 shows a schematic view of the crystal structure of
Y2Fe14B. It is composed of a tetragonal unit cell (UC) with
a space group of P42/mnm and the UC has two different Y
sites ( f , g), six distinct Fe sites ( j1, j2, k1, k2, e and c), and
one B site, with a total 68 atoms in the unit cell. In this work
we have performed the study of seven in–plane lattice values:
a = 8.48 Å + k · δa, with δa = +0.10 Å and k = 0, . . . , 6.
Variations of the a lattice parameter will also naturally lead to
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FIG. 1. (Color online) Schematic representation of the crystal struc-

ture of the tetragonal Y2Fe14B phase. Each atomic occupancy has

been depicted by color scale and on the right it is shown the Fe, Y and

B average magnetic moment per atom of the optimized bulk structure

when it has taken into account the in–plane a value of 8.78Å.

a variation of the c/a ratio, and so it was necessary to optimize
the tetragonal out–of–plane distortions for each value of a.
Accordingly, c/a values are found to be: 1.45, 1.42, 1.40,
1.37, 1.34, 1.31, and 1.29 respectively.
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lattice constant a. The energies have been subtracted from the GS

energy value and the dashed lines joining dots are a guide for the

eye.
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III. RESULTS

A. Geometry optimization

All of the geometric configurations studied in the present
work were subject to an optimization process. For the range
of study, we chose in–plane lattice constants around the ex-
perimental room temperature value of 8.75Å (see end of
Sec. II).[14] The optimization process was carried out for
fixed in–plane lattice constant a by performing self–consistent
energy calculations for a series of out–of–plane c values.
Plotting the total energy as a function of c we are able to
obtain local minima, geometrically characterizing each unit
cell in terms of the a and c parameters. In this respect the
ground state (GS) energy value was achieved for the pair
(a,c)=(8.78Å,12.00Å). As noted in section II, we are using
the generalized gradient approximation as the XC functional
and so the bonds between atoms will be slightly larger than
the experimental ones.[5, 14] However, our optimized lattice
value is within 0.03Å of the values obtained from previous
studies of Y2Fe14B. As an example of this process, we show
in Fig. 2 three different optimization curves that show the en-
ergy dependence with respect to the out–of–plane c for fixed
a. All the values have been shifted with respect to the low-
est energy value pair (filled black dots curve), which shows
clearly the energy difference of ∼ 0.25 eV between the GS
and the other values.

Fig. 3 shows the radial distribution function (RDF) of the
bond distances between the Fe atoms located in the upper
part of the unit cell and those (denoted Fe’) located in the
lower side, A and B respectively. A visualization of the atom
groupings is shown in the inset in Fig. 3. The plotted range
represents small bond values, below 4.5Å, ensuring that only
nearest and next nearest neighbors are taken into account. In
order to encompass the geometrical evolution of the UC for
different in–plane lattice values we have chosen a representa-
tive a value for each zone: 8.48, 8.78 and 9.08Å, small, inter-
mediate and large, respectively. On each graph two different
peaks appear around ∼2.5Å and ∼4.25Å. Clearly, these peaks
represent bonds between the first and second neighbors of a
specific Fe atom, respectively. It is beyond the scope of this
work to discriminate inequivalent Fe distances between dif-
ferent groups located in the upper and lower UC. However,
after careful inspection of each configuration, we are able
to give a qualitative understanding of the geometric expan-
sion/contraction of the bulk Y2Fe14B alloy. We find different
structural properties for Fe atoms at different points in the unit
cell, corresponding to Fe and Fe’ sites in Fig. 3. In particu-
lar the small bond-length range represents bonds mainly be-
tween Fe atoms at different out–of–plane level and the longer
to those located almost in the same horizontal plane. The over-
all trend for dFe−Fe and dFe′−Fe′ is quite similar, having a small
positive deviation around each peak as a increases. For exam-
ple, focusing on Fig. 3A we observe that the shift is more pro-
nounced around 4.25Å than for the smaller bond-length, with
the Fe–Fe and Fe’–Fe’ bond distances increasing by 0.2Å with
a expansion. Then a variations cause the Fe atoms located at
the same plane level (∼4.2Å) to lie further away from each
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FIG. 3. (Color online) Lorentzian broadening of the bond dis-

tances between Fe species for different groups of atoms, dFe−Fe and

dFe′−Fe′ , A and B graphs, respectively. To the right on each graph is

shown the schematic representation of Y2Fe14B UC which clarifies,

between black dashed lines, each one of the Fe groups atoms under

consideration.

other whilst those Fe species at different planes are positioned
almost at the same distance. In summary, we conclude that
locally the variation of a promotes that the bonds between
different groups of Fe atoms behave differently on whether
they are located at the lower or upper part of the UC. How-
ever, the overall out–of–plane contraction when a increases
is mainly due to the upper and lower Fe blocks approaching.
This makes that the UC keeps constant its volume.

B. Density of states and charge transfer

In Fig. 4 (left) the spin–resolved projected density of
states (PDOS) is shown for three different in–plane lattice
configurations. In each column, the Fe DOS were projected
to show the contributions from different sites, namely k, j and
c,e (see Fig.1 for inequivalent Fe sites within the unit cell).
In general, after inspection of these different Fe sites we ob-
serve that only the k1 and k2 DOS share a similar form. The
j, c and e Fe sites have their d–band peaks at different en-
ergy positions, for example, the Fe( j1) up–states (solid line)
have two peaks at 0.8 and 2 eV and in ( j2) (dashed line) these
peaks have shifted to the lower energy values 3.5 and 2 eV,
promoting a population of the Fe( j2)–d band. We can see this
behavior in detail in Fig. 5 where the Fe( j1) (empty circles)
have lost more charge than Fe( j2), with respect to the isolated
atoms. In the same fashion we are able to explain the charge
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FIG. 4. (Left) Spin–resolved density of states for k1/2, j1/2 and c,e different Fe sites, first second and third column, respectively. In a row

is depicted the PDOS for a=8.48, 8.78 and 9.08Å lattice values; (Right) Spin–resolved density of states for the Y(g), Y( f ) and B atomic

species, thick solid, dashed and thin solid black lines, respectively. From top to bottom the smaller (a=8.48Å), intermediate (a=8.78Å),

bigger (a=9.08Å) size lattices are presented.

transfer of d–bands in Fe(e) and Fe(c) (last column). In a col-
umn, the shape of the DOS curves share a common trend: as
a increases, upper to lower panels, the d–band width becomes
slightly smaller and higher, having the states concentrated in
a smaller energy range. For instance, for Fe(k) the energy ex-
tends from zero to almost –6 eV for the smaller a and this
width is reduced for bigger lattice up to –5 eV. In other cases,
even though the broadness is similar for small and large lat-
tice, the center of the d–band tends to increase, concentrating
more states in the range –3 to –2 eV. It is also interesting to
note in Fig. 4 (right) the two peaks around –8 and –9 eV in
Fe(e) and Fe(k1), which permit interaction with the Y and B
states.

The PDOS for the Y(g), Y( f ) and B(g) species are depicted
in Fig. 4 (right). As we will see in Sec. III C, Y and B are
antiferromagnetically coupled to the Fe, having an excess of
down–states in the population. In general, the in–plane lattice
constant expansion for these species does not significantly af-
fect the shape of the Y PDOS. However, around the Fermi
level, both Y sites differ in height, implying a slightly differ-
ent amount of up–charge contributing to different imbalance
in the up–/down–populations. As previously mentioned, there
are two peaks; at –8 and –9 eV belonging to the B species,
mainly of s character, that permit the hybridization of Fe(k1)
and Fe(e) with the B states. We note that these Fe atoms are
located close to B species allowing this interaction.

To obtain further insight into the charge distribution on each
atomic species in Fig. 5 we analyze the increase or reduction
of the total charge (not spin–resolved) on each atom compared
to its isolated counterpart. A negative value means that the
species has lost charge and positive means that the atom has
been charged. The upper panel shows how the charge on the

different Fe sites changes with the lattice spacing. Only the
Fe(k1) is charged positively, however its net charge tends to
be, for bigger a values, close to that of an isolated atom. The
remaining Fe sites have transferred charge to the neighbors by
different amounts and, depending on the site that they occupy
in the unit cell, their net charge will be almost constant or
will decrease with the lattice expansion. This is exactly what
happens at Fe(c) that reduces its charge by ∼0.20e/at when
a changes from 8.48Å to 9.08Å. Fe(k2), Fe( j1) and Fe( j2)
remain nearly constant in all this a range. Analysis of the Y( f )
and B(g) charge (lower panel in Fig. 5) shows an enhancement
of their net charges mainly due to the Fe neighbors and from
the B species as well.

C. Total and localized magnetic moments

We now present the total and local magnetic moment (MM)
values of the Y2Fe14B bulk alloy for different (a,c) pairs. Our
total MM predictions assign bigger MM values to a=9.08Å
and smaller to a=8.48Å, depicting an enhancement of the MM
as the volume of the UC expands. The complete MM/f.u. val-
ues sequence for each (a,c) pair is: 28.70, 29.77, 30.60, 30.99,
31.24, 31.43 and 31.79, the first one corresponding to the
smaller in–plane a. Therefore, our GS configuration (8.78Å)
presents a total MM of 30.99 µB/f.u., in good agreement with
other experimental and theoretical works.[4, 5, 8] In addition,
it is of huge importance to understand how different Fe, Y and
B sites contribute to the total MM.

In Fig. 6(A) we show the average magnetic moment (MM)
for different Fe sites for a common lattice value. The MM has
been calculated as MMM/NM/NM/NM where NM/NM are the
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total number of magnetic (M) or non–magnetic (NM) species.
All the Fe sites have a clear tendency of their MM values to
increase as the in–plane lattice constant increases. The largest
growth (of 0.55 µB/at) takes place for the Fe( j1) and the small-
est variation is for the Fe(c). The remaining sites exhibit an in-
crease to a greater or lesser extent. We are able to observe this
trend qualitatively by inspecting the spin–resolved projected
DOS shown in Fig. 4 (left). For example, in Fe( j1) (black
solid curve), the total up–states increase with a; this reflects
the that the initial small shoulder at the Fermi level displaces
inwards towards the valence band allowing an increase in the
spin up charge. Conversely, the down–states act in a different
manner, reducing the down charge. As a result, the imbal-
ance in the up/down charge will be more pronounced for the
expanded lattices and will promote an enhancement of the on–
site Fe( j1) MM values when a=9.08Å. Through the j2 PDOS
curves it is also easy to understand why they have the higher
MM values among all of the Fe sites. They present bigger im-
balance in their up–/down–states in comparison with the other
Fe sites.

The Y( f ), Y(g) and B(g) MM values are presented in
Fig. 6(B). The net MM per atom of these two species are
negative for all the lattice constant values (labeled in figure
6.B by filled and empty squares, triangles, circles and empty
diamonds). The Y’s MM values exhibit different behavior de-
pending on whether the lattice constant changes seen by its
vertical dispersion between –1.05 and –0.8 µB/at. Both, Y(f)
and Y(g) location sites, tend to behave similarly. Regarding
the variation with a, the tendency is to increase the net MM
with lattice expansion, by around −0.3µB/at for both Y( f ) and
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charge adsorption (reduction) with respect to the isolated case.

Y(g). On the other hand, for the Y atoms located at different
sites the MM are slightly bigger for Y( f ) than for Y(g), the
difference being at most of 0.04 µB/at. B MM values behave
in different manner since they do not change with the lattice
expansion having a common value of –0.20 µB/at. In general,
the down–states population exceeds that of the up–states, re-
sulting in a negative MM for the Y and B atoms. We also note
the presence of a significant magnetic moment on the Y sites,
in contradiction to the usual assumption of a non-magnetic
RE.[9]

D. Magnetic Anisotropy energy

We now present the calculations of the total magnetic
anisotropy energy. As was pointed out in section II, the MAE
values are of the order of a few meV. Consequently, the cal-
culation of the self–consistent total energies involved have to
be sufficiently accurate. In the same fashion as Isao Kitagawa
and Yusuke Asari,[5] we performed convergence tests for the
k–points sampling and other relevant DFT parameters, result-
ing in sufficient accuracy for the quantities under study. In
Fig. 7 is shown the MAE convergence for the Y2Fe14B bulk
alloy with increasing k–points. The dashed black lines indi-
cate our required accuracy in the MAE values, of 5×10−5eV.
We observe that in the range from 567 k–points (indicated
in red in Fig. 7) to 1400 all calculated values lie within the
required tolerance. Consequently we decided to use 567 k–
points to perform the calculation of the MAE for all the con-
figurations. It is worth noting that, although Isao et al used a
code based on a linear combination of pseudo–atomic–orbital,
similar to the SIESTA code, the convergence of each code will
depend not only on the scheme/formalism to solve the Kohn–
Sham equations but also on the pseudopotential and many
other parameters involved.

In Fig. 8 we show the MAE as a function of the optimized
c/a ratio. As was pointed out at the end of section II an in-
crease (reduction) of a means a reduction (increase) of the
out–of–plane constant, thus from right to left along the X–
axis will mean an in–plane lattice expansion. The MAE’s
dispersion over the studied c/a range is of 2.8 meV. Specif-
ically, the MAE tends to zero when a increases and hence
c/a decreases whilst it presents closer values to 2.8 meV
when the in–plane a constant decreases promoting larger c/a

values. The ground state geometry configuration depicts a
MAE value of 1.74 meV/u.c., that is in reasonable agree-
ment with previously reported works of Torbatian et al [8] of
2.6 meV/u.c., Yoshio Miura et al[26] of 0.622 meV/u.c. and
Isao et al [5] 3.2 meV/u.c. The present trend of the bulk MAE
of Y2Fe14B shown here is similar to the FePt–L10 on MgO,
where the MAE reduces its value as the in–plane expansion
takes place.[27] In FePt the tetragonality of the system con-
tributes to the MAE, and we argue that the similar qualitative
behavior seen for Y2Fe14B is due to the same physical effect
due to the anisotropy of the local electronic environment.
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IV. TEMPERATURE DEPENDENCE OF THE

ANISOTROPY: ATOMISTIC MODEL CALCULATIONS

Finally we turn to the motivation of this work, which is to
understand the unusual (non-monotonic) temperature depen-
dence of the MAE in Y2Fe14B. For clarity we refer to the
MAE as the intrinsic anisotropy value from DFT calculations
and the anisotropy as the observed value at non-zero temper-
ature. The latter is the free energy of the system, which can
have two contributions: firstly the thermodynamic decrease
driven by spin fluctuations [11], and secondly any change in
the MAE arising from lattice expansion. Clearly this can po-
tentially lead to non-monotonic temperature dependence of
the anisotropy and as such is the first option considered here.

For this calculation we employ an atomistic model, which
introduces the thermally driven spin fluctuations which, in the
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mized Y2Fe14B bulk alloy as a function of the number of the k–

points. The interval between the two dashed lines shows the mag-

netic anisotropy dispersion for the higher k–points values. The red

arrow represents the number of k–points chosen in order to have ac-

curate MAE values.
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the out-of-plane c/a parameter.

absence of a temperature dependent intrinsic anisotropy, are
responsible for the reduction in the observed anisotropy value
at non-zero temperatures.

Using the atomistic model we calculate the temperature
variation of the magnetisation using conventional Metropo-
lis Monte Carlo methods and the temperature dependence of
the anisotropy using a constrained Monte Carlo algorithm [12]
with adaptive updates [28], both implemented in the VAMPIRE

software package [29, 30].

Firstly, we consider whether the non-monotonic behavior
of the measured anisotropy can be explained through our pre-
dicted change in the MAE due to changes in the c/a ratio cou-
pled with the thermally induced spin fluctuations. However,
our calculations (not shown) give a conventional monotonic
decrease of anisotropy with temperature.

We can interpret this as follows. We can estimate the re-
duction in anisotropy over a given temperature range using
the change in magnetisation and the Callen-Callen law scal-
ing of anisotropy with Mn with exponent n = 3 for uniaxial
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anisotropy. From the temperature dependence of the magne-
tization, shown in Fig. 9 it can be seen that there is approxi-
mately a 20% reduction in M(T ) at T = 300K. Consequently,
to compensate for the corresponding decrease in anisotropy
due to spin fluctuations we require at least a factor 2 increase
in the MAE. This is the minimum required to give rise to an in-
crease of the anisotropy with temperature. Qualitatively from
the DFT calculations we find an increase in the intrinsic MAE
with increasing c/a. However, the experimental range[14] for
the c/a ratio in the bulk is typically 1.37 – 1.38 up to TC,
which suggests a relatively modest increase in the MAE from
our calculations. Therefore while we obtain the correct quali-
tative behavior, the calculations are so far unable to explain the
cause of the large increase in MAE. In particular, we note that
the temperature variation of the MAE is governed by a com-
bination of spin fluctuations, leading to a decrease in MAE,
coupled with any change in the intrinsic MAE due to the lat-
tice expansion as investigated here. While our calculations
predict an increase of MAE with lattice expansion, the conse-
quent increase with T is not sufficient to overcome the effects
of spin fluctuations, leading to a monotonic decrease in the
MAE, in contrast to experiments. Thus, our calculations show
that the previous interpretation where the increase is attributed
to lattice expansion effects [13, 14] seems to be unlikely.

We finally consider the possibility of a combination of
opposing single-ion and two-ion anisotropy as the origin of
the large increase in anisotropy. We note that the two-ion
anisotropy is essentially an exchange anisotropy which is not
accessible to our DFT calculations. Recent investigations [31]
suggest that the origin of an increase in anisotropy with tem-
perature may be due to a competition between single-ion and
exchange anisotropy. To extract the two-site anisotropy one
uses a generalised tensorial form of the exchange:

Hexc =−∑
i6= j

SiJi jS j, (1)

from which one obtains a two-site (exchange) anisotropy as

Eintersite =−
1

2
∑
i6= j

(Jxx
i j − Jzz

i j ) (2)

Our ab-initio calculations cannot access the tensorial ex-
change. Consequently, for this investigation we intro-
duce a Hamiltonian including a phenomenological two- site
anisotropy while considering the 2-14-1 crystallographic po-
sitions of the Fe sites: [32]

H =−∑
i< j

Ji j(r)Si ·S j −∑
i< j

ki jS
z
i S

z
j −∑

i

ki (S
z
i )

2 . (3)

Eqn.3 has three terms; the first being the Heisenberg exchange
term and the second and third terms representing two-ion and
single-ion anisotropies respectively. The exchange interac-
tions are parameterised with an exponential distance depen-
dence with a cutoff of 5Åand normalised to achieve a Curie
temperature of 560K in agreement with experimental mea-
surements. We note that the single- and two- ion terms have
different temperature dependences. Specifically, in terms of
the temperature scaling K(T )/K(T = 0) = (M(T )/M(T =
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FIG. 9. Simulated temperature dependent magnetization for

Y2Fe14B.

0))n, the exponent n = 2.28,3 for the two- and single- ion
terms respectively. [11, 31] Thus, for ki j and ki of opposite
sign a non-monotonic variation K(T ) of the net anisotropy
becomes possible.

Fig. 10 shows the simulated temperature dependence of
the effective magnetic anisotropy of Y2Fe14B using the con-
strained Monte Carlo algorithm [12] with adaptive updates
[28] implemented in the VAMPIRE software package [29, 30].
We apply temperature rescaling to achieve a correct descrip-
tion of spin fluctuations and magnetization with temperature
[33]. The optimised anisotropy constants to achieve agree-
ment with the experimental data are ki j = +1.83546× 10−22

J/atom and ki = −1.743687× 10−22 J/atom, noting the large
values and competing signs of the anisotropy constants. While
the agreement between the simulation and experimental data
is good, there are some small systematic differences that may
be accounted for with strain effects determined from our ab

initio simulations, or indeed due to the temperature depen-
dence of the Hamiltonian parameters themselves.

We wish to note the existence of previous explanations of
the increasing anisotropy with temperature from crystal-field
effects suggested by Bolzoni et al [13]. This explanation was
not based on a microscopic description but assumed arbitrary
higher order anisotropy terms that are fictitious in nature and
the model could not perfectly explain the experimental be-
haviour. The crystal-field analysis by Miura et al. [35] con-
cludes that the underlying origin of anisotropy in the Fe sub-
lattice remains an unresolved problem. In comparison, our
analysis of mixed anisotropy is based on a microscopic model
and provides a close quantitative agreement with the observed
increase in the magnetic anisotropy energy. Further ab ini-

tio calculations may be able to determine the relative contri-
butions from two-ion and single-ion anisotropy [36], though
these calculations are still excessively expensive in terms of
computational complexity due to the large cell size and num-
ber of electrons.
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FIG. 10. (Color online) Atomistic simulation of the temperature de-

pendent effective anisotropy of Y2Fe14B with a mixture of 2-ion

and single ion anisotropies (line) in comparison with the experimen-

tal data of Grossinger et al [34] (points). The simulation and ex-

perimental data show very good agreement, suggesting that mixed

anisotropies are an important component of anisotropy in R2Fe14B

alloys.

V. CONCLUSIONS

We have found that tuning the unit cell geometry of the
Y2Fe14B bulk alloy, specifically changing the in–plane/out–
of–plane constants a and c, leads to a significant change in the
magnetocrystalline anisotropy energy. In the present work, we
have undertaken a geometric, electronic and magnetic study of
seven different configurations of the Y2Fe14B alloy where the
in–plane a range was varied from 8.48Å to 9.08Å and the cor-
responding out–of–plane c parameter was optimized for each
case. The ground state configuration has an in–plane value
of 8.78Å with c=12.00Å and its total MM is 30.99 µB/f.u. in
good agreement with previous experimental and theoretical
results. Breaking up the total MM for individual Fe, Y and B
inequivalent sites, we have demonstrated that the higher MM

value is for the Fe( j2) sites and the higher dispersion acts on
Fe( j1), having a lower value for smaller a increasing for the
larger a value. The Y and B species are antiferromagneti-
cally coupled and only the Y changes similarly to the pair
(a,c), decreasing their net MM value as the lattice is com-
pressed. It is clear that the strain has an important impact
on the magnetic anisotropy of these alloys so that a volume
reduction of the UC promotes higher values of the MAE. The
MAE dispersion value for the present work is around 2.8 meV,
having almost zero for the bigger unit cell and 2.8 meV for
the (8.48Å,1.46) pair. Our calculations of the variation of
the MAE with lattice expansion is not sufficient to explain
the non–monotonic variation of MAE with temperature ob-
served experimentally. Atomistic simulations including con-
tributions from competing two-ion and single-ion anisotropies
are able to reproduce the observed increase in anisotropy with
increasing temperature, and offer an alternative explanation
for the phenomenon in RE-TM intermetallic alloys. The elec-
tronic origins of anisotropy requires further investigation due
to the essential role played by Y2Fe14B in understanding the
contribution of the Fe sublattice to the overall MAE for the
case of more technologically relevant alloys including Nd or
Dy.
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