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Abstract 

Using the data from GCC countries, this paper analyses the co-movement between oil 

price, C02 emission allowable price, global clean energy index and equity index from 

three GCC counties, namely, Kuwait, Saudi Arabia and the United Arab Emirates. 

Almost no previous research has investigated the dynamic interrelations in the 

conventional energy markets, like those of the GCC countries, against the dramatic 

growth in clean energy production and the new emissions trading schemes. Employing 

three different multivariate GARCH models, we document the existence of volatility 

spillover effects and co-movement among global clean energy production, crude oil 

price, CO2 emission allowable price and each of the three GCC energy stock markets. 

Furthermore, we found that the conditional variances of all return series are influenced 

by the shocks coming from the markets themselves. Volatilities in all the markets under 

consideration are highly persistent, and the long-run persistent volatilities are more 

pronounced especially for oil and CO2 emission prices. The forecasting exercise 

demonstrates the superior performance of the multivariate diagonal-BEKK GARCH 

models. 
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Co-Movement between Oil Price, 𝐂𝐎𝟐 Emission, Renewable Energy and Energy 

Equities: evidence from GCC 

 

1. Introduction 

Several past researches have investigated the impact of the establishment of the Kyoto 

Protocol and the European Union Emissions Trading System (EU-ETS) on mitigating 

greenhouse emissions and on global economies. The EU-ETS had been set up with the 

goal of using cleaner sources of energy (European Communities, 2008) and since then, 

renewable energy production has surged rapidly especially in developed countries. 

The U.S. Energy Information Administration (EIA) (2021) reports that the use of 

renewable energy sources in the US has increased by 12% in 2020; while in the same 

year, the world added about 50% of renewable energy capacity compared to 2019 

(International Renewable Energy Agency (IRENA)(2021). 

The transition of energy use was analysed in different ways by past researchers. 

For example, Marques and Fuinhas (2011); Payne (2012) Apergis and Payne (2014) 

Bloch et al. (2015); Waziri et al. (2018); and  Sun et al. (2019) have examined the impact 

of growing clean energy consumption on oil prices whereas Oh et al. (2010); Diebold 

and Yilmaz (2012); Liu and Chen (2013); Andersson and Karpestam (2013); 

Hammoudeh et al. (2015); Chevallier et al. (2019); Mensah et al. (2019); Ullah et al. 

(2020) and Zheng et al. (2021) have demonstrated the two-way relation between 

crude oil prices and carbon dioxide emissions. The mechanism of energy 

transformations between oil prices, CO2 emission along with its financial effects on 

stock prices of energy sectors have also been investigated by Oberndorfer (2009); 

Sadorsky (2012); Weigt et al. (2013); Madaleno and Pereira (2015); Zhang and Du 
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(2017); Lin and Chen (2019) and Sun et al. (2019); Maghyereh and Abdoh (2021) and 

Wang and Zhao (2021). 

Existing literature, however, while examining the link between oil prices and 

renewable energy developments on one hand; or CO2 emissions, oil prices and stock 

prices of clean energy firms, on the other hand, have mainly concentrated on oil-

importing countries. To the best of our knowledge, almost no previous research has 

investigated the dynamic interrelations in the conventional energy markets, like those 

of the GCC countries, against the dramatic growth in clean energy production and the 

new emissions trading schemes. This is our first contribution to the existing literature.   

Second, the prior studies have mainly used annual data and region-wise data 

instead of data on a single country. Given the dynamic nature of the relationship 

between oil price and renewable energy consumption, the usage of annual data could 

potentially be problematic. For instance, Kim et al. (2005) stated that a long horizon of 

data is not able to capture the short-lived effects of volatility spillover. Instead of 

annual data, we use daily data over the period from January 02, 2013, to March 20, 

2019, to determine potential volatility spillover effects and co-movement among global 

clean energy production, crude oil price, CO2 emission price and each energy stock 

market in the largest GCC oil producers namely, Saudi Arab, UAE and Kuwait.  This is 

our second contribution to the existing literature. 

Next, we compute the growth in renewable energy production using a global 

measure instead of a country or region-level. We employ weighted daily data for global 

clean energy production. We believe that this is our third contribution to the existing 

literature. 
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Finally, in terms of methodology, we use both univariate and different 

multivariate GARCH models. Rationale behind usage of Univariate GARCH models 

comes into play to depict volatility clustering in an univariate series, for example crude 

oil price. On the other hand, one needs to model the relationship between volatilities 

and covolatilies of global clean energy production, crude oil price, CO2 emission price 

and each energy stock market in the largest GCC oil producers. A related issue is 

whether the correlations between returns in these markets are time-varying or not. 

These issues can be examined directly if one uses a multivariate GARCH model, and the 

specification of the dynamics of covariances or correlations can play a crucial rule in 

this connection. 

Our results show that the present volatilities in the three GCC energy stock 

markets are influenced by past shocks from other markets. However, the most 

powerful influence is coming from the past shocks of the GCC markets themselves (the 

endogenous shocks). Abu Dhabi's energy price in the UAE is largely driven by its past 

shocks followed by Kuwait and Saudi energy markets. Although the volatilities are 

highly persistent; the GCC energy stock markets are more stable compared to other 

markets. The steadiest GCC energy index is Kuwait energy stock price followed by UAE 

and Saudi energy indexes. We demonstrate the presence of both short and long-term 

persistence in the conditional variance, but the long-run persistent volatilities are more 

pronounced, especially for oil and CO2 emission prices. Forecasting evaluation shows 

the superior performance of the Diagonal BEKK model. 

The rest of the paper is organised as follows; Section 2 provides a survey of the 

relevant literature. Section 3 offers a description of the methods and data used in this 
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study. The empirical results are shown in Section 4, followed by a discussion of these 

results in Section 5. Finally, Section 6 concludes.  

2. Literature review 

We divide the existing literature into three sub-sections: sub-section 1 addresses the 

nexus between crude oil price and renewable energy, in sub-section 2, we survey the 

link between crude oil, emission allowances prices and stock prices of renewable 

energy sectors, finally, the relationship among crude oil price and carbon dioxide 

emissions is reviewed in sub-section 3. 

2.1 Crude oil price and alternative energy growth  

Existing research can be divided into two strands:  i) investigation of direct relationship 

between changes in oil price and alternative energy developments (e.g. Stern, 1993; 

Stern, 2000; Oh and Lee, 2004; Payne, 2012; Chevallier, 2012; Tan and Wang, 2017; Ji 

et al., 2018; Corbet et al.2020; Chen et al., 2020; Asl et al., 2021 and Niu, 2021) and ii) 

using CO2 emission as an influential channel between the prices of non-renewable and 

renewable energy sources (e.g. Sadorsky, 2009; Marques and Fuinhas, 2011; Payne, 

2012; Apergis and Payne, 2014; Dogan and Seker, 2016a; Dogan and Seker, 2016b; 

Troster et al., 2018; Sharif et al., 2019). 

Given the initial work by Stern (1993), recent studies such as Stern (2000) and 

Oh and Lee (2004) discussed the annual demand and supply of clean energy 

consumption sources considering the impact of economic activities. The results 

confirmed the presence of causal relationships among aggregate clean energy 

consumption, oil prices and economic activities. Bloch et al. (2015) using annual data 

of renewable energy consumption and autoregressive distributed lag (ARDL) and 
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vector error correction model (VECM) have investigated the linkage between coal, oil 

and renewable energy consumption in China. The results indicate that economic 

activity growth and oil prices hike lead to increases in clean energy production. This 

view is also supported by Burkhardt (2019) using annual data for renewable energy 

consumption obtained from the U.S. Energy Information Administration. Recent 

studies such as Corbet et al. (2020), Asl et al. (2021) Niu (2021) also found a positive 

link between oil price and renewable energy markets, especially during the outbreak 

of the COVID-19 pandemic. Conversely, Waziri et al. (2018) found that renewable 

energy growth in Nigeria exerts a negative impact on oil and gas exports. 

On the other hand, Sadorsky (2009) and Marques and Fuinhas (2011) examined 

the indirect linkage between oil prices and alternative energy consumption. They 

found that CO2 emissions have a positive relationship with oil prices and renewable 

energy consumption using annual data from a panel of European countries. Dogan and 

Seker (2016) have documented the presence of bidirectional causality between CO2 

emissions and renewable energy; and unidirectional causality from CO2 emissions to 

traditional energy. Similar results were found by Troster et al. (2018) in each quantile 

of the distribution of oil prices and renewable energy consumption. Nguyen and 

Kakinaka (2019) demonstrated that the relationship differs across low-income and 

high-income countries: renewable energy consumption in low-income countries is 

positively associated with CO2 emissions; while for the high-income countries, the 

relationship is negative. The same has been corroborated by Furlan and Mortarino 

(2018) and Amri (2019) regarding the relationship between oil price and renewable 
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energy consumption. In sum, it seems that evidence on the link between alternative 

energy growth and oil price is mixed in nature.  

2.2 Crude oil, emission allowance price and clean energy stock market 

The impact of crude oil and carbon emission prices on stock prices of renewable energy 

have been addressed by several empirical studies (e.g. Henriques and Sadorsky, 2008; 

Oberndorfer, 2009; Weigt et al., 2013; Koch, 2014; Reboredo, 2015; Madaleno and 

Pereira, 2015; Bondia et al., 2016; Moreno and Pereira da Silva, 2016; Reboredo et al., 

2017; Hodson et al., 2018; Sun et al., 2019; Zhang and Du, 2017; Lin and Chen, 2019; 

Sun et al., 2019). Oberndorfer (2009), has argued that oil price surges positively and 

symmetrically impact electricity stock returns. Reboredo (2015) has pointed out that 

an increase in oil price contributes to around 30% of clean energy profits. This view 

has also been supported by Bondia et al. (2016), who argue that oil and clean energy 

stock prices are cointegrated with two structural breaks. Reboredo et al. (2017) 

investigated the co-movement and dependence between oil prices and the clean energy 

stock market using continuous wavelets and cross-wavelet analyses. It turns out that 

the causal relationship, in the long run, is stronger compared to the short-run. 

Similarly, Dutta (2017) revealed the significant relationship between oil price changes 

and renewable energy stock returns using several stochastic volatility models. In the 

same vein, Narayan and Sharma (2011), Sun et al. (2019) and Lin and Chen (2019) have 

investigated the effect of oil and coal prices on the Chinese clean energy stock market. 

The findings indicate that increases in oil or coal prices positively impact on new 

energy stock market. Lastly, Hodson et al. (2018) argued that natural gas price boosts 

also led to a surge in the U.S. clean energy prices. 
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Most recent studies concentrated on the direct relationship between oil price changes 

and clean energy stock indices (Yu-Ling Hsiao et al., 2019; Dominioni et al., 2019; 

Fuentes and Herrera, 2020; Lv et al., 2021; Di Febo et al., 2021; Dawar et al., 2021; 

Ghabri et al., 2021).  Most of these works found a significant oil price spillover effect on 

clean energy stock prices. This impact was observed during the COVID-19 pandemic 

when crude oil collapse led to a significant surge in clean energy stocks (Ghabri et al., 

2021). Other scholars have analysed clean energy market responses according to oil 

price shocks (Naeem et al., 2020; Zhang et al., 2020; Zhao, 2020; Maghyereh and Abdoh, 

2021). Despite investigating different renewable energy markets, the authors found 

that oil supply shocks and aggregate demand shock positively impact clean energy 

markets in both the short and long term. Moreover, Maghyereh and Abdoh (2021) 

argue that the influence of aggregate demand shocks is more significant in comparison 

with oil supply shocks. Zhang et al. (2020) and Zhao (2020) use Kilian (2009)’s 
approach of oil price decomposition to explore its impact on clean energy markets. In 

contrast to Zhang et al. (2020), Zhao (2020) states that oil specific demand shocks 

create a negative impact, especially in the long term. 

Another group of scholars have augmented the argument that alternative 

energy stock prices are also indirectly influenced by technology stock price swings (e.g. 

Henriques and Sadorsky, 2008; Kumar et al., 2012; Zhang and Du, 2017; Ahmad, 2017; 

Maghyereh et al., 2019; Niu, 2021). Both Henriques and Sadorsky (2008) and Kumar et 

al. (2012) utilised a vector autoregressive (VAR) model to examine the endogeneity of 

renewable energy stocks, crude oil and technology stock prices. The results confirm 

the proposed positive nexus. This view was also supported by Zhang and Du (2017) 
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using Chinese data. Lastly, Sadorsky (2012), Ahmad (2017), Maghyereh et al. (2019) 

and Niu (2021) applied wavelet and multivariate-GARCH techniques and presented 

evidence of the co-movements and correlation among clean energy firms stock prices, 

oil prices and technology companies stock prices. 

Few empirical works have also investigated the link between oil prices, new 

energy stock prices and some macroeconomic factors (e.g. Shah et al., 2018; Lin and Jia, 

2019; Abbasi et al., 2020). Shah et al. (2018) employed a VAR model to capture the 

linear interdependencies between alternative energy investment, oil prices, GDP and 

the interest rate in three developed countries. A significant relationship between oil 

prices and clean energy stock performance for the U.S. and Norway cases is confirmed. 

Likewise, Lin and Jia (2019) constructed five counter-measured scenarios to examine 

the impact of China's Emissions Trading Scheme (ETS) on GDP and renewable energy 

stock prices. The results reveal that establishing the emissions trading system led to a 

decrease in GDP by 1.44%; however, clean energy firms gained higher annual revenue. 

Lastly, Abbasi et al. (2020) argue that renewable energy prices and terrorism have a 

significant positive long-term impact on economic growth in Pakistan. 

2.3 Crude oil price and carbon dioxide emissions  

Two different methods exist in the literature regarding investigating the causal link 

between oil prices and CO2 emissions. On one hand, empirical studies have examined 

the linkage of oil prices with the actual volume of carbon dioxide in a particular country 

measured in tonnes (e.g. Fisher-Vanden et al., 2004; Oh et al., 2010; Andersson and 

Karpestam, 2013; Alshehry and Belloumi, 2015; Li et al., 2018; Mensah et al., 2019; 
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Wang et al., 2019; Agbanike et al., 2019; Malik et al., 2020; Ullah et al., 2020) and on the 

other hand, studies have investigated the relationship of oil prices with CO2 emission 

allowances prices (e.g. Koljonen and Savolainen, 2005; Diebold and Yilmaz, 2009; Liu 

and Chen, 2013; Koch, 2014; Hammoudeh et al., 2014; Boersen and Scholtens, 2014; 

Hammoudeh et al., 2015; Tan and Wang, 2017; Zeng et al., 2017; Wang and Guo, 2018; 

Ji et al., 2018; Chevallier et al., 2019; Chang et al., 2020; Lee and Yoon, 2020; Wang and 

Zhao, 2021; Zheng et al., 2021). 

The first seminal study that employed average atmospheric carbon dioxide was 

by Fisher-Vanden et al. (2004). By using panel data analysis, the findings confirmed 

that oil price changes are the key factors behind China’s new energy system of reducing CO2 emissions. This view is supported by Andersson and Karpestam (2013) and 

Mensah et al. (2019). Mensah et al. (2019) determined a unilateral cause from oil prices 

to carbon emissions both in the long and short run. Similarly, Malik et al. (2020) and 

Ullah et al. (2020) investigate the same relationship in different countries, but they 

explored that the link is positive in the short run. Alshehry and Belloumi (2015) and 

Agbanike et al. (2019) have considered that the low price levels of oil increase carbon 

emission through a rise in energy consumption. Oh et al. (2010) and Li et al. (2018) 

have analysed determinants of changes in carbon emissions magnitude in several 

economies. The outcomes indicate that economic development, energy investment, 

energy intensity, energy prices and energy consumption are highly driven by CO2 

emissions levels. Wang et al. (2019) have differentiated between the actual and current 

oil prices that are subsidised by governments. The results indicate that removing oil 

price distortions has reduced greenhouse gas emissions in China. 
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A large stream of the literature used CO2 emission allowances prices to test its 

volatility spillover and/or dependence structure with prices of fossil fuel. Koljonen and 

Savolainen (2005) have found that changes in fuel and emissions prices are correlated. 

Hammoudeh et al. (2014a), Zeng et al. (2017) and Ji et al. (2018) have modelled the 

dependence structure between emission allowances and energy prices using vector 

autoregressive (VAR) models. The results generally revealed that energy price shocks, 

including oil, persistently affect the CO2 allowance prices, practically in the short run. 

Hammoudeh et al. (2014b) and Tan and Wang (2017) have analysed the casual 

relationship using the quantile regression approach and the results showed that the oil 

price surge makes a considerable drop in the carbon allowances prices. In the same 

vein, nonlinear autoregressive distributed lag (NARDL) was applied by Hammoudeh et 

al. (2015) and Zheng et al. (2021) where Chevallier et al. (2019) used copula 

frameworks. The negative impact between crude oil and the European Union 

allowances prices is mostly observed in the long run. Similar results were found by 

Wang and Zhao (2021) who employ the Bayesian Network and build a structural 

equation framework. 

Further research focused on volatility spillover impacts and dynamic 

correlation utilising diverse multivariate GARCH models.  Boersen and Scholtens 

(2014), Koch (2014), Chang et al. (2019), Chen et al. (2019) and Lee and Yoon (2020) 

have demonstrated the existence of a positive correlation and significant co-

movements between emissions and oil prices. However, Chang et al. (2019), has 

pointed out the presence of weaker correlation and spillover between emissions and 

oil prices compared with coal and natural gas using an asymmetric BEKK model. In 
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contrast to Chen et al. (2019), Wang and Guo (2018) used a novel measure of 

volatilities suggested by Diebold and Yilmaz (2012) and argued that the WTI oil market 

is highly correlated with CO2 emission allowance prices. Finally, while Chang et al. 

(2020) discuss a dependence structure between the Chinese emission allowances and 

oil price and find significant heterogeneity,  Chevallier (2012) and Liu and Chen (2013) 

addressed both volatility spillover and dependence structure methods. The results 

reveal the presence of the long memory causality effects and time-varying correlations 

in the nexus of oil and CO2 emissions prices. 
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3. Methodology and data 

3.1 Data and Descriptive Statistics 

We use daily log-differenced data from January 02, 2013, to March 20, 2019. The S&P 

Global Clean Energy Index (CE) is obtained from the S&P Dow Jones Indices. It is a 

weighted index that measures the performance of the biggest listed 30 clean energy 

companies around the world. It comprises a diverse mix of companies that use 

environment-friendly processes to produce clean energy. The CO2 emissions allowance 

price (EP) is obtained from the European Energy Exchange (EEX). It represents the 

spot price of the European Union CO2 emissions allowances. The prices of the EU CO2 

emissions allowances have been converted from euros to U.S. dollars utilising the 

WM/Refinitiv FX rates of the U.S. dollar-euro exchange rate. The rest of the data is 

obtained from Invisting.com such as Brent crude oil price (OP) that is measured in US 

dollars per barrel. Saudi petrochemical index (SPI), Abu Dhabi energy index (AEI) in 

the UAE and Kuwait Oil & Gas index (KEI) are the stock price energy indices under 

consideration. 

Table 1 shows basic statistics and pre-estimation diagnostics of the six 

variables. The volatile nature of the variables gets reflected in standard deviation; CO2 

emission price (EP) and Saudi petrochemical index (SPI) are negatively skewed and oil 

price (OP), Abu Dhabi energy index (AEI) and Kuwait energy index (KEI) are positively 

skewed. Fat tails are present in all six series as shown in terms of excess kurtosis and 

Jarque-Bera statistics. We use Engle's (1982) ARCH-LM test to analyse potential 

volatility clustering and the results indicate that the null hypothesis of no volatility 

clustering is rejected for all the series up to lag 10, showing evidence of volatility 
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clustering. The Ljung-Box test on the squared standardised residuals to test for 

possible autocorrelation confirms the presence of autocorrelation in our dataset. 

Although not reported, we have also conducted the unit root test (Augmented Dickey-

Fuller and Phillips-Perron unit root) in all the variables. Results indicate that they 

series are stationary at the first difference.  

Table 1: Summary statistics 

 CE OP EP SPI AEI KEI 

Obs. 1614 1614 1614 1614 1614 1614 

Min -0.02156 -0.03847 -0.1888 -0.0411 -0.04519 -0.02796 

Mean 0.000118 -0.00013 0.000332 -8.09E-05 4.40E-05 6.02E-05 

Max 0.019796 0.045237 0.17567 0.04031 0.05848 0.038385 

Std. Dev 0.004612 0.008627 0.022646 0.006364 0.009682 0.005381 

Skewness 
-0.197 

(0.001) 

0.128 

(0.000) 

-0.010 

(0.876) 

-0.3502 

(0.000) 

0.4736 

(0.000) 

0.1540 

(0.011) 

Excess 

Kurtosis 

1.861 

(0.000) 

3.047 

(0.000) 

11.110 

(0.000) 

7.246 

(0.000) 

4.276 

(0.000) 

3.985 

(0.000) 

Jarque-

Bera 

243.79 

(0.000) 

629.21 

(0.000) 

8305.4 

(0.000) 

3567.1 

(0.000) 

1291.1 

(0.000) 

1075.2 

(0.000) 

Q2(10) 
176.524 

(0.000) 

910.673 

(0.000) 

264.985 

(0.000) 

414.778 

(0.000) 

253.611 

(0.000) 

146.664 

(0.000) 

ARCH (1) 
10.432 

(0.000) 

28.05 

(0.000) 

19.476 

(0.000) 

25.687 

(0.000) 

15.376 

(0.000) 

10.737 

(0.000) 

Note: The formula of the Engle's (1982) ARCH-LM test can be identified as 𝑉𝑎𝑟(𝑦𝑡|𝐻𝑡−1) =𝑉𝑎𝑟(𝜀𝑡|𝐻𝑡−1) = 𝐸(𝜀𝑡2|𝐻𝑡−1) = 𝜎𝑡2 where the Ljung-Box test is 𝑄 = 𝑛(𝑛 + 2) ∑ 𝜌𝑘2𝑛−𝑘ℎ𝑘=1 . Numbers in 

parenthesis denote p-values. 
 

3.2 Methodology 

We employ a set of multivariate GARCH models: diagonal BEKK GARCH (1,1), 

asymmetric DCC GARCH (1,1) and copula DCC GARCH (1,1) models for each GCC 

country. Let 𝑟𝑡 be the vector of the N multivariate return series which can be written 

as: 
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𝐴(𝐿)𝑟𝑡|𝐹𝑡−1 = μ𝑡 + ϵ𝑡        (1)  

where ϵ𝑡 is the vector containing the return shocks; 𝐹𝑡−1 the information set at t-1 and 𝐴(𝐿) is the lag-polynomial. In the multivariate GARCH models, ϵ𝑡 is related to the vector 

of 𝑧𝑡 through the following equation: 

𝜖𝑡 = 𝐻𝑡12𝑧𝑡          (2) 

where 𝐻𝑡 is the conditional volatilities (variance) estimated in the univariate models. 

We assume 𝐸(𝑧𝑡) = 0 and 𝑉𝑎𝑟(𝑍𝑡) = 𝐼𝑁, where 𝐼𝑁 is the identity matrix of order 𝑁. The 

multivariate GARCH models differ by the way they define the structure of the 

conditional variance matrix.  

 Engle and Kroner (1995) have proposed the BEKK model. This model ensures 

the positive definiteness of 𝐻𝑡. The BEKK (1,1) model is defined as: 

𝐻𝑡 = 𝐶′𝐶 + ∑ 𝐴𝑖′𝜖𝑡−𝑖𝑝𝑖=1 𝜖′𝑡−𝑖𝐴𝑖 + ∑ 𝐵𝑖′𝐻𝑡−𝑗𝑞𝑗=1 𝐵𝑗                                    (3) 

where 𝐶′, 𝐴′𝑎𝑛𝑑 𝐵′ are matrices of dimension 𝑁 × 𝑁 𝑎𝑛𝑑 𝐶 is upper triangular. The 

BEKK model also has its diagonal form by assuming 𝐴, 𝑎𝑛𝑑 𝐵 are diagonal matrices. We 

follow the diagonal BEKK model for the sake of parsimony. In the BEKK model, 𝐴 

measures the degree of market shocks and 𝐵 measures the persistence in conditional 

volatility between the markets. 

The standard DCC model assumes that the conditional returns are normally 

distributed with zero mean and conditional covariance matrix 𝐻𝑡 = 𝐸[𝑟𝑡𝑟′|𝐹𝑡−1], 

where 𝐼 is an 𝑁 × 𝑁 identity matrix. The covariance matrix for the DCC-GARCH model 

can be expressed as: 
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𝐻𝑡 ≡ 𝐷𝑡𝑅𝑡𝐷𝑡           (4)                   

where 𝐷𝑡 = 𝑑𝑖𝑎𝑔{√𝐻𝑖𝑡} is a diagonal matrix of time-varying standard deviations from 

the estimation of univariate GARCH processes and 𝑅𝑡 is the conditional correlation 

matrix of the normalised disturbances 𝜀𝑡. In the DCC model, both 𝐷𝑡  and 𝑅𝑡are time-

varying. The matrix 𝑅𝑡 is decomposed into: 

𝑅𝑡 = 𝑄𝑡∗−1𝑄𝑡𝑄𝑡∗−1         (5) 

where 𝑄𝑡 is the positive definite matrix containing the conditional variance-covariance 

matrix of 𝜀𝑡, 𝑄𝑡∗−1 is the inverted diagonal matrix with the square root of the diagonal 

elements of 𝑄𝑡. The DCC model is thus: 

𝑄𝑡 = (1 − 𝑎 − 𝑏)�̅� + 𝑎𝜖𝑡−1𝜖′𝑡−1 + 𝑏𝑄𝑡−1      (6) 

where 𝑎 and 𝑏 are non-negative scalars, such that 𝑎 + 𝑏 < 1 in order to impose 

stationarity and positive semidefinite property. �̅� being is the unconditional 

covariance of the standardised disturbances 𝜀𝑡. According to Engle (2002), the 

estimation of this model is done using a two-step maximum likelihood estimation 

method. The DCC model is being criticised as the estimation of scalar variables 

becomes difficult with an increase in the number of variables. To mitigate this, 

Cappiello et al. (2006) proposed the Asymmetric Generalised DCC (AGDCC) which can 

be expressed as:  

𝑄𝑡 = (𝑄 − 𝐴′𝑄𝐴 − 𝐵′�̅�𝐵 − 𝐺′�̅�−𝐺) + 𝐴′𝜖𝑡−1𝜖′𝑡−1𝐴 + 𝐵′𝑄𝑡−1𝐵 + 𝐺′𝜖𝑡𝜖′𝑡−𝐺 (7) 
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where 𝐴, 𝐵 𝑎𝑛𝑑 𝐺 are the 𝑁 × 𝑁 parameter matrices, 𝜖′𝑡− are the zero-threshold 

standardised errors which are equal to 𝜖𝑡 when less than zero or else zero,  �̅� and �̅�− 

are the unconditional matrices of 𝜖𝑡 and 𝜖′𝑡−.  For G=0, 𝐴 = √a   and B = √b, the AGDCC 

model reduces to asymmetric DCC model, that we use in our paper. 

Sklar (1959) first proposed the Copula based DCC-GARCH models which helps 

in identifying the interdependence between large number of assets. Copula functions 

are not only useful in obtaining the univariate marginal distribution function from the 

dependence structure from a set of random variables but also have an advantage while 

dealing with high-dimensional joint distributions. The time-varying conditional 

correlation using copulas is essentially an extension of the DCC model and a copula–
GARCH model with joint distribution given by:  

F (𝑟𝑡|𝜇𝑡, ℎ𝑡) = C(F1( 𝑟1𝑡|𝜇1𝑡, ℎ1𝑡)………. Fn ( 𝑟𝑛𝑡|𝜇𝑛𝑡, ℎ𝑛𝑡)    (8)            

where 𝐹 and 𝐶 are the conditional distribution and the copula function, respectively. 

The conditional mean is assumed 𝑡𝑜 𝑏𝑒 a linear function of past one-lag with an 

ARMA(1,1) process and the conditional variance ℎ𝑖𝑡  follows a GARCH(1,1) process.  

4. Results 

4.1 Univariate GARCH model 

In the first stage of a multivariate GARCH analysis, we estimate an AR(1)-GARCH (1,1) 

model. The results are shown in Table 2. 
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Table 2: Univariate GARCH results 

Parameters CE OP EP SPI AEI KEI 

𝝎𝟎 
0.000168 

(0.1918) 

-2.8E-05 

(0.852) 

0.00086 

(0.005) 

0.000172 

(0.198) 

-2.6E-05 

(0.885) 

0.000036 

(0.777) 

AR (1) 
0.190294 

(0.000) 

-0.04721 

(0.071) 

-0.19002 

(0.000) 

0.10239 

(0.000) 

-0.07016 

(0.015) 

-0.03785 

(0.210) 

𝜶𝟎 ∗ 𝟏𝟎𝟔 
0.651881 

(0.226) 

0.500059 

(0.035) 

0.016019 

(0.234) 

0.797941 

(0.242) 

4.337447 

(0.001) 

1.9269 

(0.242) 

𝜶𝟏 
0.073598 

(0.032) 

0.073977 

(0.000) 

0.05453 

(0.006) 

0.093315 

(0.001) 

0.160916 

(0.000) 

0.081019 

(0.017) 

𝜷𝟏 
0.895228 

(0.000) 

0.92134 

(0.000) 

0.943756 

(0.000) 

0.891855 

(0.000) 

0.802576 

(0.000) 

0.851917 

(0.000) 

Note: Where 𝜀𝑡 = 𝑧𝑡𝜎𝑡  𝑎𝑛𝑑 𝑧𝑡  is white noise, the univariate GARCH equation can be written as: 𝝈𝒕𝟐 = 𝝎 + ∑ 𝜶𝒊𝜺𝒕−𝒊𝟐𝒑
𝒊=𝟏 + ∑ 𝜷𝒋𝝈𝒕−𝒋𝟐𝒒

𝒋=𝟏  

 

The results reveal that all the series have significant conditional volatility and both 

ARCH (𝛼1) and GARCH (𝛽1) components are statistically significant. The sum of the 

values of the lagged squared error coefficient (ARCH effects) and the lagged conditional 

variance coefficient (GARCH effects) is close to one. This implies that the current 

volatility is influenced by its past highly persistent shocks. In sum, the results of the 

univariate GARCH model demonstrate the existence of time-varying conditional 

volatility as well as the persistence of volatility shocks in the returns. 

4.2 Multivariate GARCH models 

4.2.1 Diagonal BEKK-GARCH model  

Table 3 reports the results of the time-varying variance-covariance obtained from the 

diagonal BEKK-GARCH(1,1) models for each country. The AR(1) coefficients denote the 
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autoregressive coefficients; the 𝐶𝑖𝑗coefficients of the variance equation explain how the 

lagged returns of the 𝑖𝑡ℎmarkets influence the current return of the 𝑗𝑡ℎ  markets, (𝐶𝑖𝑖) reflect the influence of a particular market’s lagged return on its present value. Our 

focus is on the diagonal lagged squared errors 𝐴(𝛼𝑖𝑖) (ARCH effects) and conditional 

variance 𝐵(𝛽𝑖𝑖) (GARCH effects). The values of 𝛼𝑖𝑖represent shocks (innovations) in 

each market and estimate the impact of the own past shocks on the future volatility of 

the market and that of 𝛽𝑖𝑖 explain the persistence of shocks (the piecemeal decline of 

the influence of news). The stabilisation of the variance is being assessed using the sum 

of the parameters 𝐴(𝛼𝑖𝑖) and 𝐵(𝛽𝑖𝑖). The sum of 𝐴 and 𝐵 values is close to one indicates 

the effects of long memory in the time series. 

Our results show that the coefficients (𝐶𝑖𝑖) for the three models are significant, 

except for the element of (𝐶11) for the Saudi model. This indicates that the current 

values of all the series are influenced by its own lagged returns. The coefficients (𝐶𝑖𝑗) 

were found statistically insignificant for the three models; except the parameter (𝐶34) 

of the Saudi model which was found significant at  5% level. The negative value of (𝐶34) 

by (-0.0005) signifies that the previous increases in CO2 emission returns will lead to a 

slight decrease in the current price of the Saudi petrochemical index (or vice versa). 

The coefficients of ARCH 𝐴(𝛼𝑖𝑖) and GARCH effects 𝐵(𝛽𝑖𝑖) are highly statistically 

significant for the three countries, except the coefficient (α11) for the UAE model. All 

the ARCH parameters (𝛼11, 𝛼22, 𝛼33𝑎𝑛𝑑𝛼44) enters with positive and statistically 

significant coefficients implying that the shocks coming from the markets themselves 

fundamentally cause their future volatility. The highest own-past shock spillovers 
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(ARCH effects) among the three models were found for the GCC energy stock market 

parameters (𝛼44). Specifically, we found that the present volatility of the Abu Dhabi 

energy price is the most related to its past shocks followed by Kuwait and Saudi energy 

markets as evidenced by the values (0.3830), (0.3372) and (0.2767) respectively. The 

estimated coefficients of the ARCHs show that the future volatilities of the three GCC 

energy stock markets are highly sensitive to their past shocks compared to the other 

markets. Therefore, the investors who deal with the three GCC energy equities should 

pay greater attention to the shocks coming from the markets themselves compared to 

those who deal with the clean energy production index, CO2 emission and oil prices. 

The values of the GARCH coefficients (𝛽11, 𝛽22, 𝛽33 𝑎𝑛𝑑 𝛽44) across the three 

models are mostly higher than 0.8 indicating strong volatility persistence (the impact 

of the past shocks on the current prices of the markets). However, the impact of the 

past shocks of the GCC energy stock markets is less persistent compare to clean energy 

production, 𝐶O2 emission and oil prices. In other words, the GCC energy volatilities are 

more stable compared to the other markets. This is because the values of the 

parameters (𝛽44) are lower than the values of (𝛽11, 𝛽22 𝑎𝑛𝑑 𝛽33). Finally, the 

stabilisation of the conditional variance has been confirmed as the sum of the 

parameters 𝐴 𝑎𝑛𝑑 𝐵 among the three models is less than one, however long memory 

behaviour is detected as the sum of these parameters for each model is almost equal to 

one. 

4.2.2 Dynamic conditional correlation Models 
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In Table 4, we present the results of the asymmetric DCC-GARCH (1,1) and the copula 

DCC-GARCH (1,1) models for the three countries. The lagged squared error coefficients 

of (𝛼𝑖) denote the ARCH effects. The ARCH parameters of the GCC energy sectors and 

clean energy production are statistically significant for the two DCC-types GARCH 

models. This indicates short term persistence in the individual conditional variances. 

All the individual GARCH coefficients (𝛽𝑖) are highly statistically significant and its 

values are large (around 90%) for the two DCC-types GARCH models. This is clear 

evidence of the presence of long-run persistence in all the individual return series of 

the three countries. Overall, the GARCH effects seem to be more powerful compared to 

the ARCH effects, pointing towards highly long run persistent volatility in all the 

individual series. The highly long run persistent volatilities in oil and CO2 emission 

prices are greater than the volatilities in the GCC energy stock and clean energy 

production indexes. 

The 𝐷𝐶𝐶𝛼 terms symbolise the joint ARCH effects and found to be statistically 

insignificant for the three countries/the two DCC-types GARCH models. This implies 

that the joint conditional variance is absent in the short-term. The 𝐷𝐶𝐶𝛽 parameters 

are highly statistically significant, indicating the presence of time-varying conditional 

correlation across the markets. The high value of 𝐷𝐶𝐶𝛽 coefficients indicate that 

volatility of a market can be largely attributed to the endogenous shocks more than 

spillover across the markets. The sum of the 𝐷𝐶𝐶𝛼 𝑎𝑛𝑑 𝐷𝐶𝐶𝛽 parameters are close to 

unity. Thus, it can be understood that the conditional correlations will return to their 

unconditional levels in the long term (mean-reverting process). The asymmetry 

parameter 𝐷𝐶𝐶𝛾 estimated by the asymmetric DCC GARCH model is found to be 
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statistically insignificant. This means that the volatility spillover effects are not 

symmetric. 
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Table 3: Estimation results of the diagonal BEKK-GARCH(1,1) models 

 

 Saudi UAE Kuwait 

 CE, OP, EP, SPI CE, OP, EP, AEI CE, OP, EP, KEI 

 Coeff p-value Coeff p-value Coeff p-value 𝑚𝑒𝑎𝑛1 0.00016 0.264 0.00012 0.403 0.00017 0.175 𝑚𝑒𝑎𝑛2 -0.00004 0.751 -4.3E-05 0.776 -3.9E-05 0.795 𝑚𝑒𝑎𝑛3 0.00072 0.024 0.00077 0.016 0.00082 0.012 𝑚𝑒𝑎𝑛4 0.00012 0.360 -7.8E-05 0.665 0.000003 0.984 𝐴𝑅11 0.19952 0.000 0.21884 0.000 0.195761 0.000 𝐴𝑅12 -0.0601 0.035 -0.0529 0.056 -0.04886 0.087 𝐴𝑅13 -0.1867 0.000 -0.1919 0.000 -0.19214 0.000 𝐴𝑅14 0.10004 0.002 -0.0659 0.031 -0.02399 0.446 𝐶11 0.0000 1.000 0.00225 0.000 0.000302 0.040 𝐶12 0.0004 0.776 0.00000 0.888 0.00002 0.818 𝐶13 -0.0007 0.784 -9.1E-05 0.494 -3.5E-05 0.854 𝐶14 -0.0003 0.869 0.00009 0.345 0.00043 0.391 𝐶22 0.0004 0.831 0.00058 0.005 0.00064 0.005 𝐶23 0.0006 0.824 -0.0001 0.619 -0.0001 0.513 𝐶24 0.0005 0.709 0.00009 0.758 0.00032 0.380 𝐶33 0.0010 0.068 0.00135 0.006 0.00142 0.008 𝐶34 -0.0005 0.038 0.00030 0.414 -2E-06 0.996 𝐶44 0.0002 0.022 0.00257 0.000 0.00298 0.000 𝛼11 0.1073 0.000 0.00000 1.000 0.11541 0.000 𝛼22 0.2202 0.000 0.21256 0.000 0.22346 0.000 𝛼33 0.1936 0.000 0.19372 0.000 0.20725 0.000 𝛼44 0.2767 0.000 0.38303 0.000 0.33725 0.000 𝛽11 0.9942 0.000 0.86608 0.000 0.99105 0.000 𝛽22 0.9734 0.000 0.97554 0.000 0.97279 0.000 𝛽33 0.9788 0.000 0.97918 0.000 0.97650 0.000 𝛽44 0.9529 0.000 0.88795 0.000 0.74943 0.000 

Note: the numbers 1, 2 and 3 simplify the variables CE, OP and EP respectively, whereas 4 

indicates each GCC energy stock index. 
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Table 4: Estimation results of  asymmetric multivariate GARCH (1,1) and copula DCC(1,1) models 

 Asymmetric DCC Copula DCC 

 Saudi UAE Kuwait Saudi UAE Kuwait 

 CE, OP, EP, SPI CE, OP, EP, AEI CE, OP, EP, KEI CE, OP, EP, SPI CE, OP, EP, AEI CE, OP, EP, KEI 

 Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value 𝑚𝑒𝑎𝑛1 0.0002 0.102 0.0002 0.101 0.0002 0.101 0.00018 0.082 0.00018 0.082 0.00018 0.082 𝑚𝑒𝑎𝑛2 0.0009 0.015 0.0009 0.015 0.0009 0.015 0.00091 0.015 0.00091 0.015 0.00091 0.015 𝑚𝑒𝑎𝑛3 2.9e-05 0.875 2.9e-05 0.874 2.9e-05 0.875 2.9e-05 0.864 2.9e-05 0.864 2.9e-05 0.864 𝑚𝑒𝑎𝑛4 0.0002 0.185 1.7e-05 0.925 4.0e-05 0.759 0.00016 0.189 1.7e-05 0.926 0.00004 0.751 𝐶1 1.0e-06 0.064 1.0e-06 0.064 1.0e-06 0.064 1.0e-06 0.096 1.0e-06 0.096 1.0e-06 0.096 𝐶2 2.0e-06 0.015 2.0e-06 0.015 2.0e-06 0.015 2.0e-06 0.744 2.0e-06 0.744 2.0e-06 0.744 𝐶3 1.0e-06 0.980 1.0e-06 0.980 1.0e-06 0.980 1.0e-06 0.975 1.0e-06 0.975 1.0e-06 0.975 𝐶4 1.0e-06 0.518 4.0e-06 0.229 2.0e-06 0.000 1.0e-06 0.535 4.0e-06 0.246 2.0e-06 0.254 𝛼1 0.1002 0.000 0.1002 0.000 0.1002 0.000 0.09992 0.000 0.09921 0.000 0.09921 0.000 𝛼2 0.0594 0.153 0.0594 0.156 0.0594 0.153 0.05929 0.153 0.05929 0.153 0.05929 0.153 𝛼3 0.0758 0.848 0.0758 0.849 0.0758 0.849 0.07643 0.813 0.07643 0.813 0.07643 0.813 𝛼4 0.0909 0.009 0.1611 0.000 0.0788 0.000 0.09032 0.011 0.16098 0.000 0.07481 0.000 𝛽1 0.8522 0.000 0.8522 0.000 0.8522 0.000 0.85547 0.000 0.85547 0.000 0.85547 0.000 𝛽2 0.9396 0.000 0.9396 0.000 0.9396 0.000 0.93970 0.000 0.93970 0.000 0.93970 0.000 𝛽3 0.9193 0.015 0.9193 0.016 0.9193 0.015 0.91890 0.002 0.91890 0.002 0.91890 0.002 𝛽4 0.8950 0.000 0.8011 0.000 0.8550 0.000 0.89618 0.000 0.80155 0.000 0.86657 0.000 𝐷𝐶𝐶𝛼 0.0000 0.998 0.0000 0.999 0.0000 0.999 0.00078 0.886 0.000 0.050 0.000 0.964 𝐷𝐶𝐶𝛽 0.7829 0.000 0.7615 0.000 0.7917 0.004 0.82883 0.000 0.91239 0.000 0.903 0.000 𝐷𝐶𝐶𝛾 0.0067 0.484 0.0078 0.839 0.0050 0.676 - - - - - - 

Note: the numbers 1, 2 and 3 simplify the variables CE, OP and EP respectively, whereas 4 indicates each GCC energy stock index.  



25 

 

 

 

  

4.2.3 Time-varying conditional correlations 

Figures 1, 2 and 3 display the dynamic conditional correlations for the market pairs 

obtained from the three multivariate GARCH models illustrating some similarities of 

volatility clustering across the countries. For example, the pairwise conditional 

covariance between clean energy production index/oil price is found to be highly 

fluctuating between 2015-2017. Likewise, the conditional covariances between clean 

energy production index / CO2 emission price indicates two spikes in 2013 and 2014; 

except the conditional covariances for the BEKK models which were constantly 

fluctuating over the entire period of analysis. A peak is found around 2016 for oil and CO2 emission prices indicating a highly volatile period. The covariance among clean 

energy production index /Saudi petrochemical index is found to be stable, except for 

the two spikes during the end of 2014 and 2017. The same market pairs for UAE and 

Kuwait were turbulent throughout the analysis. The covariances of oil price with the 

three GCC energy indexes indicate a volatile period between 2015-2017, however, 

their pattern of volatiles is not observed among the conditional correlations of the GCC 

energy stock markets with CO2 emission price. 

Some political and economic events could explain the pairwise conditional 

covariance among the markets. For instance, the Yemen war, which has been waged in 

2015 and an oil price drop at the beginning of 2016 likely led to extreme volatility in 

the GCC stock market. Also, the GCC governments have established strategic 

frameworks to mitigate their dependence on oil revenues and diversify their 
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economies. Some governments levied taxes and cut domestic electricity, water and 

energy subsidies between 2015 and 2018. For example, Saudi and the UAE have 

imposed a value-added tax (VAT) by 5% on most goods and services starting from 

January 2018 (Kerr and Al Omran, 2018). Further, Saudi launched a 5-year plan to 

increase the prices of diesel, natural gas, electricity gasoline and water. Where in the 

UAE, the government release fuel prices to align with global energy prices (Morgan, 

2016). Finally, the Kuwait cabinet had announced a plan to impose a 10% tax on companies’ profits, to reduce the public budget deficit in 2016 (Arabian Business, 

2016). 
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                                                       Figure 1: Conditional covariance: Diagonal BEKK GARCH(1,1) model 
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Figure 2: Conditional covariance: Asymmetric DCC GARCH(1,1) model 

                                Saudi                                                                                              UAE                                                                                             Kuwait                                                             
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Figure 3: Conditional covariance: Copula DCC GARCH(1,1) model 

                              Saudi                                                                                                UAE                                                                                             Kuwait  
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4.3 Diagnostics statistics and model comparison 

 In this sub-section, we present various diagnostic statistics along with model 

comparison. Table 6 displays the results of the modified multivariate portmanteau 

tests developed by Hosking (1980) and Li and McLeod (1981). The results of Hosking 

and Li and McLeod test statistics confirm that the diagonal BEKK models for the UAE 

and Kuwait markets can capture the spillover dynamics, but not so for the Saudi 

market. Asymmetric and copula DCC GARCH models were unable to explain the 

volatility spillover dynamics for all the three countries. Table 7 compares the 

performance of the three empirical models using the Bayesian information criterion 

(BIC) as well as Akaike information criteria (AIC). Both BIC and AIC confirm that the 

diagonal BEKK model performs the best for all the three countries.  

Table 6: Diagnostic Statistics 

 Diagonal BEKK Asymmetric DCC Copula DCC 

Lag Saudi UAE Kuwait Saudi UAE Kuwait Saudi UAE Kuwait 

Hosking 

(5) 
121.08 

(0.001) 

122.43 

(0.001) 

110.272 

(0.011) 

1302.96 

(0.000) 

1140.599 

(0.000) 

1093.831 

(0.000) 

1300.038 

(0.000) 

1140.574 

(0.000) 

1093.789 

(0.000) 

Hosking 

(10) 

194.164 

(0.030) 

191.608 

(0.039) 

189.078 

(0.051) 

1824.07 

(0.000) 

1602.788 

(0.000) 

1484.363 

(0.000) 

1818.665 

(0.000) 

1602.802 

(0.000) 

1484.363 

(0.000) 

Hosking 

(20) 
374.379 

(0.017) 

361.175 

(0.051) 

343.017 

(0.169) 

2811.72 

(0.000) 

2539.609 

(0.000) 

2436.403 

(0.000) 

2804.813 

(0.000) 

2539.513 

(0.000) 

2436.322 

(0.000) 

Li-McLeod 

(5) 

121.015 

(0.001) 

122.358 

(0.001) 

110.222 

(0.011) 

1301.22 

(0.000) 

1138.929 

(0.000) 

1092.29 

(0.000) 

121.015 

(0.001) 

1138.904 

(0.000) 

1092.246 

(0.000) 

Li-McLeod 

(10) 
194.137 

(0.030) 

191.598 

(0.039) 

189.056 

(0.051) 

1820.17 

(0.000) 

1599.225 

(0.000) 

1481.31 

(0.000) 

194.137 

(0.000) 

1599.239 

(0.000) 

1481.31 

(0.000) 

Li-McLeod 

(20) 
374.155 

(0.018) 

361.103 

(0.052) 

343.103 

(0.169) 

2799.96 

(0.000) 

2528.667 

(0.000) 

2425.69 

(0.000) 

374.155 

(0.000) 

2528.573 

(0.000) 

2425.61 

(0.000) 

Notes: 1) The null hypothesis of the two tests is that absence of autocorrelation. 2) Numbers in parenthesis 

denote the p-values.  
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Table 2: Estimated model comparison 

 Diagonal BEKK GARCH Asymmetric DCC Copula DCC 

 BIC AIC BIC AIC BIC AIC 

Saudi -27.781 -27.627 -27.791 -27.693 -27.803 -27.700 

UAE -26.377 -26.667 -26.387 -26.773 -26.379 -26.780 

Kuwait -27.682 -27.782 -27.687 -27.835 -27.685 -27.843 

 

4.4 Forecasting performance  

In this sub-section, we evaluate forecasting performance using two evaluation measures: 

mean absolute error (MAE) and root mean square error (RMSE) which are defined as: 

𝑀𝐴𝐸 = 1𝑛 ∑ |𝑦𝑗 − �̂�𝑗|𝑛𝑗=1  and RMSE = √1𝑛 ∑ (𝑦𝑗 − 𝑦�̂�)2𝑛𝑗=1  where 𝑦𝑗 is the actual series and 

𝑦�̂� is the forecasted series from the estimated model. Table 8 evaluates the forecasts based  

 

on the conditional variance for the three-competing multivariate GARCH models. In terms 

of both criterion, we observe that diagonal-BEKK performs slightly better than the other   

 

Table 8: Forecast evaluation tests 

 MAE RMSE 

Stock 

indices 

Diagonal 

BEKK 

Asymmetric 

DCC 

Copula 

DCC 

Diagonal 

BEKK 

Asymmetric 

DCC 

Copula 

DCC 

Saudi 0.049166 0.062736 0.049320  0.061741 0.061942 0.061786 

UAE 0.054218  0.068014  0.054817  0.065024 0.066941 0.065744 

Kuwait 0.045131  0.045133  0.045141  0.055391 0.056861 0.055764 
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two multivariate GARCH models. Combining the evidence based on both the diagnostics 

and forecasting tests, we confirm that the diagonal BEKK performance is better and 

therefore we compare the diagonal BEKK’s forecasts with the univariate GARCH (1,1)’s 

forecasts based on the conditional mean and conditional forecast of the three energy 

indices using RMSE. The values of the RMSE shown in Table 9 are slightly lower for the 

diagonal-BEKK(1,1) model for all three energy stocks. Hence, we conclude that 

forecasts obtained from the diagonal BEKK model are better compared to those of the 

univariate GARCH (1,1) in terms of in-sample forecast comparison. 

Table 9: Comparison between diagonal BEKK and the univariate GARCH 

models forecasts 

RMSE 

Stock 

indices 

 

Conditional mean forecast 
 

Conditional variance forecast 

 Univariate GARCH Diagonal BEKK Univariate GARCH Diagonal BEKK 

Saudi 0.006444 0.006439 0.0000398 0.0000395 

UAE 0.002772 0.002768 0.0000297 0.0000294 

Kuwait 0.000394 0.000391 0.0000188 0.0000186 

5 Conclusion 

Our study confirms the existence of volatility spillover effects and co-movement among 

global clean energy production, crude oil price, CO2 emission price and each of the 

three GCC energy stock markets. Furthermore, we found that the conditional variances 

of all return series are influenced by the shocks coming from the markets themselves. 

One possible explanation for this might be that the GCC equities are classified as Islamic 

stock markets. It means that investors in these markets are committed to follow the Shari’ah guidelines, which prohibits some of the financial activities that are applied in 

conventional financial markets (e.g., short selling, leverage and financial derivatives).  
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Another possible explanation is that the GCC energy companies are partly 

owned by the GCC government funds. For example, over 70% of the Saudi Basic 

Industries Corporation (SABIC), the world's largest petrochemicals manufacturers, is 

held by the Public Investment Fund (PIF). For the UAE, the total government 

shareholding in Abu Dhabi Power Corporation (ADPC) is around 74.1% (Mubasher, 

2021). Besides, the foreign investment restrictions in the GCC stock markets could 

impact our results. The Saudi Stock Exchange, for example, has permitted foreign 

investment in January of 2018 by 49%. While the Dubai Financial Market is not fully 

open for foreign investments, especially in banking and energy sector (Capital market 

authorities in Saudi and Dubai, 2020). 

Our findings are consistent with Koljonen and Savolainen (2005), Hammoudeh 

et al. (2014a), Zeng et al. (2017) and Ji et al. (2018) who found a binary causal 

relationship between crude oil and CO2 emission prices. Also in line with Sadorsky, 

(2009), Marques and Fuinhas, (2011), Dogan and Seker, (2016a), Dogan and Seker, 

(2016b) and Troster et al., (2018) who discovered the binary nexus between CO2 

emission prices and clean energy. However, our results reveal that the impact of 

emissions trading systems is not limited to stock returns of those countries that 

established ETS (e.g. Koch, 2014; Reboredo, 2015; Bondia et al., 2016; Dutta, 2017; 

Reboredo et al., 2017; Hodson et al., 2018;  Sun et al., 2019). The possible explanation 

for the correlation among CO2 emission allowances prices and the GCC energy stock 

prices are that carbon schemes boost global clean energy production/consumption, 

which in turn alter the levels of global conventional energy uses and oil prices.  

This paper examines spillover effects and co-movements among global clean 

energy production, crude oil price, CO2 emission price and each energy stock market 
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in the largest GCC oil producers namely, Saudi Arab, the UAE and Kuwait. Using daily 

data over the period from January 02, 2013, to March 20, 2019, and applying three 

multivariate GARCH frameworks: diagonal BEKK GARCH (1,1), asymmetric DCC 

GARCH (1,1) and copula DCC GARCH (1,1) models for each country, we document that 

the past endogenous shocks turn out to be the most powerful driver of volatilities in 

the GCC markets. Volatilities in all the markets under consideration are highly 

persistent, and the long-run persistent volatilities are more pronounced especially for 

oil and CO2 emission prices.  

This study helps policymakers in oil-producing countries to design appropriate 

mechanisms to speed up revenue diversification policies. Investors and portfolio 

managers would benefit from the stabilisation of the GCC energy stock market that we 

have confirmed, and they would get a systematic assessment of the likelihood of 

alternative portfolios and hedge their strategies. However, investors should take into 

account the huge impact of internal shocks on the GCC markets. Finally, we provide 

evidence on the response of the largest oil-exporting economies, such as those in the 

GCC region, to global energy market transformations. 

 

  



35 
 

 

References 

Abbasi, K., Jiao, Z., Shahbaz, M. and Khan, A. 2020. Asymmetric impact of renewable 

and non-renewable energy on economic growth in Pakistan: New evidence from 

a nonlinear analysis. Energy Exploration and Exploitation. 38(5), pp.1946–1967. 

Agbanike, T.F., Nwani, C., Uwazie, U.I., Anochiwa, L.I., Onoja, T.G.C. and Ogbonnaya, I.O. 

2019. Oil price, energy consumption and carbon dioxide (CO2) emissions: insight 

into sustainability challenges in Venezuela. Latin American Economic Review. 

28(1), pp.1–26. 

Ahmad, W. 2017. On the dynamic dependence and investment performance of crude 

oil and clean energy stocks. Research in International Business and Finance. 

42(September 2016), pp.376–389. 

Alshehry, A.S. and Belloumi, M. 2015. Energy consumption, carbon dioxide emissions 

and economic growth: The case of Saudi Arabia. Renewable and Sustainable 

Energy Reviews. 41, pp.237–247. 

Amri, F. 2019. Renewable and non-renewable categories of energy consumption and 

trade: Do the development degree and the industrialization degree matter? 

Energy. 173, pp.374–383. 

Andersson, F.N.G. and Karpestam, P. 2013. CO2 emissions and economic activity: 

Short- and long-run economic determinants of scale, energy intensity and carbon 

intensity. Energy Policy. 61, pp.1285–1294. 

Anon 2021a. U.S. energy facts explained. The U.S. Energy Information Administration 

(EIA). [Online]. [Accessed 2 July 2021]. Available from: 

https://www.eia.gov/energyexplained/us-energy-facts/. 

Anon 2021b. World Adds Record New Renewable Energy Capacity in 2020. The 

International Renewable Energy Agency (IRENA). [Online]. [Accessed 2 July 

2021]. Available from: 

https://www.irena.org/newsroom/pressreleases/2021/Apr/World-Adds-

Record-New-Renewable-Energy-Capacity-in-2020. 

Apergis, N. and Payne, J.E. 2014. Renewable energy, output, CO2 emissions, and fossil 

fuel prices in Central America: Evidence from a nonlinear panel smooth 

transition vector error correction model. Energy Economics. 42, pp.226–232. 

Arabian-Business 2016. Kuwait cabinet approves 10% tax on companies’ profits. 
Arabian Business. [Online]. Available from: 

https://www.arabianbusiness.com/kuwait-cabinet-approves-10-tax-on-

companies-profits--624878.html. 

Asl, M.G., Canarella, G. and Miller, S.M. 2021. Dynamic asymmetric optimal portfolio 

allocation between energy stocks and energy commodities: Evidence from clean 

energy and oil and gas companies. Resources Policy. 71(October 2020), p.101982. 

Bloch, H., Rafiq, S. and Salim, R. 2015. Economic growth with coal, oil and renewable 

energy consumption in China: Prospects for fuel substitution. Economic 

Modelling. 44, pp.104–115. 

Boersen, A. and Scholtens, B. 2014. The relationship between European electricity 

markets and emission allowance futures prices in phase II of the EU (European 

Union) emission trading scheme. Energy. 74(C), pp.585–594. 

Bondia, R., Ghosh, S. and Kanjilal, K. 2016. International crude oil prices and the stock 

prices of clean energy and technology companies: Evidence from non-linear 

cointegration tests with unknown structural breaks. Energy. 101, pp.558–565. 



36 
 

 

Burkhardt, J. 2019. The impact of the Renewable Fuel Standard on US oil refineries. 

Energy Policy. 130(April), pp.429–437. 

Cappiello, L., Engle, R.F. and Sheppard, K. 2006. Asymmetric dynamics in the 

correlations of global equity and bond returns. Journal of Financial Econometrics. 

4(4), pp.537–572. 

Chang, K., Ye, Z. and Wang, W. 2019. Volatility spillover effect and dynamic correlation 

between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots. Energy. 185, pp.1314–1324. 

Chang, K., Zhang, C. and Wang, H.W. 2020. Asymmetric dependence structures 

between emission allowances and energy markets: new evidence from China’s 
emissions trading scheme pilots. Environmental Science and Pollution Research. 

27(17), pp.21140–21158. 

Chen, Y., Qu, F., Li, W. and Chen, M. 2019. Volatility spillover and dynamic correlation 

between the carbon market and energy markets. Journal of Business Economics 

and Management. 20(5), pp.979–999. 

Chen, Y., Zheng, B. and Qu, F. 2020. Modeling the nexus of crude oil, new energy and 

rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach. 

Resources Policy. 65(October 2019), p.101545. 

Chevallier, J. 2012. Time-varying correlations in oil, gas and CO2 prices: An 

application using BEKK, CCC and DCC-MGARCH models. Applied Economics. 

44(32), pp.4257–4274. 

Chevallier, J., Khuong Nguyen, D. and Carlos Reboredo, J. 2019. A conditional 

dependence approach to CO2-energy price relationships. Energy Economics. 81, 

pp.812–821. 

Corbet, S., Goodell, J.W. and Günay, S. 2020. Co-movements and spillovers of oil and 

renewable firms under extreme conditions: New evidence from negative WTI 

prices during COVID-19. Energy Economics. 92. 

Dawar, I., Dutta, A., Bouri, E. and Saeed, T. 2021. Crude oil prices and clean energy 

stock indices: Lagged and asymmetric effects with quantile regression. 

Renewable Energy. 163, pp.288–299. 

Diebold, F.X. and Yilmaz, K. 2009. Measuring financial asset return and volatility 

spillovers, with application to global equity markets. Economic Journal. 

119(534), pp.158–171. 

Dogan, E. and Seker, F. 2016a. Determinants of CO2 emissions in the European Union: 

The role of renewable and non-renewable energy. Renewable Energy. 94(2016), 

pp.429–439. 

Dogan, E. and Seker, F. 2016b. The influence of real output, renewable and non-

renewable energy, trade and financial development on carbon emissions in the 

top renewable energy countries. Renewable and Sustainable Energy Reviews. 60, 

pp.1074–1085. 

Dominioni, G., Romano, A. and Sotis, C. 2019. A quantitative study of the interactions 

between oil price and renewable energy sources stock prices. Energies. 12(9), 

pp.1–11. 

Dutta, A. 2017. Oil price uncertainty and clean energy stock returns: New evidence 

from crude oil volatility index. Journal of Cleaner Production. 164, pp.1157–1166. 

Engle, R. 2002. Dynamic conditional correlation: A simple class of multivariate 

generalized autoregressive conditional heteroskedasticity models. Journal of 

Business and Economic Statistics. 20(3), pp.339–350. 

Engle, R.F. 1982. Autoregressive Conditional Heteroscedacity with Estimates of 



37 
 

 

variance of United Kingdom Inflation. Econometrica. 50(4), pp.987–1008. 

Engle, R.F. and Kroner, K.F. 1995. Multivariate Simultaneous Generalized Arch. 

Cambridge University Press. 11(1), pp.122–150. 

European Communities 2008. EU action against climate change: The EU Emissions 

Trading Scheme. Printed. 

Di Febo, E., Foglia, M. and Angelini, E. 2021. Tail risk and extreme events: Connections 

between oil and clean energy. Risks. 9(2), pp.1–13. 

Fisher-Vanden, K., Jefferson, G.H., Liu, H. and Tao, Q. 2004. What is driving China’s 
decline in energy intensity? Resource and Energy Economics. 26(1), pp.77–97. 

Fuentes, F. and Herrera, R. 2020. Dynamics of connectedness in clean energy stocks. 

Energies. 13(14), pp.1–19. 

Furlan, C. and Mortarino, C. 2018. Forecasting the impact of renewable energies in 

competition with non-renewable sources. Renewable and Sustainable Energy 

Reviews. 81(June 2017), pp.1879–1886. 

Ghabri, Y., Ayadi, A. and Guesmi, K. 2021. Fossil energy and clean energy stock 

markets under COVID-19 pandemic. Applied Economics. 00(00), pp.1–13. 

Hammoudeh, S., Lahiani, A., Nguyen, D.K. and Sousa, R.M. 2015. An empirical analysis 

of energy cost pass-through to CO2 emission prices. Energy Economics. 49, 

pp.149–156. 

Hammoudeh, S., Nguyen, D.K. and Sousa, R.M. 2014a. Energy prices and CO2 emission 

allowance prices: A quantile regression approach. Energy Policy. 70, pp.201–206. 

Hammoudeh, S., Nguyen, D.K. and Sousa, R.M. 2014b. What explain the short-term 

dynamics of the prices of CO2 emissions? Energy Economics. 46, pp.122–135. 

Henriques, I. and Sadorsky, P. 2008. Oil prices and the stock prices of alternative 

energy companies. Energy Economics. 30(3), pp.998–1010. 

Hodson, E.L., Brown, M., Cohen, S., Showalter, S., Wise, M., Wood, F., Caron, J., Feijoo, F., 

Iyer, G. and Cleary, K. 2018. U.S. energy sector impacts of technology innovation, 

fuel price, and electric sector CO2 policy: Results from the EMF 32 model 

intercomparison study. Energy Economics. 73, pp.352–370. 

Hosking, J.R.M. 1980. The Multivariate Portmanteau Statistic. Journal of the American 

Statistical Association. 75(371), pp.602–608. 

Ji, Q., Zhang, D. and Geng, J. bo 2018. Information linkage, dynamic spillovers in prices 

and volatility between the carbon and energy markets. Journal of Cleaner 

Production. 198, pp.972–978. 

Kerr, S. and Al Omran, A. 2018. Saudi Arabia and UAE introduce 5% VAT in bid to 

narrow deficits. Financial Times. [Online]. [Accessed 28 February 2021]. 

Available from: https://www.ft.com/content/b1742920-efd0-11e7-b220-

857e26d1aca4. Kilian, L. 2009. Not All Oil Price Shocks Are Alike : Disentangling Supply Shocks in the 

Crude Oil Market. The American Economic Review. 99(3), pp.1053–1069. 

Kim, S.J., Moshirian, F. and Wu, E. 2005. Dynamic stock market integration driven by 

the European Monetary Union: An empirical analysis. Journal of Banking and 

Finance. 29(10), pp.2475–2502. 

Koch, N. 2014. Dynamic linkages among carbon, energy and financial markets: A 

smooth transition approach. Applied Economics. 46(7), pp.715–729. 

Koljonen, T. and Savolainen, I. 2005. Impact of the EU emissions trading directive on 

the energy and steel industries in Finland. Greenhouse Gas Control Technologies. 

12 Suppl 1(9), pp.1–29. 

Kumar, S., Managi, S. and Matsuda, A. 2012. Stock prices of clean energy firms, oil and 



38 
 

 

carbon markets: A vector autoregressive analysis. Energy Economics. 34(1), 

pp.215–226. 

Lee, Y. and Yoon, S.M. 2020. Dynamic spillover and hedging among carbon, biofuel 

and oil. Energies. 13(17), pp.1–20. 

Li, W., Sun, W., Li, G., Jin, B., Wu, W., Cui, P. and Zhao, G. 2018. Transmission 

mechanism between energy prices and carbon emissions using geographically 

weighted regression. Energy Policy. 115(August 2017), pp.434–442. 

Li, W.K. and McLeod, A.I. 1981. Distribution of the Residual Autocorrelations in 

Multivariate ARMA Time Series Models. Journal of the Royal Statistical Society. 

43(2), pp.231–239. 

Lin, B. and Chen, Y. 2019. Dynamic linkages and spillover effects between CET market, 

coal market and stock market of new energy companies: A case of Beijing CET 

market in China. Energy. 172, pp.1198–1210. 

Lin, B. and Jia, Z. 2019. What are the main factors affecting carbon price in Emission 

Trading Scheme? A case study in China. Science of the Total Environment. 654, 

pp.525–534. 

Liu, H.H. and Chen, Y.C. 2013. A study on the volatility spillovers, long memory effects 

and interactions between carbon and energy markets: The impacts of extreme 

weather. Economic Modelling. 35, pp.840–855. 

Lv, X., Dong, X. and Dong, W. 2021. Oil Prices and Stock Prices of Clean Energy: New 

Evidence from Chinese Subsectoral Data. Emerging Markets Finance and Trade. 

57(4), pp.1088–1102. Madaleno, M. and Pereira, A.M. 2015. Clean energy firms’ stock prices, technology, oil 
prices, and carbon prices. International Conference on the European Energy 

Market, EEM. 2015-Augus. 

Maghyereh, A. and Abdoh, H. 2021. The impact of extreme structural oil-price shocks 

on clean energy and oil stocks. Energy. 225, p.120209. 

Maghyereh, A.I., Awartani, B. and Abdoh, H. 2019. The co-movement between oil and 

clean energy stocks: A wavelet-based analysis of horizon associations. Energy. 

169(2019), pp.895–913. 

Malik, M.Y., Latif, K., Khan, Z., Butt, H.D., Hussain, M. and Nadeem, M.A. 2020. 

Symmetric and asymmetric impact of oil price, FDI and economic growth on 

carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL 

approach. Science of the Total Environment. 726(April), p.138421. 

Marques, A.C. and Fuinhas, J.A. 2011. Drivers promoting renewable energy: A 

dynamic panel approach. Renewable and Sustainable Energy Reviews. 15(3), 

pp.1601–1608. 

Mensah, I.A., Sun, M., Gao, C., Omari-Sasu, A.Y., Zhu, D., Ampimah, B.C. and Quarcoo, A. 

2019. Analysis on the nexus of economic growth, fossil fuel energy consumption, 

CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. 

Journal of Cleaner Production. 228, pp.161–174. Moreno, B. and Pereira da Silva, P. 2016. How do Spanish polluting sectors’ stock 
market returns react to European Union allowances prices? A panel data 

approach. Energy. 103, pp.240–250. 

Morgan, A. 2016. Saudi Arabia, UAE lead GCC subsidy reform. Oil & Gas Journal. 

[Online]. [Accessed 28 February 2021]. Available from: 

https://www.ogj.com/general-interest/article/17249658/saudi-arabia-uae-

lead-gcc-subsidy-reform. 

Mubasher 2021. TAQA completes merger deal with ADPower - Mubasher Info. 



39 
 

 

[Accessed 23 February 2021]. Available from: 

https://english.mubasher.info/news/3661902/TAQA-completes-merger-deal-

with-ADPower/. 

Naeem, M.A., Peng, Z., Suleman, M.T., Nepal, R. and Shahzad, S.J.H. 2020. Time and 

frequency connectedness among oil shocks, electricity and clean energy markets. 

Energy Economics. 91, p.104914. 

Narayan, P.K. and Sharma, S.S. 2011. New evidence on oil price and firm returns. 

Journal of Banking and Finance. 35(12), pp.3253–3262. 

Nguyen, K.H. and Kakinaka, M. 2019. Renewable energy consumption, carbon 

emissions, and development stages: Some evidence from panel cointegration 

analysis. Renewable Energy. 132, pp.1049–1057. 

Niu, H. 2021. Correlations between crude oil and stocks prices of renewable energy 

and technology companies: A multiscale time-dependent analysis. Energy. 221, 

p.119800. 

Oberndorfer, U. 2009. EU Emission Allowances and the stock market: Evidence from 

the electricity industry. Ecological Economics. 68(4), pp.1116–1126. 

Oh, I., Wehrmeyer, W. and Mulugetta, Y. 2010. Decomposition analysis and mitigation 

strategies of CO2 emissions from energy consumption in South Korea. Energy 

Policy. 38(1), pp.364–377. 

Oh, W. and Lee, K. 2004. Energy consumption and economic growth in Korea: Testing 

the causality relation. Journal of Policy Modeling. 26(8–9), pp.973–981. 

Payne, J.E. 2012. The causal dynamics between US renewable energy consumption, 

output, emissions, and oil prices. Energy Sources, Part B: Economics, Planning and 

Policy. 7(4), pp.323–330. 

Reboredo, J.C. 2015. Is there dependence and systemic risk between oil and 

renewable energy stock prices? Energy Economics. 48, pp.32–45. 

Reboredo, J.C., Rivera-Castro, M.A. and Ugolini, A. 2017. Wavelet-based test of co-

movement and causality between oil and renewable energy stock prices. Energy 

Economics. 61, pp.241–252. 

Sadorsky, P. 2012. Correlations and volatility spillovers between oil prices and the 

stock prices of clean energy and technology companies. Energy Economics. 34(1), 

pp.248–255. 

Sadorsky, P. 2009. Renewable energy consumption, CO2 emissions and oil prices in 

the G7 countries. Energy Economics. 31(3), pp.456–462. 

Shah, I.H., Hiles, C. and Morley, B. 2018. How do oil prices, macroeconomic factors and 

policies affect the market for renewable energy? Applied Energy. 215(August 

2017), pp.87–97. 

Sharif, A., Raza, S.A., Ozturk, I. and Afshan, S. 2019. The dynamic relationship of 

renewable and nonrenewable energy consumption with carbon emission: A 

global study with the application of heterogeneous panel estimations. Renewable 

Energy. 133, pp.685–691. 

Sklar, A. 1959. Fonctions de r´epartition `a n dimensions e leurs marges. Publications de l’Institut de Statistique de l’Univiversit´e de Paris 8, 229 – 231. 

Stern, D.I. 2000. A multivariate cointegration analysis of the role of energy in the US 

macroeconomy. Energy Economics. 22(2), pp.267–283. 

Stern, D.I. 1993. Energy and economic growth in the USA. A multivariate approach. 

Energy Economics. 15(2), pp.137–150. 

Sun, C., Ding, D., Fang, X., Zhang, H. and Li, J. 2019. How do fossil energy prices affect 

the stock prices of new energy companies? Evidence from Divisia energy price 



40 
 

 

index in China’s market. Energy. 169, pp.637–645. 

Sun, Y., Sun, M. and Tang, X. 2019. Influence Analysis of Renewable Energy on Crude 

Oil Future Market. 2019 3rd IEEE International Conference on Green Energy and 

Applications, ICGEA 2019., pp.167–171. 

Tan, X.P. and Wang, X.Y. 2017. Dependence changes between the carbon price and its 

fundamentals: A quantile regression approach. Applied Energy. 190, pp.306–325. 

Troster, V., Shahbaz, M. and Uddin, G.S. 2018. Renewable energy, oil prices, and 

economic activity: A Granger-causality in quantiles analysis. Energy Economics. 

70, pp.440–452. 

Ullah, S., Chishti, M.Z. and Majeed, M.T. 2020. The asymmetric effects of oil price 

changes on environmental pollution: evidence from the top ten carbon emitters. 

Environmental Science and Pollution Research. 27(23), pp.29623–29635. 

Wang, X., Bai, M. and Xie, C. 2019. Investigating CO2 mitigation potentials and the impact of oil price distortion in China’s transport sector. Energy Policy. 

130(April), pp.320–327. 

Wang, Y. and Guo, Z. 2018. The dynamic spillover between carbon and energy 

markets: New evidence. Energy. 149, pp.24–33. 

Wang, Z.J. and Zhao, L.T. 2021. The impact of the global stock and energy market on 

EU ETS: A structural equation modelling approach. Journal of Cleaner Production. 

289, p.125140. 

Waziri, B.Z., Hassan, A. and Kouhy, R. 2018. The effect of transitioning to renewable 

energy consumption on the Nigerian oil and gas exports: An ARDL approach. 

International Journal of Energy Sector Management. 12(4), pp.507–524. 

Weigt, H., Ellerman, D. and Delarue, E. 2013. CO2 abatement from renewables in the 

German electricity sector: Does a CO2 price help? Energy Economics. 40, 

pp.S149–S158. 

Yu-Ling Hsiao, C., Lin, W., Wei, X., Yan, G., Li, S. and Sheng, N. 2019. The impact of 

international oil prices on the stock price fluctuations of China’s renewable 
energy enterprises. Energies. 12(24). 

Zeng, S., Nan, X., Liu, C. and Chen, J. 2017. The response of the Beijing carbon 

emissions allowance price (BJC) to macroeconomic and energy price indices. 

Energy Policy. 106(September 2016), pp.111–121. 

Zhang, G. and Du, Z. 2017. Co-movements among the stock prices of new energy, high-

technology and fossil fuel companies in China. Energy. 135, pp.249–256. 

Zhang, H., Cai, G. and Yang, D. 2020. The impact of oil price shocks on clean energy 

stocks: Fresh evidence from multi-scale perspective. Energy. 196, p.117099. 

Zhao, X. 2020. Do the stock returns of clean energy corporations respond to oil price 

shocks and policy uncertainty? Journal of Economic Structures. 9(1). 

Zheng, Y., Zhou, M. and Wen, F. 2021. Asymmetric effects of oil shocks on carbon 

allowance price: Evidence from China. Energy Economics. 97, p.105183. 

 

 

Declaration of competing interest 

 

We declare that we have no competing interests or personal relationships that could 

have appeared to influence the work reported in this paper. 

 

Author Statement 



41 
 

 

Mohammad Alkathery: Data Collection, Software Programming, Investigation, 

Validation, Writing-Original draft preparation  

Kausik Chaudhuri: Conceptualization, Methodology, Writing-Reviewing and Editing 


