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Abstract—We introduce a tool-supported method for the for-
mal analysis of timing, resource use, cost and other quality
aspects of computer programs. The new method synthesises
a Markov-chain model of the analysed code, computes this
quantitative model’s transition probabilities using information
from program logs, and employs probabilistic model checking to
evaluate the performance properties of interest. Unlike existing
solutions, our method can reuse the probabilistic model to
accurately predict how the program performance would change
if the code ran on a different hardware platform, used a new
function library, or had a different usage profile. We show the
effectiveness of our method by using it to analyse the performance
of Java code from the Apache Commons Math library, the
Android messaging app Telegram, and an implementation of the
knapsack algorithm.

Index Terms—program quality analysis, software performance,
quantitative models, probabilistic model checking

I. INTRODUCTION

Software is among the most flexible engineering artifacts.

Computer code can run unmodified on hardware platforms as

different as desktop PCs and smartphones, or with different

usage profiles (i.e., probability distributions of the program

inputs). Even when the code is modified, the change can

be localised: a function or module is easy to replace with

a functionally equivalent one that is, for instance, faster or

more reliable. This flexibility is a great strength, but makes

the analysis of the performance and other quality aspects of

software systems very challenging. Changes in platform, usage

profile and individual functions or modules may not affect the

functionality of programs, but can impact their execution time

and use of resources significantly. Given the importance of

these properties, software performance analysis has been the

subject of intense research for several decades [1], [2], [3], [4].

Nevertheless, the solutions delivered by this research focus on

analysing the performance of software at architectural level,

e.g. [5], [6], [7], [8], [9].

The equally important and challenging analysis of software

performance at code level is typically carried out through

program instrumentation, monitoring and profiling [10], [11],

[12], [13], [14]. While these techniques produce accurate

results, they have the significant drawback that the code needs

to be actually executed for every platform and usage profile

of interest, and after every code change.

Our paper introduces a probabilistic program performance

analysis (PROPER) method that circumvents this drawback.

To this end, we automatically derive a discrete-time Markov

chain (DTMC) model of the analysed code, exploiting usage

profile information from program logs to calculate the model’s

transition probabilities. Performance concerns such as the

execution time or energy use of individual statements or

library function calls are encoded as DTMC reward structures,

and the program performance properties of interest are for-

malised in probabilistic temporal logic and evaluated through

the probabilistic model checking of this DTMC. PROPER

supports the what-if analysis of program performance in all

the scenarios mentioned earlier: before deploying the code

on a new platform; for an expected change in the usage

profile; and to assess the performance impact of using a new

implementation of a function.

As discussed in Section VII, PROPER is the first method

that uses probabilistic model checking to automatically evalu-

ate software performance properties at code level. An approach

that uses probabilistic modelling for code-level analysis was

proposed in [15], [16]. However, unlike our PROPER method,

this approach addresses the analysis of program reliability,

uses bounded loop unfolding to handle loops, and can only

perform approximate analysis for programs that contain loops.

The main contributions of our paper are:

• the theoretical foundation underpinning the generation of

the PROPER Markov-chain models;

• a prototype tool that implements our theoretical results,

automating the PROPER synthesis of DTMC models for

the performance analysis of Java methods;

• an extensive evaluation of the PROPER method and

tool for code from an existing Java library, Android

application, and optimisation algorithm implementation.

We organised the rest of the paper as follows. Section II in-

troduces a running example used to illustrate the application of

our performance analysis method. Section III defines the prob-

abilistic model checking terminology and concepts required

to present the PROPER theoretical foundation in Section IV

and our prototype tool in Section V. Finally, we present the

evaluation of our program performance analysis method in

Section VI, we discuss related research in Section VII, and

we conclude with a brief summary in Section VIII.

II. RUNNING EXAMPLE

To illustrate the steps and application of our PROPER

method, we consider the distance1 Java method from the

Apache Commons Math library.1 This method calculates the

1 https://commons.apache.org/proper/commons-math/



1 public static int distance1(int[] p1, int[] p2)

2 throws DimensionMismatchException {

3 if (checkEqualLength(p1, p2) == false) {

4 throw new DimensionMismatchException

5 (p1.length, p2.length); // @cost=7

6 }

7 else {

8 int sum = 0;

9 int i = 0;

10 while (i < p1.length) {

11 sum += Math.abs(p1[i]-p2[i]); // @time=2.5

12 i++;

13 }

14 return sum;

15 }

16 }

Fig. 1. Java method distance1 from the Apache Commons Math library

L1 distance between two points in multidimensional space,

which is a distance metric widely used in applications such as

machine learning. As shown in Figure 1, the method receives

as input two integer arrays, and checks whether the arrays

have equal length in line 3. An exception is thrown if the

arrays have different lengths (line 4). Otherwise, the absolute

distance between the points is calculated using the Math.abs

function (line 11) and is returned in line 14.

We suppose that the method distance1 is used by an ap-

plication for which a detailed log reflecting the method’s usage

profile (i.e., the typical combinations of argument lengths that

distance1 is invoked with) is available. Additionally, we

suppose that the application’s developers want to assess:

• the expected cost (i.e., the mean cost) for an invocation

of the method, given that a cost of 7 is incurred each time

when the method throws an exception in line 4;

• the method’s expected execution time, if each execution

of the statement from line 11 requires 2.5ns on average.

The annotations ‘@cost=7’ and ‘@time=2.5’ appended as

comments to lines 5 and 11, respectively, are used to specify

the two performance properties whose evaluation is of interest.

III. BACKGROUND

Probabilistic model checking (PMC) [17] is a formal veri-

fication technique used to establish the correctness, reliability

and performance of systems with stochastic behaviour, where

this behaviour is formalised using Markov models. From the

multiple types of Markov models that PMC can analyse,

PROPER generates and uses discrete-time Markov chains.

Definition 1. A discrete-time Markov chain (DTMC) over a

set of atomic propositions AP is a tuple D = (S, s0,P, L)
where S is a finite set of states, s0 ∈ S is the initial state,

P : S×S → [0, 1] is a transition probability matrix such that,

for all s ∈ S,
∑

s′∈S P(s, s′) = 1, and L : S → 2AP is a

state labelling function that maps each state s ∈ S to the set

of atomic propositions L(s) ⊆ AP that hold in state s.

To enable the analysis of additional types of properties,

DTMCs are augmented with cost/reward structures [18] that

associate non-negative values with their states and transitions.

Definition 2. A cost/reward structure over a DTMC D =
(S, s0,P, L) is a pair of real-valued functions (

¯
ρ, ι) where:

•

¯
ρ : S → R≥0 is a state reward function that defines the

value (cost/reward) obtained when D is in state s ∈ S

for one time step.

• ι : S × S → R≥0 is a transition reward function

that defines the value (cost/reward) obtained each time

a transition occurs.

The properties of DTMCs analysed through PMC are

formally expressed in probabilistic computation tree logic

(PCTL) [19], a temporal logic with the following syntax.

Definition 3. PCTL state formulae Φ and path formulae

φ over an atomic proposition set AP are defined by the

grammar:

Φ ::= true | a | ¬ Φ | Φ ∧ Φ | P⊲⊳p[φ]

φ ::= X Φ | Φ U≤k Φ

and cost/reward state formulae are defined by the grammar:

R⊲⊳r[C
≤k] | R⊲⊳r[I

=k] | R⊲⊳r[F Φ]

where a ∈ AP , ⊲⊳ ∈ {<,≤,≥, >} is a relational operator,

k ∈ N∪ {∞}, p ∈ [0, 1] is a probability bound, and r ∈ R≥0

is a reward bound.

The PCTL semantics is defined using a satisfaction relation

|=. Given a Markov chain D = (S, s0,P, L), we have: always

D |= true; D |= a iff a ∈ L(s0); D |= ¬Φ iff ¬(D |= Φ);
D |= Φ1 ∧Φ2 iff D |= Φ1 and D |= Φ2; and D |= P⊲⊳p[φ] iff

the probability x that paths starting at state s0 (i.e., sequence

of states s0s1s2 . . . such that ∀i ≥ 0 : P(si, si+1) > 0) satisfy

the path property φ satisfies x ⊲⊳ p. The next formula X Φ
holds for a path if Φ is satisfied in the next state on the path;

and the until formula Φ1 U
≤k Φ2 holds for a path iff Φ1 holds

in the first i < k path states and Φ2 holds in the (i+1)-th path

state. Finally, the three reward state formulae use the reward

operator R to verify if the expected reward x accumulated

up to timestep k, at timestep k, and accumulated to reach a

state that satisfies Φ, respectively, satisfies x ⊲⊳ r. Finally, the

notation P=?[ · ] and R=?[ · ] is used to denote the value of

the probability and expected reward from a PCTL state and

reward state formula, respectively. Detailed descriptions of the

PCTL semantics are available in [18], [19].

Our PROPER program performance analysis method uses

PCTL reward reachability properties R=?[ · ] to formalise

performance properties of a program such as execution time,

energy consumption and cost, and the probabilistic model

checker PRISM [20] to evaluate these properties. However,

PROPER can easily be combined with any other probabilistic

model checker (e.g., MRMC [21] or Storm [22]) to support

the analysis of the performance properties of interest.

IV. PROPER PERFORMANCE ANALYSIS METHOD

A. Method Overview

As shown in Figure 2, PROPER carries out the analysis of

the performance properties of a program in three steps. In the

2
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Fig. 2. PROPER program performance analysis

first step, a reward-augmented DTMC model is automatically

extracted from the analysed Java code. To that end, the code

is first annotated with the performance properties of interest

by appending a comment of the form

// @property=value (1)

to the Java statements that these performance properties are

associated with. In this PROPER annotation, property can

be any one-word label (e.g., ‘cost’ or ‘time’, as shown in

Figure 1), and value is a positive quantity such as 7 or 2.5.

The same property label can be added to as many statements

as required, e.g., to indicate that a non-negligible cost or

execution time is associated with multiple statements.

The second PROPER step calculates the transition prob-

abilities associated with the DTMC states that model the

conditional statements and the loops from the code. This

calculation is carried out based on the usage profile of the

analysed code, taken or derived from program logs, where we

assume that the code is appropriately instrumented to generate

logs containing this information.

In the third PROPER step, the performance properties of

interest, specified in PCTL, are analysed by applying prob-

abilistic model checking to the DTMC model obtained in

step 1. To enable this analysis, the transition probabilities of

the DTMC are set to the probability values calculated in step 2.

The three steps of our method and further types of analyses

enabled by the DTMC model are described in detail in the

remainder of this section. The PROPER method is applicable

to the performance analysis of single-threaded Java code. The

current version of our PROPER prototype tool can handle the

analysis of single Java methods that use variables declared

locally or passed as arguments to the method, and whose

invocations of other methods have no side effects (i.e., do

not change the analysed method’s variables). However, these

constraints are only a limitation of the current implementation:

the steps of our method do not impose any of these constraints.

B. Probabilistic model synthesis

The synthesis of the DTMC model is carried out by recur-

sively applying the code-to-model transformation rules from

Figure 3. We distinguish between four types of statements:

1) Assignment statements and method calls (with no side

effects) are modelled using a single DTMC state. This

state has one incoming transition (from the DTMC

if (condition) {
codeBlock1

}
else {
codeBlock2

}

while (condition) {
codeBlock

}

var = expression

methodCall(args)

return expression
throw exception

pif

1− pif

1

1

sub-model
for

codeBlock1

sub-model
for

codeBlock2

sub-model
for

codeBlock

pwhile

1

1− pwhile

end
1

Fig. 3. PROPER code-to-model transformation rules

fragment modelling the previous statement in the code)

and one outgoing transition (to the DTMC fragment

modelling the next statement).

2) Conditional statements are modelled using a state with

two outgoing transitions, one to the DTMC fragment

modelling the statements from the ‘if’ branch, and one

to the DTMC fragment modelling the ‘else’ branch. The

latter DTMC fragment is empty if the else branch is

missing. The derivation of the probability pif from the

program logs is described in the next section.

3) Loops are modelled using a state with two outgoing tran-

sitions, one leading to the DTMC fragment modelling

the statements from the loop body, and one leading to the

fragment modelling the statement that comes after the

loop. Additionally, the outgoing transition of the DTMC

fragment modelling the statements from the loop body

leads back to the initial state of the loop. The derivation

of the probability pwhile for the initial state of the loop

is described in the next section. Note that we only focus

on ‘while’ loops since other types of loops (e.g., ‘for’

loops) can easily be converted into ‘while’ loops.

4) Return statements and exceptions are modelled using a

state whose only outgoing transitions leads to the “end”

state of the DTMC. This state, shown in dashed line

in Figure 3, has a self-loop transition of probability 1,

does not correspond to any statement from the code,

and is used as the sink state for all outgoing transitions

corresponding to final statements from the code.

Example 1. Figure 4 shows the DTMC obtained by applying

these rules to the Java code from our running example. The

statement modelled by each DTMC state is mentioned under

the state, and the states are numbered 0 to 8.

To allow the use of model checkers to analyse its syn-

thesised DTMCs, PROPER uses the rules from Figure 3 to

generate these DTMCs in the high-level modelling language

3



end 1

pif

1− pif
pwhile

1

1− pwhile

if(. . . )

if branch

int sum=0 int i=0 while(. . . ) sum+=. . . i++ return

loop body

1 1

1

else branch
throw . . .

1

0

1

2 3 4 5 6 7

8

Fig. 4. DTMC model for the distance1 Java method

of the PRISM model checker [20], which models a system as

the parallel composition of a set of modules. The state of a

module is determined by a set of finite-range local variables,

and its state transitions are specified by probabilistic guarded

commands that modify these variables, and have the form:

[action] guard → e1 : update1 + . . . + en : updaten;

where guard is a boolean expression over all model variables.

If the guard is true, the arithmetic expression ei, 1 ≤ i ≤
n, gives the probability with which the updatei change of

the module variables occurs. When the optional label action

is present, all modules comprising commands with the same

action must perform one of these commands simultaneously.

The DTMC produced by PROPER comprises a single

PRISM module, and is generated by the function BUILD-

MODEL from Algorithm 1. This function takes as input a

Java method, parses its code into an abstract syntax tree

ast in line 33, and obtains the PRISM module commands

by invoking the function SYNTHESIS. These commands—

prefixed with the appropriate model preamble assembled in

lines 35 and 36, and followed by the model ending built in

line 37—are then returned in line 38.

SYNTHESIS starts with a model comprising an empty se-

quence of commands (line 3). The model’s guarded commands

are then generated by the for loop in lines 4–29. The iterations

of this loop handle one statement from the ast abstract

syntax tree at a time, by using the switch from lines 5–

25 to handle each statement according to its type. The four

cases of the switch statement correspond to the four types

of statements described earlier in this section. This part of the

algorithm uses the counters stateCtr and condCtr (initialised

in line 1) to keep track of the index for the states and transition

probabilities being generated, respectively.

A single guarded command is generated if the processed

statement stmt is an assignment or a method call (line 7). If

stmt is a conditional, a new state with two outgoing transitions

is created (line 9). The first transition, corresponding to the

‘if’ branch of the conditional, points to the next state with a

probability pcondCtr. The second transition, corresponding to

the ‘else’ branch (if this branch exists) or to the statement after

the conditional (otherwise), has probability 1−pcondCtr, points

to a state identified (in line 12 if the else branch is missing,

or in line 14 otherwise) after the model commands for the

‘if’ branch are obtained by invoking SYNTHESIS recursively

1 dtmc

2

3 const double p1;

4 const double p2;

5 const int end_state = 8;

6

7 module distance1

8 s : [0..end_state] init 0;

9 [] s=0 -> p1:(s’=1)+(1-p1):(s’=2); //line:3

10 [] s=1 -> 1:(s’=end_state); //line:4

11 [] s=2 -> 1:(s’=3); //line:8

12 [] s=3 -> 1:(s’=4); //line:9

13 [] s=4 -> p2:(s’=5)+(1-p2):(s’=7); //line:10

14 [] s=5 -> 1:(s’=6); //line:11

15 [] s=6 -> 1:(s’=4); //line:12

16 [] s=7 -> 1:(s’=end_state); //line:14

17 [] s=8 -> 1:(s’=8);

18 endmodule

19

20 rewards "cost"

21 s=1 : 7;

22 endrewards

23

24 rewards "time"

25 s=5 : 2.5;

26 endrewards

Fig. 5. PRISM model synthesised for the distance1 Java method

in line 10. These commands are appended to the model in

line 12 if the ‘else’ branch is missing, or in line 14 otherwise.

In the latter case, the commands for the ‘else’ branch are then

generated (line 15) and added to the model (line 16).

The model commands when stmt is a loop statement are

generated in lines 19–22, by following a similar process to

that used for a conditional statement, except that the last

state modelling the loop body has its only outgoing transition

leading back to the first state modelling the loop (line 22). To

allow this, the stateCtr value for the first state of the loop

commands is recorded in line 19.

Finally, when stmt is a return or an exception statement,

a new model state is created (line 24). The only outgoing

transition of this state points to the end state of the model .

This state is declared in the model preamble in line 35

of BUILDMODEL and is generated in the model ending in

line 37 of BUILDMODEL, after the execution of SYNTHESIS

finishes and the index of this state is known.

To enable the generation of the reward structures for the

model, SYNTHESIS records the reward annotations from all

statements (lines 26–28) into the rewards dictionary ini-

tialised in line 1. The reward structures are then included

in the model ending by invoking the auxiliary function AD-

DREWARDSTRUCTURES in line 37 of BUILDMODEL. Finally,

the auxiliary function ADDVARIABLES is invoked in line 35

of BUILDMODEL to create the variable declarations for all

unknown transition probabilities generated by SYNTHESIS for

conditional statements and loops. The format of the reward

structures and variable declarations generated by the two

auxiliary functions is illustrated in the following example.

Example 2. Figure 5 shows the PRISM-encoded DTMC

model generated by Algorithm 1 for the distance1 Java

method from our running example. The model has two reward

4



Algorithm 1: DTMC model synthesis (shaded strings indicate literals included in the model)

1 stateCtr=0, condCtr=0, rewards = ()
2 function SYNTHESIS(ast)
3 model = ‘’
4 for each stmt ∈ ast do
5 switch (stmt)
6 case assignment or methodCall :
7 model += ‘[] s=’ + (stateCtr++) + ‘→ 1:(s’=’ + (stateCtr ) + ‘);’
8 case conditional :
9 model += ‘[] s=’ + (stateCtr++) + ‘→ p’ + condCtr + ‘:(s’=’ + (stateCtr ) + ‘)+(1-p’ + (condCtr++) + ‘):(s’=’

10 if branch model = SYNTHESIS(stmt.thenStmts);
11 if ¬stmt.hasElseBranch then
12 model += (stateCtr ) + ‘);’ + if branch model
13 else
14 model += (++stateCtr ) + ‘);’ + if branch model + ‘[] s=’ + (stateCtr − 1) + ‘→ 1:(s’=’
15 else branch model = SYNTHESIS(stmt.elseStmts)
16 model += (stateCtr ) + ‘);’ + else branch model
17 end
18 case loop :
19 loopStartingState=stateCtr
20 model += ‘[] s=’ + (stateCtr++) + ‘→ p’ + condCtr + ‘:(s’=’ + (stateCtr ) + ‘)+(1-p’ + (condCtr++) + ‘):(s’=’
21 loop body model = SYNTHESIS(stmt.loopBody)
22 model += (++stateCtr ) + ‘);’ + loop body model + ‘[] s=’ + (stateCtr − 1) + ‘→ 1:(s’=’ + loopStartingState + ‘);’
23 case return or exception :
24 model += ‘[] s=’ + (stateCtr++) + ‘→ 1:(s’=end_state);’
25 end
26 while reward = stmt.getNextReward do
27 rewards[reward.name] += (stateCtr − 1, reward.value)
28 end
29 end
30 return model
31 end
32 function BUILDMODEL(method)
33 ast = PARSE(method)
34 model commands = SYNTHESIS (ast)
35 model preamble = ‘dtmc’+ ADDVARIABLES(condCtr) + ‘const int end_state = ’ + stateCtr + ‘; \n’
36 model preamble += ‘module’+ ast.methodName + ‘\n s : [0..end_state] init 0; \n’
37 model ending = ‘[] s=’ + stateCtr + ‘→ 1:(s’=’ + stateCtr + ‘);\n endmodule’ + ADDREWARDSTRUCTURES(rewards)
38 return model preamble + model commands + model ending
39 end

structures, corresponding to the time and cost annotations

from the Java code in Figure 1. The transition probabilities p1

and p2 correspond to the ‘if’ statement and ‘while’ loop from

the Java code. Their values depend on the usage profile of the

code, and are determined as described in the next section.

C. Transition probability calculation

The transition probabilities for the DTMC states modelling

conditional statements and loops are calculated from the usage

profile of the analysed code. PROPER requires a usage profile

that provides, for each conditional statement and loop, the

(expected) number of executions of the ‘if’ branch of the

conditional statement or of body of the loop, respectively, over

N0 executions of the analysed code. There are multiple ways

in which this usage profile can be obtained:

• directly from the program logs, if the code is instru-

mented to log this information;

• through a technique called model counting [23], which

can calculate expected values for these counts from

empirical probability distributions of the program inputs,

where these distributions are taken from program logs;

• by Monte Carlo simulation applied to a simplified version

of the code (from which the statements with no impact

on the required execution counts are removed), where the

program inputs for the simulation are drawn randomly

from logs that reflect the empirical probability distribu-

tions of these inputs.

Give a usage profile with these characteristics, consider a set

of n ≥ 1 nested conditional statements and/or loops from the

analysed code. If the execution counts for these conditional

statements/loops are N1, N2, . . . , Nn,2 then the transition

probability associated with the i-th conditional statement/loop

is calculated as:

pi =

{

Ni

Ni−1
, if statement i is a conditional

Ni

Ni−1+Ni
, otherwise (if statement i is a loop)

(2)

where 1 ≤ i ≤ n. For conditional statements and loops that

are not nested within other conditional statements/loops (such

as those from our running example), the number of executions

of the analysed code is used in (2), i.e., Ni−1 = N0.

Example 3. Suppose that the usage profile for the Java method

distance1 from our running example indicates that, across

N0 = 10, 000 invocations of the method, the if branch of the

2 For a conditional statement, the count is of the number of executions of the
if branch, if this branch is part of the statement nest, or of the else branch, if
this branch exists and is part of the statement nest. For a loop, the count is
of the number of executions of the statements within the body of the loop.

5



conditional statement starting in line 3 from Figure 1 was

executed N1 = 15 times, and the body of the while loop from

lines 10–13 was executed N2 = 254, 000 times. Accordingly,

the values of the unspecified transition probabilities for the

DTMC model from Figure 5 are given by p1 = N1

N0
= 15

10,000 =

0.0015 and p2 = N2

N ′

1
+N2

= 254,000
(10,000−15)+254,000 = 0.9621.

The following result shows that the PROPER probabilistic

model synthesised in Section IV-B and instantiated with the

probabilities calculated above can be used to determine the

performance properties of the code under analysis.

Theorem 1. Given a Java method annotated with a perfor-

mance property (1), its DTMC D generated by Algorithm 1,

and the DTMC transition probabilities (2) calculated for a

usage profile of the method, the expected value of the property

for this usage profile is given by the probabilistic model check-

ing of the reward property R=?[F s = end state] over D.

Proof. The performance properties analysed by our PROPER

method are additive, i.e., if the execution time, cost or resource

use under analysis is due to multiple program statements,

the analysis can be carried out by adding up the property

values determined separately for each of these statements. As

such, we only need to prove the theorem for a property that

associates a value v > 0 with a single program statement. We

consider the general case where this statement is part of the

body of n ≥ 0 nested loops and/or conditional statements.

Given N0 program executions representative for the analysed

usage profile, let Ni ≥ 0, 1 ≤ i ≤ n, be the total number

of executions of the n-th such loop/conditional statement over

the N0 program executions.

The relevant part of the DTMC model D generated for the

analysed code (i.e., the part modelling the n loop/conditional

statement nest) comprises (a) n nested loop/conditional

statement model constructs with the structure from Figure 3

and probabilities pwhile = p1, p2, . . . , pi given by (2); and (b) a

reward structure that associates the value v with a state within

the innermost of these constructs. As such, the probabilistic

model checking of the reward property R=?[F s = end state]
over D yields the expected reward value:

r = f1f2 . . . fn · v, (3)

where fi is a multiplicative factor associated with the i-th

model construct, 1 ≤ i ≤ n. For a model construct associated

with a loop, this factor is given by

fi = pi(1 + pi(1 + pi(. . .))) = limk→∞

(

pi
1−pk

i

1−pi

)

= pi

1−pi

=
Ni

Ni−1+Ni

1−
Ni

Ni−1+Ni

= Ni

Ni−1

(4)

due to the repeated execution of i-th loop with probability pi.

For a model construct associated with a conditional statement,

the factor is simply fi = pi =
Ni

Ni−1
. Replacing these factor

values in (3) gives an expected reward value

r = N1

N0
· N2

N1
· . . . · Nn

Nn−1
· v = Nn

N0
· v, (5)

i.e., the mean value of the analysed property for the considered

usage profile (because the value v is associated with a state-

ment executed Ni times across N0 program executions).

D. Probabilistic model checking

In this PROPER step, we use a probabilistic model checker,

e.g., PRISM [20] or Storm [22], to analyse the PCTL-encoded

performance properties of interest over the DTMC synthesised

by Algorithm 1, with the probabilities computed in (2).

Example 4. Consider again our running example (Section II).

Determining the values of the ‘cost’ and ‘time’ properties

specified using PROPER annotations in Figure 1 involves the

probabilistic model checking of the reward PCTL properties

R{“cost”}=?[F s = end state] and R{“time”}=?[F s =
end state] over the DTMC model from Figure 5. To carry

out these analyses for the usage profile from Example 3, the

unspecified DTMC probabilities need to be initialised such that

p1 = 0.0015 and p2 = 0.9651. The results of these analyses

(using PRISM) are cost = 0.0105 and time = 69.0275.

E. Further application scenarios

Besides supporting the analysis of the performance prop-

erties specified by the initial code annotations, the PROPER

DTMC model can be reused for additional analyses in scenar-

ios encountered in software engineering practice. One such

scenario occurs when a method invocation from the analysed

code is replaced with the invocation of a functionally equiva-

lent method with different performance characteristics.

Example 5. The impact of replacing the Math.abs function

call from line 11 of the distance1 Java method from

Figure 1) with a call to the improved function FastMath.abs

can be analysed using the same DTMC model as in Example 4,

after only updating the reward value from line 22 of the model

(see Figure 5) to match the specifications of the new function.

Another scenario in which the DTMC model can be reused

is when the code needs to be deployed on a new hardware

platform with different quality attributes. As shown by the

following example, new quality properties can be analysed in

this scenario by defining new reward structures for the DTMC.

Example 6. Suppose that the application using the method

distance1 from our running example needs to be de-

ployed on a smart phone on which its invocations of

checkEqualLength and Math.abs consume 90 and 85

units of energy, respectively. The expected energy consumption

of distance1 can be predicted before actually running the

application on the new hardware, by simply augmenting the

DTMC model from Figure 5 with the new rewards structure

rewards "energy"

s=0 : 90;

s=5 : 85;

endrewards

where s = 0 and s = 5 are the DTMC states modelling the

statements that use checkEqualLength and Math.abs.
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V. IMPLEMENTATION

To automate the performance analysis of probabilistic pro-

grams using PROPER, we implemented a tool with the ar-

chitecture in Fig. 2. Our PROPER tool uses JavaParser3 to

parse the Java code of interest and generate the corresponding

DTMC models (Section IV-B). We developed a customised

Monte Carlo simulation method in Java to calculate the tran-

sition probabilities (Section IV-C) and employ the probabilistic

model checker PRISM [20] to analyse properties of interest

(Section IV-D). The PROPER open-source prototype tool, the

full experimental results summarised next, additional infor-

mation about our approach and the case studies used for its

evaluation are available at https://github.com/is742/PROPER.

VI. EVALUATION

A. Research Questions

We evaluated PROPER by performing extensive experi-

ments to answer the following research questions.

RQ1 (Accuracy): How accurately does PROPER support

the analysis of non-functional properties of interest? We

used this research question to establish if our method can

achieve the same accuracy levels compared to the standard

practice of analysing quality properties of interest via simula-

tion or by running the system in normal working conditions.

RQ2 (Decision-Making): How effective is PROPER to

support the intended uses? To support software engineers in

their decision-making, our PROPER method should success-

fully predict the effect of changes within the code and within

the code’s operating environment.

RQ3 (Efficiency): What are the computational overheads

of PROPER? We evaluated the execution time and memory

footprint incurred by PROPER and compared them against the

overheads incurred by simulation or real system execution.

B. Experimental Setup

We applied PROPER in multiple scenarios using Java

source-code adapted from four Java libraries and applications:

1) The distance1 Java method from the Apache Com-

mons Math library4 (see running example in Section II).

2) The getDevicePerfomanceClass method from

the Android messsaging app Telegram5 (abbreviated

‘devPerf’ in this section). Given a mobile device

in which Telegram operates, this method identifies the

specifications of the operating device and determines its

performance class. The performance categories that a de-

vice can be linked with are: low, average and high. In our

case study, we assumed that based on the result returned

by this method, Telegram adapts to the specifications

and shifts the performance of some of its features.

Additionally, we introduced a new performance category

(very high) to show the applicability of our approach in

cases where additional code is being introduced.

3 https://javaparser.org 4 https://commons.apache.org/proper/commons-math/
5 https://github.com/DrKLO/Telegram/

3) The fst method from the Apache Commons Maths li-

brary. This method implements the fast sine transformer

algorithm for one-dimensional real data sets.

4) An implementation of the widely used dynamic-

programming knapsack algorithm (knapsackDP)

taken from a public tutorial series on GitHub.6

Table I provides an overview of our case studies, along with

a list of identified performance properties of interest, formally

expressed in PCTL [19], that can be evaluated using our tool-

supported PROPER method.

For the evaluation of all research questions, we assume that

the values of the rewards of interest linked with a service or

state, e.g., cost, execution time or energy consumption, are

obtained from the service provider, and that logs capturing

the program’s usage profile are available. In the distance1

case study, we measure the expected time and cost associated

with the Math.abs method and to throwing the exception,

respectively. In the devPerf case study, we are interested

in the expected energy consumption of running the code, due

to an Animations method that sets the level of the application’s

visual quality. Depending on its input mode, each instance of

this method is linked to a different amount of energy (28, 34,

40 or 48). Similarly, in the fst case study, we measure the

expected time associated with the FastMath.sin method (where

each execution takes 1.5 time units), together with the expected

cost of reaching any of the two exceptions (of cost 5 each).

Finally, in the knapsackDP case study, we are interested

in the expected energy consumption due to a display method

located in the code (whose executions use 67 units of energy

each), and in the expected time associated with the Math.max

method, each invocation of which takes 2 time units.

All experiments were run on a macOS Big Sur Macbook Pro

with 2 GHz Dual-Core Intel Core i5 CPU and 8 GB RAM. The

source code, Markov models, data used for the experimental

evaluation and full experimental results are publicly available

in our GitHub repository https://github.com/is742/PROPER.

C. Results and Discussion

RQ1 (Accuracy). We answer RQ1 by comparing the PROPER

results with those produced by simulating the execution of the

programs from Table I in a realistic environment and with a

suitably instrumented operational profile. To achieve this, we

deployed the code of each program in a mobile device in the

form of a stand-alone application using the Android studio’s

emulator and performed simulation directly on the device.

Table II shows the results obtained from the verification

of properties of interest using PROPER and simulation. To

execute the PMC step of PROPER (Section IV-D), we used

the PRISM model checker [20] and provided as input to the

DTMC models the probabilities obtained during the transition

probability calculation step of the approach (Section IV-C).

Then, we quantified the properties shown in Table I. To obtain

the values from simulation, we performed 104 simulated runs

of each case study. The input for the methods during every

simulation was randomly selected from the program’s log. Due

6 https://github.com/eugenp/tutorials/
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TABLE I
DESCRIPTION OF CASE STUDIES’ MODELS AND PROPERTIES OF INTEREST EXPRESSED IN BOTH NATURAL LANGUAGE AND PCTL.

Case studies #states #trans. #linesOfcode Performance property description PCTL

distance1 8 10 16
What is the expected time? R{“time”} = ? [ F s = end state ]
What is the expected cost? R{“cost”} = ? [ F s = end state ]

devPerf 17 21 40 What is the expected energy consumption? R{“energy”} = ? [ F s = end state ]

fst 30 35 47
What is the expected time? R{“time”} = ? [ F s = end state ]
What is the expected cost? R{“cost”} = ? [ F s = end state ]

knapsackDP 18 23 29
What is the expected energy consumption? R{“energy”} = ? [ F s = end state ]
What is the expected time? R{“time”} = ? [ F s = end state ]

TABLE II
COMPARISON IN ACCURACY OF RESULTS OBTAINED USING PROPER AND SIMULATION.

Properties
PROPER Simulation

distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

R{“time”}=?[F s=end state] 2.5 1.14 21.96 N/A 2.5 1.11 21.19 N/A

R{“cost”}=?[F s=end state] 4.66 1.91 N/A N/A 4.63 1.89 N/A N/A

R{“energy”}=?[F s=end state] N/A N/A 735.93 30.96 N/A N/A 710.24 31.02

to the randomness of selecting data from the log, the results, as

expected, were slightly different every time we performed the

simulation. To alleviate this validity threat (cf. Section VI-D)

and to increase the accuracy of simulation results, we created

10 sets of simulated runs of 104 code executions and calculated

the average property values.

As can be seen from the results in Table II, the quality

properties evaluated using PROPER are within 3.5% of those

obtained in simulation. The small differences in the results in

Table II are due to the randomness in simulation. Increasing

the number of simulation runs would reduce further the

delta; experimenting further on this research thread is part

of our future work. These results confirm the capability of

our approach to accurately analyse performance properties of

probabilistic programs without the need to execute the source

code in simulation.

RQ2 (Decision-Making). We illustrate the capabilities of

PROPER and how it can help software engineers to make

informed decisions using two modification scenarios (Sce-

nario A and Scenario B) that frequently occur in the domains

of product obsolescence [24] and software modernisation [25].

In Scenario A, software engineers replace one of the external

methods used by the program of interest to optimise the

requirements defined during the design phase of the program.

Such a modification may involve, for example, replacing an

existing external method with a faster alternative to reduce

response time, or using a less reliable but cheaper method to

reduce the operational cost, provided that the method does

not critically affect the application’s functionality. Since the

operational profile of the application does not change, and

given the reward values for the new method by the service

providers in the form of a service-level agreement, we can

use PROPER to quantify quality properties of interest without

simulating the code’s execution. This will not only save time

and effort, but it will also enable engineers to verify additional

properties that were not considered during system design.

Table III shows the updated results in bold obtained during

Scenario A. In distance1 case study, we used the method

FastMath.abs that offered improved execution time (=1.8)

instead of Math.abs whose execution time was 2.5. The ex-

pected cost was not affected by this change, as it is associated

with the exception. In the fst case study, we replaced the

FastMath.sin method with the slower (=2.2 per invocation)

but more reliable Math.sin method which resulted in a slight

increase in execution time (i.e., 1.14 with FastMath.sin vs 1.67

with Math.sin). Similarly to distance1, the cost was not

affected. The change in the knapsackDP program affected

both the expected time and energy consumption. In particular,

we introduced the faster (=1.3) method FastMath.max instead

of the Math.max method, which resulted in reduced execution

time (14.27 vs 21.96). We also updated the display method to

increase performance using a more computationally-expensive

method (=78), which led to increased overall energy consump-

tion (735.03 vs 856.76 before and after the change, respec-

tively). Finally, in the devPerf program we assumed that the

Animations method was updated to offer better optimisations

making use of the increased number of cores in modern mobile

devices (=23,30,35,43). This change resulted in a decrease of

energy consumption (30.96 vs 26.27) in all its invocations.

In Scenario B, software engineers do not make any internal

changes in the code; instead, the application is deployed in

a new device with different capabilities and specifications.

Such scenarios may arise when transferring the same software

between mobile devices or when deploying the same soft-

ware in robotic systems with different performance, memory,

networking and other characteristics (e.g., a robot using a

Raspberry Pi 4 and another using a Raspberry Pi Zero).

Since the applied changes are only external and the op-

erational profile of the application does not change, we can

employ PROPER and obtain the updated values for the quality

attributes of interest. Table III (Scenario B) shows in bold

the updated values of the performance properties for the four

applications assuming that they have been deployed in a device

with reduced hardware performance.

The experimental results from both scenarios show that

PROPER can provide useful insights on the impact of potential

internal changes in the code or external in the operating

environment of an application. The impact of such changes can
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TABLE III
RESULTS OBTAINED USING PROPER FOR TWO DIFFERENT SCENARIOS. SCENARIO A: REPLACEMENT OF A PROGRAM METHOD WITH A

FUNCTIONALLY-EQUIVALENT METHOD WITH DIFFERENT PERFORMANCE CHARACTERISTICS. SCENARIO B: PROGRAM DEPLOYMENT ON A NEW

HARDWARE PLATFORM WITH DIFFERENT QUALITY ATTRIBUTES.

Properties
Scenario A Scenario B

distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

R{“time”}=?[F s=end state] 1.8 1.67 14.27 N/A 3.2 1.97 30.75 N/A

R{“cost”}=?[F s=end state] 4.66 1.91 N/A N/A 4.66 1.91 N/A N/A

R{“energy”}=?[F s=end state] N/A N/A 856.76 26.27 N/A N/A 900.69 35.73

TABLE IV
TIME AND MEMORY CONSUMPTION COMPARISON BETWEEN PROPER AND SIMULATION.

Properties
PROPER Simulation

distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

Execution time (seconds) 0.003 0.005 0.01 0.004 256.2 193.2 2826.6 264.6

Memory consumption (MB) [12-39] [12-36] [12-37] [11-36] [3.4-37.7] [4.3-37.4] [6-49] [2.7-36]

be assessed without updating the code or deploying it in the

target hardware platform, thus reducing significantly the effort

and cost in analysing performance properties of interest. These

results provide evidence how PROPER can assist software

engineers in making informed decisions.

RQ3 (Efficiency). To answer RQ3, we measured the execution

time and memory consumption of running the code in real time

with obtaining results using PROPER. To measure the code’s

execution time we used the currentTimeMillis method from

Oracle’s System(https://docs.oracle.com/javase) class and for

the probabilistic model checking step of PROPER we used the

output log from PRISM [20] to obtain both the time needed

for model construction and model checking for each of the

specified properties. We measured the memory consumption

using the JavaVisualVM profiling tool which comes with the

Java Development Kit (JDK). Also, we used the method sleep

from Oracle’s Threadclass to simulate a server response time

of 2ms for each function invocation.

The experimental results in Table IV show that PROPER is

much faster than executing the code in its operating environ-

ment. In terms of memory, PROPER independent of the case

study consumes on average the same amount of memory. With

simulation, however, the knapsackDP method which had a

longer execution time than the rest case studies, showed an

increase in the min and max values of used memory too.

D. Threats to Validity

Construct validity threats may arise from the construction

of the case studies’ models based on the selected Java code.

To mitigate this threat, all use cases are based on real-world

applications, and the produced models refer to parts of these

applications’ source code.

Internal validity threats can originate from obtaining inac-

curate results via simulating the code’s execution. To mitigate

these threats, we performed simulation up to 104 times.

Additionally, we created 10 sets of these simulation runs and

calculated the average of their output values.

External validity threats might be due to the difficulty

of representing part of a Java application’s source code as a

DTMC model. To mitigate this threat, we carefully evaluated

each model to its respective code method, and built an auto-

mated implementation of PROPER to assist us in the code-to-

model transformation process. However, further experiments

are needed to evaluate our method for additional code samples.

VII. RELATED WORK

Probabilistic software analysis (PSA) [26] has been used

successfully in domains including testing, cryptographic pro-

tocols, cyber-physical systems, and reliability analysis [27].

However, to the best of our knowledge, our method is the

first PSA approach that synthesises a probabilistic model

directly from source code to verify performance properties of

interest. The only related work we are aware of belongs to

the areas of software maintenance [28] and software reliability

analysis [29]. Unlike our approach, research in these areas uses

mostly techniques such as symbolic execution [30], [31] and

simulation [32], [33], rather than probabilistic model checking.

Probabilistic symbolic execution [30] is an extension of

symbolic execution that allows probabilistic reasoning. A

probabilistic environment for Java based on symbolic execu-

tion is proposed in [31]. This framework can handle proba-

bilistic programming features, and be used for the encoding

and analysis of DTMCs, Bayesian Networks, etc. Additionally,

[15] introduces a general methodology that uses symbolic

execution of source code for extracting failure and success

paths that can be used for probabilistic reliability assessment,

against relevant usage scenarios. [16] extends the previous

approach by building upon the symbolic execution framework

with the aim of computing a precise numeric characterisation

of program changes. However, the focus of these approaches

is on reliability. In contrast, PROPER targets the analysis

of performance-related quality properties. Also, the bounded

exploration depth set during symbolic execution can lead to

loss of information necessary for quality property analysis,

while our approach achieves precise exploration of loops.

The reliability assessment approach from [34] uses software

metrics for reliability modelling. This work differs from ours

as it uses DTMC models built around the control transfer

relationship between components and it is not directly ap-

plied on source code. Furthermore, [35] introduces reduction

methods for probabilistic programs that operate purely on a

syntactic level and [33] proposes a framework of incorporating

path testing into reliability estimation for modular software

systems. Also, [32] develops simulation procedures to assess
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the impact of individual components on the reliability of an

application in the presence of fault detection and repair. These

approaches differ from ours as they focus on techniques that

improve the calculation and monitoring of reliability.

Finally, architecture-level probabilistic analysis of nonfunc-

tional properties has been proposed, e.g., [36], [37], [38], [39].

These approaches are complementary to PROPER, as they do

not support the code-level analysis of software performance

and other quality properties.

VIII. CONCLUSION

We presented PROPER, a tool-supported method for the

automated performance analysis of probabilistic programs.

PROPER synthesises a DTMC using code annotated with

performance properties of interest (e.g., timing, resource use,

cost), calculates the transition probabilities of the DTMC using

program logs, and executes probabilistic model checking to

quantify these properties. We evaluated PROPER on four

applications and demonstrated how it can support the perfor-

mance analysis in scenarios involving changes in hardware

platforms, function libraries or usage profile. Our future work

includes (1) extending PROPER to support analysis of reliabil-

ity properties; (2) investigating methods to support the compu-

tation of confidence intervals of performance properties [40];

(3) applying PROPER to other applications and scenarios, and

assessing its scalability to larger programs; and (4) validating

PROPER in studies where it is used by practitioners.
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