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The energy-time uncertainty relation puts a fundamental limit on the precision of lidars for the esti-

mation of range and velocity. The precision in the estimation of the range (through the time of arrival)

and the velocity (through Doppler frequency shifts) of a target are inversely related to each other and are

dictated by the bandwidth of the signal. Here, we use the theoretical toolbox of multiparameter quantum

metrology to determine the ultimate precision of the simultaneous estimation of range and velocity. We

consider the case of a single target as well as a pair of closely separated targets. In the latter case, we

focus on the relative position and velocity. We show that the tradeoff between the estimation precision of

position and velocity is relaxed for entangled probe states and is completely lifted in the limit of perfect

photon time-frequency correlations. In the regime where the two targets are close to each other, the relative

position and velocity can be estimated nearly optimally and jointly, even without entanglement, using the

measurements determined by the symmetric logarithmic derivatives.

DOI: 10.1103/PRXQuantum.2.030303

I. INTRODUCTION

Quantum metrology [1,2] and quantum imaging [3] aim

at exploiting physical resources such as quantum coher-

ence and entanglement to achieve precision measurements

and image resolution beyond those that are allowed by

classical physics. A number of applications harness quan-

tum correlations in the energy-time degrees of freedom

[4], including lithography [5], quantum-enhanced posi-

tioning [6], quantum illumination [7–9], phase estimation

[10–12], and ghost imaging [13]. The ability to accu-

rately measure the temporal and spectral properties of

light has led to significant developments in chemical spec-

troscopy [14], ranging [15,16], clock synchronization [17],

continuous-variable superdense coding [18], and quantum

key distribution [19,20].

In lidars, electromagnetic pulses are sent to interrogate a

region of interest and the back-reflected signals are col-

lected and examined. The standard technique to resolve

the longitudinal position of the target is based on a mea-

surement of the time of flight associated with a round

trip. Furthermore, the radial velocity of the target can be
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deduced by examining the Doppler frequency shift of the

returned signals. In this paper, we analyze a model where

faint pulses, containing at most one photon, are sent to

interrogate a region of space that may contain one or two

targets. The photons are prepared in wave packets with

central frequency ω. Our results are applicable within the

paraxial approximation, in the limiting regime where the

background noise is negligible, and the targets can be

considered to be pointlike, i.e., their internal structure is

unresolved.

If a pulse encounters a single target at distance x that

moves with relative (nonrelativistic) radial velocity v, then

the back-reflected photon (in a lossless scenario) will

return after a time delay τ , with its central frequency

shifted to ω′ = ω + δν. The range x and velocity v of

the target can thus be estimated as x ≃ cτ/2, and v ≃
c(δν/ω)/2, where c is the speed of light. If, instead, there

are two close targets in the region of interest, with radial

position x1, x2 and velocity v1, v2, a measurement of the

time of arrival and the frequency shift allows us to estimate

the central position (x1 + x2)/2 and velocity (v1 + v2)/2,

as well as the relative position x1 − x2 and relative velocity

v1 − v2.

The precision in the estimation of the time of arrival and

of the signal frequency is [6,21,22]

δt ≃ σt√
νn

, δω ≃ σω√
νn

, (1)
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where σω(σt) is the frequency (time) width of the sig-

nal, ν is the number of pulses used, and n is the number

of photons in each pulse. The Arthurs-Kelly relation [23]

expresses the fundamental precision limit on the joint

estimation of these parameters:

σtσω � 1. (2)

Thus for nonentangled photons, lidar systems are subject to

a fundamental tradeoff in their ability to resolve the range

and velocity of the target.

It is known that uncertainty relations may change in

the presence of entanglement [24–26], a phenomenon that

could be exploited to boost the precision of quantum-

limited range and velocity detection. We use the toolbox

of quantum information theory, in particular multiparame-

ter quantum metrology, to assess the ultimate precision of

quantum-limited lidars, with or without the assistance of

entanglement. We consider the regime of faint pulses with

at most one photon each, modeled using a Gaussian enve-

lope. Within this model, we study the problem of jointly

estimating the position and velocity of a target, as well as

the relative position and velocity of two close targets.

Position and velocity estimation translates into time and

frequency estimation, which has been considered before.

The estimation of time and frequency shifts following the

detection of a single target has previously been studied

by Zhuang et al. in the limit of very large entanglement

[26]. Here, we consider time and frequency estimation

for general probe states with entanglement quantified by a

continuous parameter κ ∈ [0, 1), where κ = 1 corresponds

to perfect time-frequency correlations arising from perfect

phase-matching conditions. The estimation of the relative

time and frequency for two pulses has been considered

by Silberhorn and collaborators [27,28] but they did not

consider the use of entanglement and the simultaneous

estimation of these parameters.

The structure of the paper is as follows. In Sec. II,

we briefly review the tools for multiparameter quantum

parameter estimation. In Sec. III, we introduce our model.

Section IV presents the ultimate limit in the estimation of

position and velocity of a target. In Sec. V, we determine

the ultimate limit in the estimation of the relative position

and velocity of two targets and an optimal measurement

strategy (for the estimation of the relative position) is

presented in Sec. VI.

II. THEORETICAL TOOLBOX

A quantum parameter estimation routine typically con-

sists of three stages, followed by a classical data-

processing step. This is shown schematically in Fig. 1(a).

First, a quantum system is prepared in a known quan-

tum state. Second, the quantum system is used to probe

a target system that we want to investigate. Third, the

v

State preparation

Measurement

Targetx

(a)

v

State preparation

Measurement

Target

x

Idler

Signal(b)

FIG. 1. The use of a lidar for measuring the velocity and range,

using (a) separable and (b) entangled states.

probe is measured after interaction with the target. In non-

adaptive estimation strategies, the above is repeated N

times. Finally, the raw data collected are processed to

extract a best estimate for the parameters of interest. An

entanglement-assisted strategy refers to the scenario where

the probe is initially entangled with an auxiliary system.

The latter does not interact with the target but it is jointly

measured with the probe. This is shown in Fig. 1(b).

The ultimate precision in the estimation is given by the

quantum Cramér-Rao (QCR) bound [29,30]. For the esti-

mation of the parameter λ encoded onto a quantum state

ρλ, this is a lower bound on the variance 
λ̂2 = 〈λ̂2〉 −
〈λ̂〉2 of any unbiased estimator λ̂. For unbiased estimators,

the QCR bound establishes that


λ̂2
�

1

N

1

J (ρλ)
, (3)

where N is the number of probe systems used and J is

the quantum Fisher information (QFI) associated with the

global state ρλ of the probes. The latter is defined as

J (ρλ) = Tr
(

L2
λρλ

)

, (4)

where Lλ is the symmetric logarithmic derivative (SLD)

associated with the parameter λ [31]. If the state ρλ lives

in a Hilbert space of dimension d, consider a set of basis

vectors |e1〉, |e2〉, . . . , |ed〉 in which ρλ is diagonal:

ρλ =
∑

n

pn|en〉〈en|. (5)

030303-2
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The SLD is then given by

Lλ = 2
∑

n,m:pn+pm �=0

〈em|∂λρ|en〉
pn + pm

|em〉 〈en| , (6)

with ∂λρ = (∂ρλ/∂λ). The QCR bound is asymptotically

saturated, that is, there exists a measurement strategy and

an unbiased estimator such that Eq. (3) is tight in the limit

that N → ∞ [32]. The SLD directly determines an opti-

mal measurement, which is a projective measurement in

the eigenvectors of the SLD operator.

When the quantum state ρλ carries information about

multiple parameters, λ = λ1, . . . , λK , the statistical error in

their estimation is expressed by the covariance matrix of

the estimators λ̂ = λ̂1, . . . , λ̂K ,

Cov[λ̂]ij = 〈λ̂iλ̂j 〉 − 〈λ̂i〉 〈λ̂j 〉 . (7)

The multiparameter QCR bound establishes the funda-

mental lower bound on the covariance matrix of any set

of unbiased estimators. This is expressed as a matrix

inequality,

Cov[λ̂] �
1

N
J (λ)−1, (8)

where J (λ) is the QFI matrix, defined as

J (λ)ij = 1

2
Tr

(

ρλ{Lλi
, Lλj

}
)

. (9)

Unlike the single-parameter case, there might not exist a

single measurement that allows us to jointly estimate K >

1 parameters simultaneously and optimally. This means

that the multiparameter QCR bound is not always achiev-

able. A sufficient condition for the joint and optimal esti-

mation is that the SLD operators commute. A weaker

condition, which is necessary and sufficient, is

Tr
(

ρλ[Lλi
, Lλj

]
)

= 0. (10)

If this condition holds, then there exists a single measure-

ment and a set of K estimators that saturate the multipa-

rameter QCR bound in the limit that N → ∞ [33–35].

When the condition in Eq. (10) is not met, one can use

an alternative bound based on the so-called right logarith-

mic derivative (RLD). In their analysis, Zhuang et al. have

employed this bound [26], the particular form of which has

been proved by Fujiwara [36]. While the RLD bound is

tighter for this particular problem [37], the RLD operator

does not directly relate to a measurement operator. Here,

we use the SLD bound, since we know that the SLD trans-

lates directly to a measurement operator, and we carefully

consider the attainability of the QCR bound.

III. THE MODEL

We consider signals with a Gaussian envelope in fre-

quency, which achieves the minimum duration-bandwidth

product σtσω = 1/2 [38]. By considering Gaussian pulses,

we are able to obtain an exact analytical expression for

the QFI matrix. We expect that the same qualitative results

apply to non-Gaussian pulses under fairly general assump-

tions.

Consider the field operator a
†
ω, which creates a photon

at frequency ω. To keep the model simple, we do not con-

sider the polarization and spatial degrees of freedom. A

state of the quantum electromagnetic field with one photon

at frequency ω is denoted as |ω〉 = a
†
ω|0̂〉, where |0̂〉 is the

vacuum. A Gaussian pulse with central frequency ω̄0, cen-

tral time t̄0, and frequency bandwidth σ0, is described by

the state

|ψ0〉 =
∫

dω ψ̃0(ω)|ω〉, (11)

where |ω〉 is the single-photon state with frequency ω and

ψ̃0(ω) =
(

1

2πσ 2
0

)
1
4

exp

[

− (ω − ω̄0)
2

4σ 2
0

+ iωt̄0

]

. (12)

Alternatively, we can represent the state in the time domain

as

|ψ0〉 =
∫

dt ψ(t)|t〉, (13)

where

ψ0(t) =
(

2σ 2
0

π

)

1
4

exp
[

−(t − t̄0)
2σ 2

0 − iω̄0(t − t̄0)
]

. (14)

Here, |t〉 = a
†
t |0̂〉 is the state of a single photon that is

detected at time t and a
†
t = (2π)−1/2

∫

eiωta
†
ω.

The signal is sent toward a target at distance x that is

moving with radial velocity v (we choose v positive when

the target is moving away). If the photon in state |t〉 is back-

scattered by the target, it is received at time

τ(t) = t + 2x

c(1 − β)
+ 2β(t − t̄0)

1 − β
, (15)

where β = v/c and x is the position of the target at time t̄0.

Therefore, the returned photon is described by the state

|ψ〉 =
∫

dt ψ0(t)|τ(t)〉 =
∫

dτ ψ(τ)|τ 〉, (16)
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where

ψ(τ) = N exp

[

−
(

1 − β

1 + β
(τ − t0) − 2x

c(1 + β)

)2

σ 2

]

× exp

[

−iω0

(

1 − β

1 + β
(τ − t0) − 2x

c(1 + β)

)]

(17)

=
(

2σ 2

π

)

1
4

exp
[

−
(

τ − t̄
)2

σ 2 − iω̄
(

τ − t̄
)

]

. (18)

The latter describes a single-photon state with bandwidth

σ = 1 − β

1 + β
σ0, (19)

and central time and frequency

t̄ = t̄0 + 2x

c(1 − β)
, (20)

ω̄ = 1 − β

1 + β
ω̄0. (21)

The above shows that the information about the target dis-

tance x is carried by central time t̄ and that the information

about the target velocity is carried by all three parame-

ters t̄, ω̄, and σ . The same relations hold for the case of

entanglement-assisted estimation.

For entanglement-assisted sensing, we consider a model

of a two-photon state as it is produced by spontaneous

parametric down-conversion [24],

|�0〉 =
∫

dω

∫

dωi �̃0(ω, ωi) |ω〉 |ωi〉 , (22)

where

�̃0(ω, ωi) = Ñ0 ei(ω+ωi)t̄0

× exp

[

− (ω − ω̄0)
2

4(1 − κ2)σ 2
0

− (ωi − ω̄i0)
2

4(1 − κ2)σ 2
i0

−κ(ω − ω̄0)(ωi − ω̄i0)

2(1 − κ2)σ0σi0

]

, (23)

and Ñ0 is the normalization factor. This two-photon state

describes a pair of frequency-entangled photons, with cen-

tral time t̄0, central frequency ω̄0, ω̄i0, and bandwidth

σ0, σi0, for the signal and idler photons respectively. The

parameter κ ∈ [0, 1) quantifies the amount of entangle-

ment between the signal and idler photon. When κ = 0, the

photon pair is separable, whereas in the limit when κ → 1,

the photons are perfectly entangled in frequency. Note that

the state is nonphysical for κ = 1.

In the time domain, the two-photon state is

|�0〉 =
∫

dt

∫

dti �0(t, ti) |t〉 |ti〉 , (24)

with

�0(t, ti) = N0 e−iω̄0(t−t̄0)−iω̄i0(ti−t̄0)

× exp
[

−(t − t̄0)
2σ 2

0 − (ti − t̄0)
2σ 2

i0

+2κ(t − t̄0)(ti − t̄0)σ0σi0

]

. (25)

The signal photon is sent toward the target and the idler

is retained, similar to quantum illumination [7–9]. If the

signal photon is back-scattered by the target, it will return

with a time delay given by Eq. (15). By proceeding as

in the single-photon case, we obtain the two-photon state

when the returning photon is collected at the receiver:

|�〉 =
∫

dt

∫

dti �(t, ti) |t〉 |ti〉 , (26)

where

�(t, ti) = N e−iω̄(t−t̄)−iω̄i0(ti−t̄0)

× exp
[

−(t − t̄)2σ 2 − (ti − t̄0)
2σ 2

i0

+2κ(t − t̄)(ti − t̄0)σσi0

]

, (27)

and the central time t̄, central frequency ω̄, and bandwidth

σ of the signal photon are as in Eqs. (19)–(21). These are

the spatiotemporal properties of the back-scattered light,

which we use to extract the range and velocity of the

targets.

IV. RANGING AND VELOCITY ESTIMATION

In this section, we present the QFI matrix for the estima-

tion of range and velocity, with and without the assistance

of entanglement. As shown in the previous section, in our

model the information about range x and velocity β (in

natural units) of the target is carried by the central time

t̄, the central frequency ω̄, and the bandwidth σ of the

returned photon. We first compute the QFI matrix for the

estimation of the parameters λ = (t̄,ω̄, σ) and then obtain

the QFI matrix for the parameters µ = (x, β) that are ulti-

mately of interest. In order to find the ultimate precision of

the µ parameters, we translate their SLDs into the SLDs

for the λ parameters. We then work with the λ parameters

throughout the remainder of the paper.
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The SLDs for the µ parameters are related to the SLDs

for the λ parameters as follows:

Lµj
=

∑

k

∂λk

∂µj

Lλk
, (28)

from which we obtain the QFI matrix

J (µ)ij =
∑

h,k

∂λh

∂µi

∂λk

∂µj

J (λ)hk. (29)

The partial derivatives can be evaluated to give

∂ t̄

∂x
= 2

c(1 − β)
,

∂ t̄

∂β
= 2x

c(1 − β)2
, (30)

∂ω̄

∂x
= 0,

∂ω̄

∂β
= − 2ω̄0

(1 − β)2
, (31)

∂σ

∂x
= 0,

∂σ

∂β
= − 2σ

(1 − β)2
, (32)

which yields

Lx = 2

c(1 − β)
Lt̄, (33)

Lβ = 2

(1 − β)2

(x

c
Lt̄ − ω̄0Lω̄ − σLσ

)

. (34)

Note that these SLDs depend on the central time t̄, the cen-

tral frequency ω̄, and the bandwidth σ of the back-scattered

photon. Therefore, the SLDs for x and β are determined

by the SLDs for the λ parameters. In the following subsec-

tions, we consider this estimation problem with separable

and entangled photons.

A. Separable photons

Firstly, consider using the state in Eq. (14) sent out to the

target to estimate the parameters λ = (t̄, ω̄, σ). The back-

scattered photon will have the form given in Eq. (18).

This single-photon state lives in an infinite-dimensional

Hilbert space. However, as we show in Appendix B, we

can compute the QFI matrix by restricting the state to a

three-dimensional Hilbert space. We define a suitable sys-

tem of three basis vectors, |e1〉 = |ψ〉 determined by Eq.

(18), |e2〉, and |e3〉. In this basis, we obtain the following

expression for the SLDs:

Lt̄ =

⎛

⎝

0 2σ 0

2σ 0 0

0 0 0

⎞

⎠, Lω̄ =

⎛

⎝

0 i/σ 0

−i/σ 0 0

0 0 0

⎞

⎠ ,

Lσ =

⎛

⎝

0 0
√

2/σ

0 0 0√
2/σ 0 0

⎞

⎠ . (35)

From these SLDs, we obtain the QFI matrix

J (λ) =

⎛

⎝

4σ 2 0 0

0 1/σ 2 0

0 0 2/σ 2

⎞

⎠ . (36)

As expected, the QFI of the parameter t̄ is inversely propor-

tional to that of ω̄ and it is not possible to make all diagonal

elements of J arbitrarily large simultaneously. The tradeoff

between time and frequency estimation is expressed by the

relation J (t̄)J (ω̄) = 4.

Since ρ = |ψ〉〈ψ | = |e1〉〈e1|, the necessary and suffi-

cient condition for joint optimal estimation in Eq. (10) is

〈ψ |[Lλi
, Lλj

]|ψ〉 = 0. However, we obtain

〈ψ |[Lt̄, Lω̄]|ψ〉 = −4i, (37)

which implies that it is not possible to jointly and opti-

mally estimate the central time and frequency. However,

as 〈ψ |[Lt̄, Lσ ]|ψ〉 = 〈ψ |[Lω̄, Lσ ]|ψ〉 = 0, it is possible to

estimate jointly the bandwidth and central frequency or the

bandwidth and the central time.

After a change of variables, we obtain the SLDs for the

position and velocity of the target,

Lx = 2

c(1 − β)

⎛

⎝

0 2σ 0

2σ 0 0

0 0 0

⎞

⎠ , (38)

Lβ = 2

(1 − β)2

⎛

⎝

0 2σx/c − iω̄0/σ −
√

2

2σx/c + iω̄0/σ 0 0

−
√

2 0 0

⎞

⎠ .

(39)

It follows that

〈ψ |[Lx, Lβ]|ψ〉 = i
16ω̄0

c(1 − β)3
. (40)

Thus, the SLDs for x and β inherit the incompatibility

property of the central time and frequency. This formally

shows that it is not possible to jointly estimate x and β

with separable photons by using the SLD measurement

operators and saturating the QCR bound.

B. Entangled photons

We consider the estimation of the parameters λ =
(t̄, ω̄, σ) of the two-photon state |�〉 determined by Eq.

(27). As we show in Appendix C, the QFI matrix can be

computed within a four-dimensional Hilbert space using
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suitable basis vectors |e1〉 = |�〉, |e2〉, |e3〉, |e4〉. In this

basis, the SLDs become

Lt̄ = σ
√

2

⎛

⎜

⎜

⎝

0
√

1 − κ
√

1 + κ 0√
1 − κ 0 0 0√
1 + κ 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

, (41)

Lω̄ = 1

σ
√

2

⎛

⎜

⎜

⎜

⎝

0 i√
1−k

i√
1+k

0

− i√
1−k

0 0 0

− i√
1+k

0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎠

, (42)

Lσ = 1

σ

√

2 − κ2

1 − κ2

⎛

⎜

⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞

⎟

⎠
. (43)

For the saturability condition, we obtain

〈�|[Lt̄, Lω̄]|�〉 = −4i, (44)

which is the same as for separable photons. Therefore, the

QCR bound cannot be saturated for any κ ∈ [0, 1). How-

ever, there exists a measurement, not based on the SLDs,

which saturates the QCR bound in the limit where κ → 1.

This measurement has been constructed by Zhuang et al.

[26] and we present it using our approach in Appendix F.

From the SLDs, we obtain the QFI matrix

J (λ) =

⎛

⎜

⎝

4σ 2 0 0

0 1

σ 2
1

1−κ2 0

0 0 1

σ 2
2−κ2

1−κ2

⎞

⎟

⎠
. (45)

Note that the degree of correlation 1 − κ2 appears in the

denominator of the QFI for ω̄. This means that the tradeoff

in precision between t̄ and ω̄ can be lifted by choosing κ

arbitrarily close to 1. Moreover, we can make all diagonal

elements of J arbitrarily large simultaneously, contrary to

the case in Eq. (36). With the assistance of entanglement,

we thus obtain

J (t̄)J (ω̄) = 4

1 − κ2
. (46)

As previously noted in Ref. [26], this is a violation of the

Arthurs-Kelly uncertainty relation [23] for nonentangled

photons.

In conclusion, in the limit of κ ≃ 1, there exists a sin-

gle measurement (e.g., the measurement discussed in Ref.

[26]) such that σ 2
t̄

≃ 1/J (t̄), and σ 2
ω̄ ≃ 1/J (ω̄), where σ 2

t̄

v1
v2State preparation

Measurement

Targets
x

(a)

v1
v2

State preparation

Measurement

Target(s)
x

Idler

Signal(b)

FIG. 2. The use of a lidar for measuring the velocity and range

separation using (a) separable and (b) entangled states.

and σ 2
ω̄ are the variances of the estimators of t̄ and ω̄. This

implies the modified Arthurs-Kelly relation,

σt̄σω̄ ≃
√

1 − κ2

2
≪ 1

2
. (47)

For estimating the individual parameters, the QFI can be

achieved by simply heralding the idler photon and then

measuring the signal. The QFI for the frequency parameter

is inversely proportional to the uncertainty in the frequency

of the photon. Conditioning on the measurement outcome

of the idler reduces this uncertainty by a factor
√

1 − κ2

[24]:


ω̄ =
√

1 − κ2σ . (48)

Therefore, unlike in quantum illumination protocols [7,8],

no quantum memory is required to achieve the optimal

precision.

V. TWO TARGETS

In this section, we focus on the problem of estimat-

ing the relative radial position and velocity of two close

targets, with either separable [Fig. 2(a)] or entangled

[Fig. 2(b)] photons.

In traditional lidar, the ability to measure the separa-

tion between two close targets deteriorates if the signals

start to overlap. In imaging, the analogous problem, which

has been dubbed Rayleigh’s curse [39], arises when two

objects are closer than the Rayleigh length of the optical
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imaging system. In principle, if the returning signals coher-

ently reflect off the targets, such problems can be bypassed

[40]. However, this may not always be the case, especially

if the pulses used are in the optical domain. On the other

hand, it has been shown that Rayleigh’s curse is an arti-

fact of measuring only the intensity of the field and can be

avoided by using a suitable coherent detection technique

[39,41]. The same feature holds for our setting of quantum-

limited lidar, as we now show by computing explicitly the

QFI matrix for the estimation of the relative distance and

velocity of two targets.

We consider a simplified model where the information

about the position and velocity of the target is only carried

by the central time and central frequency, thus neglecting

the bandwidth change. This is justified by the fact that the

physics is essentially determined by these two parameters

only, as we have shown in detail for the case of a single

target.

Assume that target 1 has position x1 and velocity β1 and

target 2 has position x2 and velocity β2. If the photon is

scattered by target j , it will return with central time t̄j and

central frequency ω̄j . From Eqs. (20)–(21), we obtain

t̄j = t̄0 + 2xj

c(1 − βj )
, (49)

ω̄j = 1 − βj

1 + βj

ω̄0. (50)

Therefore,


t := t̄1 − t̄2 = 2x1

c(1 − β1)
− 2x2

c(1 − β2)
(51)

≃ 2(x1 − x2)

c
, (52)


ω := ω̄1 − ω̄2 = 1 − β1

1 + β1

ω̄0 − 1 − β2

1 + β2

ω̄0 (53)

≃ −2(β1 − β2) ω̄0, (54)

where the approximations hold in the nonrelativistic

regime β1, β2 ≪ 1. Putting 
x := x1 − x2 and 
β :=
β1 − β2, we obtain

∂
t

∂
x
= 2

c
,

∂
ω

∂
β
= −2ω̄0. (55)

This allows us to write the SLDs for the parameters 
x,


β in terms of the SLDs for 
t and 
ω:

L
x = 2

c
L
t, L
β = −2ω̄0L
ω. (56)

Below, we first compute the QFI for separable photons and

then consider the use of entangled photon pairs.

A. Separable photons

In this section, we consider an outgoing single-photon

state determined by Eq. (14). The back-scattered photon

will have the form given in Eq. (18). If the photon returns

to the detector, this means that it has been back-scattered

by either target 1 or target 2. As the scattering events are

assumed to be incoherent, the returned photon is described

by the mixed state

ρ = 1

2
|ψ1〉 〈ψ1| + 1

2
|ψ2〉 〈ψ2| , (57)

where we assume that the reflectivities of the two objects

are approximately equal [42]. We expect that our results

also hold for unequal reflectivities [41].

We thus use |ψj 〉 =
∫

dt ψj (t)|t〉, for j = 1, 2, with

ψj (t) =
(

2σ 2

π

)

1
4

exp
[

−(t − t̄j )
2σ 2 − iω̄j (t − t̄j )

]

. (58)

We define the centroids in time (T) and frequency (�) as

(see Fig. 3)

T = t̄1 + t̄2

2
, � = ω̄1 + ω̄2

2
, (59)

The goal of this section is to compute the QFI matrix for

the estimation of the parameters 
t and 
ω.

t

0.05

0.10

0.15

0.20

Pdf

ω

0.05

Ω –∆ω /2 Ω +∆ω /2

T + ∆ t /2T – ∆ t /2

0.10

0.15

0.20

σ
ω

σ
t

FIG. 3. The time and frequency profiles of arrival of a sin-

gle photon signal scattering off two objects within the vicinity

of each other, where their separation is within the bandwidth of

the pulse.
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Following Ref. [39], we obtain an exact expression for

the QFI matrix for the estimation of 
t and 
ω:

H(
t, 
ω) =
(

σ 2 − α−1
ω2 α−1
t
ω

α−1
t
ω 1

4σ 2 − α−1
t2

)

, (60)

α = 4

(

e

t2σ 2+ 
ω2

4σ2 − 1

)

(61)

(see Appendix D). The expectation value of the commuta-

tor of the SLDs becomes

Tr(ρ[L
t, L
ω]) = 4i

α

(


t2σ 2 + 
ω2

4σ 2

)

− i (62)

≃ − i

2

(


t2σ 2 + 
ω2

4σ 2

)

, (63)

where the approximation holds, for small values of ǫ =

t2σ 2 + (
ω2/4σ 2), up to correction of order ǫ2. For

small values of 
tσ and 
ω/σ , this quantity approaches

zero and therefore the achievable estimation precision

approaches the QCR bound. Note that in this limit, the

QFI matrix becomes diagonal. This is in contrast to the

single-target problem from the previous section, where the

expectation value of the commutator of the SLDs is a con-

stant −4i [see Eq. (44)]. Some values of H
t2 as a function

of 
ω2 are shown in Fig. 4.

B. Entangled photons

Next, we consider again the case where the probe pho-

ton is entangled with an idler photon; e.g., when both are

created in spontaneous parametric down-conversion. If the

back-scattering is again incoherent, the two-photon state

FIG. 4. The QFI matrix component H
t2 in Eq. (60) as a

function of 
ω2/σ 2, showing 
t2σ 2 = 0.01 (red dashed line),


t2σ 2 = 0.1 (green dotted-dashed line), and 
t2σ 2 = 1 (blue

solid line).

becomes

ρ = 1

2
|�1〉 〈�1| + 1

2
|�2〉 〈�2| , (64)

where |�j 〉 =
∫

dt dti�j (t, ti)|t〉|ti〉, i denotes the idler

photon, j = 1, 2, and

�j (t, ti) = N e−iω̄j (t−t̄j )−iω̄i(ti−t̄i)

× exp
[

−(t − t̄j )
2σ 2 − (ti − t̄i)

2σ 2
i

+2κ(t − t̄j )(ti − t̄i)σσi

]

. (65)

This means that although the entangled state lives in a

larger Hilbert space, the formal approach used for sepa-

rable photons can still be applied. As detailed in Appendix

E, we obtain the following expression for the QFI matrix:

Hent =
(

σ 2 − β−1
ω2 β−1
ω
t

β−1
ω
t 1

4σ 2(1−κ2)
− β−1
t2

)

(66)

β = 4

(

e

t2σ 2+ 
ω2

4(1−κ2)σ2 − 1

)

. (67)

Here, we see a similar quantitative change in the QFI

matrix compared to single-target detection: the term 1 −
κ2 appears as a multiplicative factor in front of the band-

width σs, which effectively reduces the frequency uncer-

tainty of the probe photon. Provided that κ �= 0, the com-

ponents of the QFI matrix are always larger than in the

unentangled case. The expectation value of the commuta-

tor of the SLDs becomes

Tr(ρ[L
t, L
ω]) = 4i

β

(


t2σ 2 + 
ω2

4
(

1 − κ2
)

σ 2

)

− i

(68)

≃ − i

2

(


t2σ 2 + 
ω2

4
(

1 − κ2
)

σ 2

)

, (69)

which approaches zero for small values of 
t σ and


ω/σ .

In conclusion, we find that if the targets are sufficiently

close in both position and velocity, the SLD measurements

become compatible up to a small eigenbasis mismatch. In

this limit, the two parameters become jointly measurable

and the QCR bound can be saturated.

VI. OPTIMAL TIME-DIFFERENCE ESTIMATION

WITH LINEAR OPTICS

The QFI provides us with an upper bound to the ultimate

precision but does not always provide the optimal phys-

ical measurement. Consider a quantum state ρ(λ), which

carries information about the parameter λ. When a given
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ω
0

ω
0

ω
0

ω PS

1

EOM 

1

EOM 

2
PS

2

– υ/2

ω
0 + υ/2

FIG. 5. A linear measurement that achieves the QFI for the

parameter 
t, for the special case where 
ω = 0, and κ = 0.

It involves separating the signal into different frequency modes,

then selecting the frequencies equidistant from either side of

the central frequency, followed by a frequency Hadamard gate.

The schematic for the Hadamard gate consists of two phase

shifters (PSs) and two electro-optic modulators (EOMs). Photon

counting is then performed at the output.

measurement M is applied to ρ(λ), it yields outcomes

{my}y=1,...,Y with probabilities {py}y=1,...,Y. The classical

Fisher information (CFI) associated with this measurement

is [43]

I(λ) =
∑

y

py

(

∂ log py

∂λ

)2

. (70)

The (classical) Cramér-Rao bound expresses the relation

between the CFI and the variance of any unbiased esti-

mator λ̂, 
λ̂ ≥ (1/N )I(λ)−1. An optimal measurement is

such that the CFI is equal to the QFI.

Here, we consider the two-target problem and provide

an optimal measurement for the estimation of 
t when


ω = 0, i.e., the two targets are moving at the same

velocity. In particular, we focus on the case of separable

photons, described by the state in Eq. (57). In this setup,

an optimal measurement has been presented in Ref. [27]

using a quantum pulse gate. Unlike the quantum pulse

gate, which is based on up-conversion, here we propose

an approach that requires no optical nonlinearity.

A schematic for an optimal linear measurement is

depicted in Fig. 5. The measurement consists of first send-

ing the signal through a diffraction grating, which separates

the frequencies within the pulse. Then, one takes the fre-

quencies on either side of the centroid that are equidistant

and interfere them through a frequency Hadamard gate.

Finally, photon counting is performed at the output.

We now derive the classical Fisher information associ-

ated with this particular measurement. Upon the return of

the signal from target 1 or 2, the annihilation operators can

be written as

â1(t) =
∫

dω â(ω) e−iωt1+iφk0 , (71)

â2(t) =
∫

dω â(ω) e−iωt2+iφk0 . (72)

Here, we choose φk0 = 0 without loss of generality. Now,

we select the frequencies at either side of the central fre-

quency ω̄ separated by 
ν: ν1 = ω̄ + 
ν/2 and ν2 = ω̄ −

ν/2. For these two frequencies, the density matrix of the

state upon return can be written as

ρ = 1

2
(|f1〉 〈f1| + |f2〉 〈f2|), (73)

|f1〉 = 1√
2
(|ν1〉 + ei(ν2−ν1)t1 |ν2〉), (74)

|f2〉 = 1√
2
(|ν1〉 + ei(ν2−ν1)t2 |ν2〉). (75)

The experimenter implements a frequency Hadamard gate

on the states |ν1〉 and |ν2〉, which is achievable using two

phase shifters and electro-optical modulators, i.e., without

employing nonlinear optics. Note that no postselection is

required for such a Hadamard gate and that it has been

experimentally demonstrated in Ref. [44] with nearly unit

success probability and fidelity. The Hadamard gate is

given by

H = 1√
2

(

1 1

1 −1

)

. (76)

The state then becomes

ρ ′ =
(

p1 b

b∗ p2

)

, (77)

where b = (1/2) sin[t2(ν1 − ν2)] − (i/2) sin[t1(ν1 − ν2)].

The diagonal terms give the probabilities of the two mea-

surement outcomes at the output of the Hadamard gate,

p1 = 1

4
{2 + cos[(ν2 − ν1)t1] + cos[(ν2 − ν1)t2]} , (78)

p2 = 1

4
{2 − cos[(ν2 − ν1)t1] − cos[(ν2 − ν1)t2]} . (79)

The Fisher information of the parameter 
t = t1 − t2 for

Eq. (78) is

I(
t) = (ν1 − ν2)
2/4. (80)

The above calculation is for a single pair of frequencies.

To calculate the overall Fisher information, we average Eq.

(80) over the frequency distribution of the signal state. The

returning state has a probability density distribution (PDF)

p�(ω − ω̄) =
(

1

2πσ 2

)
1
2

exp

[

− (ω − ω̄)2

2σ 2

]

, (81)

and the PDF of |ν1 − ν2| is equal to p�[(ν1 − ν2)/2]. Using

Eq. (70), the expression for the CFI is

I(
t) =
∫ ∞

0

p�[(ν1 − ν2)/2]
|ν1 − ν2|2

4
= σ 2. (82)
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Equation (82) is equal to the corresponding element of the

QFI in Eq. (60) and thus the measurement is optimal.

Intuitively, the frequency bandwidth of the state plays

the same role as the numerical aperture (i.e., the size of the

lens) in classical optical imaging. For optical imaging in

the paraxial regime, the source distribution is Fourier trans-

formed into its spatial-frequency components. The larger

the numerical aperture, the more information one can col-

lect on the spatial distribution of the source. Likewise, if

the goal is to collect timing information, the larger the fre-

quency bandwidth, the more accurately one can locate the

pulses in the time domain. In both cases, the use of a phase-

sensitive measurement instead of the intensity profile can

avoid Rayleigh’s curse.

VII. CONCLUSIONS

In this paper, we assess the ultimate precision of a

lidar using the theoretical toolbox of multiparameter quan-

tum metrology, within the paraxial approximation, in the

regime where the targets can be considered pointlike and

the background noise can be ignored. We consider both the

case of a single target as well as a pair of close targets. In

the latter case, we focus on the problem of estimating the

relative position and velocity.

Our theory shows that the tradeoff between the estima-

tion of time and frequency can be weakened when the

signal photon is entangled and jointly measured with an

idler photon. In other words, the bandwidth-duration prod-

uct is no longer lower bounded from below by 1/2. The

more the photon pair is entangled, the more the tradeoff is

weakened, and it can be completely removed in the limit of

perfect time-frequency correlation. In that case, the QCR

bound is attainable. Our results are consistent with what

has previously been presented by Zhuang et al. [26] and

they elucidate the subtle issues surrounding the estimation

of time and frequency.

For the estimation of the relative distance and velocity

of two targets, one expects that the precision deteriorates

when the two targets are close enough, such that there is

a substantial overlap between the two back-scattered sig-

nals. This is the lidar analogy of the so-called Rayleigh

curse, which is observed in classical optical imaging based

on direct photodetection [39]. In previous work, Silberhorn

and collaborators have shown that a coherent detection

technique allows us to lift Rayleigh’s curse and measure

the difference in the time of arrival with constant precision,

independent of the signal overlap [27,28]. The same holds

for the estimation of time or frequency difference.

Here, we consider the joint estimation of both the dif-

ference in time of arrival (i.e., the relative position of

two targets) and in frequency (i.e., the relative velocity

of two targets). In analogy with the case of a single tar-

get, we find that there exists a tradeoff between time-

and frequency-difference estimation and that this tradeoff

can be weakened if entangled photon pairs are employed.

However, in contrast to the single-target case and classical

intuition, we show that these parameters can be simultane-

ously estimated, even without entanglement, in the regime

where the two signals have a substantial overlap, that is,

when the frequency difference is much smaller than the

bandwidth and the relative time of arrival is much smaller

than the signal duration. Our results will be important

for the realistic implementation of superresolution lidar

systems with finite entanglement in the probe beam.
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APPENDIX A: WAVE FUNCTION FOR THE

BACK-SCATTERED PHOTON

Consider a light pulse that leaves the detector station

at time t. At time t̄0, the target is at distance x from the

detector and moves with radial velocity v. This implies

that at time t, its position is x + v(t − t̄0). The light pulse

will thus meet the target after a time 
t such that c
t =
x + v(t − t̄0) + v
t. Therefore,


t = x + v(t − t̄0)

c − v
. (A1)

Hence the total time for the back-scattered signal to come

back to the detector station is 2
t. In conclusion, a signal

that is sent at time t will return at time

τ(t) = t + 2
x + v(t − t̄0)

c − v
. (A2)

This result is used in Eq. (15) to obtain the wave func-

tion of the back-scattered signal in Eq. (16). The latter

can be also obtained in the frequency domain. A signal

at frequency ω, when back-scattered by the target mov-

ing with velocity v, has its frequency shifted to ω′ =
(c − v/c + v) ω. Using the central time t̄0 as a refer-

ence, the back-scattered pulse also acquires a phase shift

equal to exp
{

−iωt̄0 + iω′ [t̄0 + 2(x/c − v)
]}

. Therefore,

starting from the input state of Eq. (12),

|ψ0〉 =
∫

dω ψ̃0(ω)|ω〉, (A3)

where

ψ̃0(ω) =
(

1

2πσ 2
0

)
1
4

exp

[

− (ω − ω̄0)
2

4σ 2
0

+ iωt̄0

]

, (A4)
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this is mapped into

∫

dωψ̃0(ω)|ω〉 →
∫

dω ψ̃0(ω)

× exp

[

−iωt̄0 + iω′
(

t̄0 + 2
x

c − v

)]

|ω′〉 (A5)

= c + v

c − v

∫

dω′ ψ̃0

(

c + v

c − v
ω′

)

× exp

[

−iωt̄0 + iω′
(

t̄0 + 2
x

c − v

)]

|ω′〉 (A6)

=
∫

dω

(

1

2πσ 2

)
1
4

exp

[

− (ω − ω̄)2

4σ 2
+ iωt̄

]

, (A7)

where

σ = 1 − β

1 + β
σ0, (A8)

t̄ = t̄0 + 2x

c(1 − β)
, (A9)

ω̄ = 1 − β

1 + β
ω̄0. (A10)

It is easy to check that the function in Eq. (A7) is the

Fourier transform of that in Eq. (16).

APPENDIX B: RANGING AND VELOCITY

ESTIMATION WITH SEPARABLE PHOTONS

For the unentangled case, we consider the state |ψ〉 =
∫ ∞
−∞ dt ψ(t) |t〉, with

ψ(t) =
(

2σ 2

π

)1/4

e−(t−t̄)2σ 2
e−iω̄(t−t̄). (B1)

We define the vectors |φk〉 =
∫ ∞
−∞ dt φk(t) |t〉, for k =

1, 2, 3, 4, where

φ1(t) := ψ(t), (B2)

φ2(t) := ∂t̄ψ(t) =
[

2(t − t̄)σ 2 + iω̄
]

ψ(t), (B3)

φ3(t) = ∂ω̄ψ(t) = −i(t − t̄)ψ(t), (B4)

φ4(t) = ∂σψ(t) =
[

1

2σ
− 2(t − t̄)2σ

]

ψ(t). (B5)

The local dynamics of the state |ψ〉, for small variations

of the parameters t̄, ω̄, and σ , are confined within the

Hilbert space generated by these four vectors. It is easy

to check that the above vectors span a three-dimensional

Hilbert space. An orthonormal basis for this space is |ej 〉 =
∫ ∞
−∞ dt ej (t) |t〉, for j = 1, 2, 3, where

e1(t) = ψ(t), (B6)

e2(t) = 2σ(t − t̄)ψ(t), (B7)

e3(t) = 1 − 4(t − t̄)2σ 2

√
2

ψ(t). (B8)

In this basis, we obtain the following expression for the

SLDs:

Lt̄ = 2σ

⎛

⎝

0 1 0

1 0 0

0 0 0

⎞

⎠ , (B9)

Lω̄ = 1

σ

⎛

⎝

0 i 0

−i 0 0

0 0 0

⎞

⎠ , (B10)

Lσ =
√

2

σ

⎛

⎝

0 0 1

0 0 0

1 0 0

⎞

⎠ . (B11)

Therefore, the QFI matrix is

H(t̄, ω̄, σ) =

⎛

⎝

4σ 2 0 0

0 1/σ 2 0

0 0 2/σ 2

⎞

⎠ . (B12)

We can then obtain the SLDs for the estimation of the

position x and velocity β of a moving target:

Lx = 2

c(1 − β)

⎛

⎝

0 2σ 0

2σ 0 0

0 0 0

⎞

⎠ , (B13)

Lβ = 2

(1 − β)2

⎛

⎝

0 2σx/c + iω̄0/σ
√

2

2σx/c − iω̄0/σ 0 0√
2 0 0

⎞

⎠,

(B14)

and

H(x, β) = 4

(1 − β)2

⎛

⎝

4σ 2

c2
4xσ 2

c2(1−β)

4xσ 2

c2(1−β)

4x2σ 4+c2(2σ 2+ω̄2
0
)

c2σ 2(1−β)2

⎞

⎠ .

(B15)
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APPENDIX C: RANGING AND VELOCITY ESTIMATION USING ENTANGLED PHOTONS

In the time domain, the two-photon state reads

|�〉 =
∫

dt

∫

dti �(t, ti) |t〉 |ti〉 , (C1)

with

�(t, ti) = e−iω̄(t−t̄)−iω̄i(ti−t̄i)(1 − κ2)1/4

√

2σσi

π

exp
[

−(t − t̄)2σ 2 − (ti − t̄i)
2σ 2

i +2κ(t − t̄)(ti − t̄i)σσi

]

. (C2)

Consider the following vectors:

�1(t, ti) := �(t, ti), (C3)

�2(t, ti) := ∂t̄�(t, ti) =
[

iω̄ + 2(t − t̄)σ 2 − 2κ(ti − t̄i)σσi

]

�(t, ti), (C4)

�3(t, ti) := ∂ω̄�(t, ti) = −i(t − t̄)�(t, ti), (C5)

�4(t, ti) := ∂σ�(t, ti) =
[

1

2σ
− 2(t − t̄)2σ + 2κ(t − t̄)(ti − t̄i)σi

]

�(t, ti). (C6)

These vectors generate a four-dimensional Hilbert space. An orthonormal basis for this space is |ej 〉 =
∫ ∞
−∞ dt

∫ ∞
−∞ dti ej (t, ti) |t〉 |ti〉, for j = 1, 2, 3, 4, where

e1(t, ti) = �(t, ti), (C7)

e2(t, ti) =
√

2(1 − κ)
[

σ(t − t̄) + σi(ti − t̄i)
]

�(t, ti), (C8)

e3(t, ti) =
√

2(1 + κ)
[

σ(t − t̄) − σi(ti − t̄i)
]

�(t, ti), (C9)

e4(t, ti) = 2σ

√

1 − κ2

2 − κ2

[

1

2σ
− 2(t − t̄)2σ + 2κ(t − t̄)(ti − t̄i)σi

]

�(t, ti). (C10)

We then obtain the following expressions for the SLDs:

Lt̄ = σ
√

2

⎛

⎜

⎜

⎝

0
√

1 − κ
√

1 + κ 0√
1 − κ 0 0 0√
1 + κ 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

, (C11)

Lω̄ = 1

σ
√

2

⎛

⎜

⎜

⎜

⎝

0 i√
1−k

i√
1+k

0

− i√
1−k

0 0 0

− i√
1+k

0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎠

, (C12)

Lσ = 1

σ

√

2 − κ2

1 − κ2

⎛

⎜

⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞

⎟

⎠
. (C13)

These in turn yield the QFI matrix:

H(t̄, ω̄, σ) =

⎛

⎜

⎝

4σ 2 0 0

0 1

σ 2
1

1−κ2 0

0 0 1

σ 2
2−κ2

1−κ2

⎞

⎟

⎠
. (C14)
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APPENDIX D: RELATIVE RANGE AND VELOCITY ESTIMATION WITH SEPARABLE PHOTONS

For the unentangled case, we consider the state

ρ = 1

2
(|ψ1〉 〈ψ1| + |ψ2〉 〈ψ2|) , (D1)

where

|ψ1〉 =
∫ ∞

−∞
dt ψ1(t) |t〉 , |ψ2〉 =

∫ ∞

−∞
dt ψ2(t) |t〉 , (D2)

and

ψ1(t) =
(

2σ 2

π

)1/4

e−(t−t̄1)2σ 2
e−iω̄1(t−t̄1),

ψ2(t) =
(

2σ 2

π

)1/4

e−(t−t̄2)2σ 2
e−iω̄2(t−t̄2).

(D3)

We write the time and frequency in terms of their centroids and separations,

t̄1 = �t + 
t/2, ω̄1 = �ω + 
ω/2 (D4)

t̄2 = �t − 
t/2, ω̄2 = �ω − 
ω/2. (D5)

An orthonormal basis for this space is

|e1〉 = 1√
2(1 + |δ|)

(|ψ1〉 + ei
t�ω |ψ2〉), (D6)

|e2〉 = 1√
2(1 − |δ|)

(|ψ1〉 − ei
t�ω |ψ2〉), (D7)

|e3〉 = 1
√

c3

(|∂
te1〉 − 〈e1|∂
te1〉 |e1〉), (D8)

|e4〉 = 1
√

c4

(|∂
te2〉 − 〈e1|∂
te2〉 |e2〉), (D9)

where

δ = 〈ψ1|ψ2〉 = e
− 
t2σ2

2
− 
ω2

8σ2
−i
t�ω

, (D10)

and c3 and c4 are normalization factors. We can diagonalize the state as

ρ = p1 |e1〉 〈e1| + p2 |e2〉 〈e2| , (D11)

p1 =1

2
(1 + |δ|), p2 = 1

2
(1 − |δ|). (D12)

The SLDs are

L
t =

⎛

⎜

⎝

∂
tp1/p1 0 2 〈∂
te1|e3〉 0

0 ∂
tp2/p2 0 2 〈∂
te2|e4〉
2 〈e3|∂
te1〉 0 0 0

0 2 〈e4|∂
te2〉 0 0

⎞

⎟

⎠
, (D13)

L
ω =

⎛

⎜

⎝

∂
ωp1/p1 0 2i 〈∂
ωe1|e3〉 0

0 ∂
ωp2/p2 0 2i 〈∂
ωe2|e4〉
−2i 〈e3|∂
ωe1〉 0 0 0

0 −2i 〈e4|∂
ωe2〉 0 0

⎞

⎟

⎠
, (D14)
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where

〈∂
te1|e3〉 = 〈∂
ωe1|e3〉

= 1

4

(

e
4
t2σ4+
ω2

8σ2 + 1

)−1
√

4σ 2e

t2σ 2+ 
ω2

4σ2 + e
4
t2σ4+
ω2

8σ2
(

4
t2σ 4 + 
ω2
)

− 4σ 2,

〈∂
te2|e4〉 = 〈∂
ωe2|e4〉

= 1

4

(

e
4
t2σ4+
ω2

8σ2 − 1

)−1
√

4σ 2e

t2σ 2+ 
ω2

4σ2 − e
4
t2σ4+
ω2

8σ2
(

4
t2σ 4 + 
ω2
)

− 4σ 2.

(D15)

We finally arrive at the QFI matrix:

H =
(

H
t2 H
t
ω

H
t
ω H
ω2

)

, (D16)

where

H
t2 = 1

4σ 2
− 
ω2

4

(

e

t2σ 2+ 
ω2

4σ2 − 1

)−1

, (D17)

H
ω2 = σ 2 − 
t2

4

(

e

t2σ 2+ 
ω2

4σ2 − 1

)−1

, (D18)

H
t
ω = 
t
ω

4

(

e

t2σ 2+ 
ω2

4σ2 − 1

)−1

. (D19)

APPENDIX E: RELATIVE RANGE AND VELOCITY ESTIMATION WITH ENTANGLED PHOTONS

We want to compare the single photon with entangled photon pairs (similar to quantum illumination [7–9]). For a fair

comparison, we send out one photon from an entangled photon pair, which has the same bandwidth. An entangled photon

pair can be generated from a spontaneous parametric down conversion (SPDC) source.

If the signal photon is back-scattered, the two-photon state is described as

ρSPDC = 1

2
(|�1〉 〈�1| + |�2〉 〈�2|) , (E1)

where, in the time domain, the two-photon states are

|�1〉 =
∫

dt

∫

dti �1(t, ti) |t〉 |ti〉 , (E2)

|�2〉 =
∫

dt

∫

dti �2(t, ti) |t〉 |ti〉 , (E3)

and, for j = 1, 2,

�j (t, ti) =
√

2

π

4
√

1 − κ2
√

σσi e−iω̄j (t−t̄j )−iω̄i(ti−t̄i)

× exp
[

−(t − t̄j )
2σ 2 − (ti − t̄i)

2σ 2
i + 2κ(t − t̄)(ti − t̄i)σσi

]

. (E4)

The Hilbert space is spanned by the vectors |Ej 〉 , j = 1, 2, . . . , 6.

|E1〉 = 1√
2(1 + |δ′|)

(|�1〉 + ei
t�ω |�2〉), (E5)

|E2〉 = 1√
2(1 − |δ′|)

(|�1〉 − ei
t�ω |�2〉), (E6)
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|E3〉 = 1
√

c3

(|∂
tE1〉 − 〈E1|∂
tE1〉 |E1〉) , (E7)

|E4〉 = 1
√

c4

(|∂
tE2〉 − 〈E2|∂
tE2〉 |E2〉) . (E8)

|E5〉 = 1
√

c5

(|∂
ωE1〉 − 〈E1|∂
ωE1〉 |E1〉 − 〈E3|∂
ωE1〉 |E3〉) , (E9)

|E6〉 = 1
√

c6

(|∂
ωE2〉 − 〈E2|∂
ωE2〉 |E2〉 − 〈E4|∂
ωE2〉 |E4〉) . (E10)

The constants are

c3 = 〈∂
tE1|∂
tE1〉 − | 〈∂
tE1|E1〉 |2, (E11)

c4 = 〈∂
tE2|∂
tE2〉 − | 〈∂
tE2|E2〉 |2, (E12)

c5 = 〈∂
ωE1|∂
ωE1〉 − | 〈E1|∂
ωE1〉 |2 − | 〈E3|∂
ωE1〉 |2, (E13)

c6 = 〈∂
ωE2|∂
ωE2〉 − | 〈E2|∂
ωE2〉 |2 − | 〈E4|∂
ωE2〉 |2. (E14)

The state can be diagonalized as

ρSPDC = P1 |E1〉 〈E1| + P2 |E2〉 〈E2| , (E15)

P1 = 1

2

(

1 + |δ′|
)

, P2 = 1

2

(

1 − |δ′|
)

, (E16)

δ′ = 〈�1|�2〉 = e
− 1

2

t2σ 2

s − 
ω2

8(1−κ2)σ2
s

−i
t�ω

. (E17)

The SLDs for 
t and 
ω are

L
t =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂
tP1/P1 0 2 〈∂
tE1|E3〉 0 0 0

0 ∂
tp2/p2 0 〈∂
tE2|E4〉 0 0

2 〈E3|∂
tE1〉 0 0 0 0 0

0 〈E4|∂
tE2〉 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (E18)

L
ω =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂
ωP1/P1 0 2 〈∂
ωE1|E3〉 0 2 〈∂
ωE1|E5〉 0

0 ∂
ωP2/P2 0 2 〈∂
ωE2|E4〉 0 2 〈∂
ωE2|E6〉
2 〈E3|∂
ωE1〉 0 0 0 0 0

0 2 〈E4|∂
ωE2〉 0 0 0 0

2 〈E5|∂
ωE1〉 0 0 0 0 0

0 2 〈E6|∂
ωE2〉 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (E19)

The terms in the SLDs are, for example,

〈∂
ωE1|E3〉 = 1
√

c3

(〈∂
ωE1|∂
tE1〉 − 〈E1|∂
tE1〉 〈∂
ωE1|E1〉) , (E20)

〈∂
ωE1|E5〉 = 1
√

c5

(〈∂
ωE1|∂
ωE1〉 − 〈E1|∂
ωE1〉 〈∂
ωE1|E1〉 − 〈E3|∂
ωE1〉 〈∂
ωE1|E3〉) (E21)

= √
c5. (E22)
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After some algebra, we obtain the following expression for the QFI matrix:

H =
(

Q
t2 Q
t
ω

Q
t
ω Q
ω2

)

, (E23)

with

Q
t2 = σ 2 − 
ω2

4

(

e

t2σ 2+ 
ω2

4(1−κ2)σ2 − 1

)−1

, (E24)

Q
ω2 = 1

1 − κ2

1

4σ 2
− 
t2

4

(

e

t2σ 2+ 
ω2

4(1−κ2)σ2 − 1

)−1

, (E25)

Q
t
ω = 
t
ω

4

(

e

t2σ 2+ 
ω2

4(1−κ2)σ2 − 1

)−1

. (E26)

The expectation value of the commutation relation then becomes

Tr(ρ[L
t, L
ω]) = i

(

e

t2σ 2+ 
ω2

4(1−κ2)σ2 − 1

)−1 (


t2σ 2 + 
ω2

4
(

1 − κ2
)

σ 2

)

− i. (E27)

APPENDIX F: A SIMULTANEOUS MEASUREMENT OF TIME AND FREQUENCY

In this appendix, we present the construction by Zhuang et al. [26] for the optimal measurement of time and frequency

estimation. We consider a simplified model where the bandwidth of the signal photon remains constant. Consider the

two-photon state given, in the time domain, by Eq. (27), where we put σ = σi0. To simplify the notation, we put t̄i0 = 0

and ω̄i0 = 0. The state factorizes when written in terms of the variables t+ := t + ti and t− := t − ti:

�(t+, t−) ∼ exp

[

− (t+−t̄)2(1 − κ)σ 2

2
− iω̄(t+−t̄)

2

]

exp

[

− (t−−t̄)2(1 + κ)σ 2

2
− iω̄(t−−t̄)

2

]

. (F1)

We can Fourier transform the variable t+ and express the state in terms of ω+ = ω + ωi and t−:

�̃(ω+, τ−) ∼ exp

[

− (2ω+−ω̄)2

8(1 − κ)σ 2
+ iω+ t̄

]

exp

[

− (t−−t̄)2(1 + κ)σ 2

2
− iω̄(t−−t̄)

2

]

. (F2)

This shows that we can jointly estimate ω̄ and t̄ by first

splitting the two photons and then by applying intensity

measurements in the variable ω+ and t−. The probability

density of measuring a photon at frequency ω+ and the

other photon at time t− is

P(ω+, t−)∼ exp

[

− (2ω+ − ω̄)2

4(1−κ)σ 2

]

exp
[

−(t−− t̄)2(1+κ)σ 2
]

.

(F3)

It follows that ω̄ and t̄ can be estimated in this way with

mean-square errors

δt2 = 1

2(1 + κ)σ 2
, δω2 = 2(1 − κ)σ 2. (F4)

Putting this into the QCR bound, we obtain

δt2 = 1

2(1 + κ)σ 2
�

1

4σ 2
, (F5)

δω2 = 2(1 − κ)σ 2
� (1 − κ2)σ 2. (F6)

In conclusion, this shows that this joint measurement is

almost optimal for κ ≃ 1 and saturates the QCR bound in

the limit that κ → 1, i.e., perfect time-frequency correla-

tions.

APPENDIX G: UNEVEN SOURCE BRIGHTNESS

In this appendix, we consider the effect of unequal

brightness of the two sources, assuming 
ω → 0. For the
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state

ρ = q |ψ1〉 〈ψ1| + (1 − q) |ψ2〉 〈ψ2| , (G1)

one can relax the condition that q = 1/2. The problem of

having uneven strength of the sources has been considered

by Řehaček et al. in Ref. [45]. There are two scenarios to

consider:

(1) The case where the centroid t̄0 is known.

(2) The case where all three parameters (t̄0, 
t, q) need

to be estimated.

The QFI matrix for the three parameters (t̄0, 
t, q) becomes

[45]

Q(t̄0, 
t, q) = 4

×

⎛

⎝

σ 2 + 4q(1 − q)P (q − 1/2)σ 2 −iδP

(q − 1/2)σ 2 σ 2/4 0

−iδP 0 1−w2

4q(1−q)

⎞

⎠ ,

δ = exp(−
t2σ 2/2),

P = i
tσ 2 exp

(

−
t2σ 2

2

)

. (G2)

For case 1, we note that the element Q
t = σ 2 and is

independent of q. This means that if t̄0 and q are known,

then the results in Fig. 4 are achievable, despite q �= 1/2.

For case 2, we need to take into account the multipa-

rameter estimation problem of estimating the centroid, the

separation and the relative strengths of the sources.

We plot the QFI for different values of q in Fig. 6 and

the corresponding FI for direct imaging in the same color.

Assuming that we do not know the centroid precisely,

we see that in order to have a constant QFI, we require

FIG. 6. The QFI and the FI for different reflectivities of the

sources. Each color is a different q and the QFI is always larger

than the FI from direct measurement.

q = 0.5. Despite this, when q �= 0.5, one can still always

resolve the separation parameter better than when using

the direct intensity measurement, i.e., the QFI is higher for

all parameters of the separation.
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uct States for Quantum Metrology, Phys. Rev. Lett. 110,

240405 (2013).

[33] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Com-
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