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Occlusion-Aware Search for Object Retrieval in Clutter

Wissam Bejjani, Wisdom C. Agboh, Mehmet R. Dogar and Matteo Leonetti

Abstract— We address the manipulation task of retrieving a
target object from a cluttered shelf. When the target object is
hidden, the robot must search through the clutter for retrieving
it. Solving this task requires reasoning over the likely locations
of the target object. It also requires physics reasoning over
multi-object interactions and future occlusions. In this work, we
present a data-driven hybrid planner for generating occlusion-
aware actions in closed-loop. The hybrid planner explores likely
locations of the occluded target object as predicted by a learned
distribution from the observation stream. The search is guided
by a heuristic trained with reinforcement learning to act on
observations with occlusions. We evaluate our approach in
different simulation and real-world settings (video available on
https://youtu.be/dY7YQ3LUVQg). The results validate that our
approach can search and retrieve a target object in near real
time in the real world while only being trained in simulation.

I. INTRODUCTION

Autonomously manipulating everyday objects in cluttered

environments with occlusions has long been a target mile-

stone in robotics research [1], [2]. As an example scenario

consider Fig. 1, in which the robot is tasked with retrieving

the oil bottle from a kitchen cabinet of limited height. The

cabinet shelf is cluttered with with jars, cereal boxes, and

other bottles while the oil bottle is nowhere to be seen. The

robot needs to push through the clutter to search for the oil

bottle, and then reach, grasp, and pull it out without dropping

any of the other objects off the shelf.

A sequence of prehensile and non-prehensile actions in

a partially observable and contact-rich environment requires

reasoning on occlusions and physics-based uncertainty. Even

when high-accuracy object detection systems are available,

occlusion remains an inherent source of uncertainty hinder-

ing the search for the target object [3]. The robot has to

reason over a history of partial observations to efficiently

explore where the target object might be. Furthermore, it is

notoriously hard to predict the outcome of an action in multi-

contact physics environments [4], [5], [6], [7]. Modelling

error on the physics parameters such as friction, inertia, and

objects shapes impede open-loop execution of long action

sequences.

Most research efforts on sequential-decision making in

clutter and under partial observability have focused on

model-based approaches. When the task is modelled as a

Partially Observable Markov Decision Process (POMDP) [8],

planning takes place in belief space, that is, on a probability

distribution over the actual state. The belief is continuously

updated after every interaction with the environment [9],
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[10], [11]. In multi-contact multi-object tasks, however, the

physics can quickly degenerate to multi-modal and non-

smooth distributions [12]. Hence, scaling the belief update

over occluded spaces and the belief planner to long ac-

tion sequences become impractical. Alternatively, model-

free approaches with function approximators bypass the

need for a closed-form representation of the belief update

and environment dynamics. By directly mapping observation

history to manipulation actions, they can scale to arbitrary

large state spaces and with long observation history [13],

[14], [15]. Sequential reasoning over future occlusions and

multi-contact physics remains an open challenge for model-

free approaches.

To solve the problem of multi-object manipulation under

physics uncertainty, heuristic-guided Receding Horizon Plan-

ning, RHP, can be used. RHP interleaves quick short horizon

planning cycles with execution, similar to model predictive

control. By continuously updating the simulator state, where

planning takes place, from real-world observations, RHP

circumvents the problem of compounding modelling errors

over long sequences of actions. Under the assumption of

a fully observable environment, we have shown in our

previous work how RHP can be used with a heuristic to

guide physics-based roll-outs and to estimate the cost-to-go

from the horizon to the goal [16]. This approach balances

the advantages of model-based sequential reasoning with

a model-free scalable heuristic [17], [18]. However, in a

partially observable environment, the target object is not

always detected and hence cannot be simulated by RHP. In

this work, we explore learning to predict the location of the

target object.

We propose (i) a data-driven approach for maintaining a

distribution over the target object’s pose from a stream of

partial observations (ii) and an occlusion-aware heuristic to

run RHP under partial observability. These two key ideas

form a hybrid planner which uses the distribution to suggest

potential target object poses for RHP to explore. We also

present the learning architecture for simultaneously learning

a generative model of pose distribution of the target object

and an occlusion-aware heuristic in a continuous action

space. We evaluate the proposed approach in environments

with varying clutter densities, configurations, and object

shapes. We also validate its performance in retrieving dif-

ferent target objects in the real world. A holistic analysis of

these contributions can be found in [19].

This work adopts the following assumptions. A library

of object type-shape pairs is given. Objects have a uniform

horizontal cross-section along the z-axis, and they are small

enough to be graspable from at least one approach angle.
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Fig. 1. The robot is tasked with retrieving the oil bottle. The real-world images are from a gripper-mounted RGB camera.

The images on the top-right are rendered from the current state of the physics simulator as recreated based on the current

real-world image. The images from the simulator are used by our approach to hypothesize potential poses for the target

object.

They are placed on the same horizontal surface. The robot’s

actions are pose increments parallel to the manipulation

surface in the planar Cartesian space of the gripper. We do

not consider access to a separate storage space.

II. RELATED WORK

POMDP planners: In the presence of occlusions, ma-

nipulation in clutter is often associated with active search,

that is, leveraging manipulation actions to simultaneously

gain visibility and accessibility [20]. Thanks to recent ad-

vances in model-based online planners under uncertainty

[21], [10], [22], [23], this field is gaining momentum towards

achieving everyday manipulation tasks. Wong et al. [24] use

object semantics and spatial constraints to focus the search

in shelves where the clutter is most similar to the target

object. Pajarinen et al. [11] solve long-horizon multi-object

manipulation by combining particle filtering and value esti-

mates in an online POMDP solver. These approaches have

largely overcome the computational complexity associated

with large state space and observation history. However, they

avoid multi-object contacts by planning with collision-free

actions. This constraint reduces planning time, but it also

prevents the robot from exploiting the full dynamics of the

domain.

Model-free policies with recurrent units: Model-free

policies are at the core of many applications that necessitate

reactive decision-making under uncertainty. Heess et al. [14]

show that by using Long Short-Term Memory (LSTM) cells

as a tool to summarize a history of partial observations,

it is possible to train a policy for pushing an object to

an initially observed pose. Karkus et al. [25] propose a

model-free approach that trains a neural network (NN) on

expert demonstrations to approximate a Bayesian filter and

a POMDP planner. These approaches are focused on single

object manipulation and do not ensure long-term reasoning

over the physics.

Searching in clutter through manipulation: The goal

of our work is most aligned with the objective of Daniel-

czuk et al. [15]. They define it as “Mechanical Search”, a

long sequence of actions for retrieving a target object from

a cluttered environment within a fixed task horizon while

minimizing time. They propose a data-driven framework

for detecting then performing either push, suction, or grasp

actions until the target object is found. They tackle top-down

bin decluttering by removing obstructing objects until the tar-

get is reachable. Such an approach requires a separate storage

space to hold obstructing objects. To address environments

where a separate storage space is not available, Gupta et al.

[26] and Dogar et al. [27] interleaves planning with object

manipulation on a shelf. They both propose moving objects

to unoccupied spaces within the same shelf to increase scene

visibility from a fixed camera view angle. The approaches

stated so far perform the search by manipulating one object

at a time, avoiding sequential reasoning over multi-contact

physics. Avoiding all obstacles remains, however, impossible

(and often undesirable) in many partially observable and

cluttered environments. Most recently, Novkovic et al. [28]

propose a closed-loop decision making scheme for generat-

ing push action in a multi-contact physics environment with

a top-mounted camera. Their approach relies on encoding

the observation history in a discretized representation of

the environment. The encoding is used by an RL trained

policy to generate the next push action for revealing hidden

spaces. We adopt a similar decision making scheme, but we

avoid the limitations of encoding the observation history in

a discretized representation. Instead, we rely on the NN’s

recurrent units to capture the observation history.

III. PROBLEM DEFINITION

The robot’s task is to retrieve a target object from a shelf

of limited height without dropping any of the other objects

off the shelf. The robot carries a gripper-mounted camera.

We treat the search, reach, grasp, and pull-out of the target

object as a single optimization problem with the objective

of minimizing the total number of actions for retrieving the

target object.

A. Formalism

We model the problem as a POMDP 〈S,A,O, T,Ω, r, γ〉,
where S is the set of states, A the set of continuous actions,

O the set of possible observations, T : S×A×S → [0, 1] the

transition function, Ω : S×O → [0, 1] the observation model,

r : S × A × S → R is the reward function, and γ ∈ [0, 1)
is the discount factor. s = {Rob,Obj1, Obj2, . . .}, in which

Rob is the robot’s end-effector pose, shape, and gripper’s

state; Obji describes an object’s pose, shape, and type. An

observation o ∈ O contains a subset of the state variables

(e. g., the visible objects), and the geometry of occluded

spaces: the shadowed areas behind objects and areas outside

the camera’s field of view (FOV).

Since the state is not always accessible because of oc-

clusions, decision making relies on maintaining a belief

b : S → [0, 1] as a distribution over possible states. A

POMDP policy π is a function that maps a belief b to an
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Fig. 2. Approach overview. An example with the small jar

at the back of the shelf as the target object.

action a. The value V of a policy π at belief bt at time t
is the expected return: Vπ = Ea∼π,st∼bt [

∑
k=t γ

k−trk+1]
where rt+1 = r(st, at, st+1). We avoid shaping the reward

function in order not to skew the robot’s behaviour towards

any preconceived human intuition which might artificially

limit the return. Instead, we opt for a constant negative

reward of −1 per action. When an object is dropped, the

task is terminated and an additional large negative reward of

−50 is received.

B. Overview

We use the closed-loop decision making scheme shown in

Fig.2, where we observe the environment, plan, execute the

first action of the plan, then loop back to the observe step.

Observe: The poses and types of visible objects in the

execution environment, as detected by the gripper-mounted

camera, and task priors are used to recreate, in the simulation

environment, a state with the currently detected objects.

The current observation, a top-down view of the scene, is

rendered from the simulation environment (Sec.IV-A).

Plan: The hybrid planner uses the observation history, in-

cluding the current observation, to update a distribution over

the likely poses of the target object. The estimated target

object poses are used to hypothesize root states, each with

a target object placed at one of the predicted poses. If a

predicted pose is in an occluded area, the target object

would still be added to the physics simulator but it will

be occluded in the observation. RHP uses its occlusion-

aware heuristic (a stochastic policy and its value function) to

explore and evaluate physics roll-outs from the root states.

RHP returns the best action to execute at each root state and

its corresponding estimated return (Sec.IV-B).

Execute: The returns are weighted by the likelihood of their

root states, and the action with the highest weighted return

is executed in the execution environment (Sec.IV-B). After

a single step of execution, the system goes back to the

observation step, for a closed-loop execution.

At the core of our approach is a NN with recurrent units

that maps an observation history into: (i) a distribution over

the pose of the target object ŷ(ō) with ō being the observation

history, (ii) a stochastic policy π(.|ō), (iii) and its correspond-

ing value function Vπ(ō), (Sec. V). The NN is trained in

the physics simulation environment with curriculum-based

Reinforcement Learning (RL) (Sec. V).

Current observation + 

Target pose distribution

RHP root 1 𝑉(  𝑜𝑖)
𝑉(  𝑜𝑖)

…
RHP root 2

Fig. 3. Hybrid planner running two RHP queries, one for

each peak represented by the contour lines (left). RHP is

shown executing 2 roll-outs of depth 3 for each root state.

IV. DECISION MAKING UNDER OCCLUSION

A. Observation Space

It is essential to have an expressive representation of

the observation yet compact enough to keep the NN size

relatively small as it will be queried multiple times per

action selection. Even though in the real world the camera is

gripper-mounted, before we feed the observation into the NN,

we render it in a top-down view, as shown in the top-left of

Fig.2, making the spatial relationships between objects and

the geometry of occluded and observable areas more explicit.

We built on the abstract image-based representation of a

fully observable environment in [17], [18]. In addition to

colour labelling objects based on their functionality (target

in green, clutter in red, and surface edges in black), we

represent occluded and observable spaces by white and grey

coloured areas respectively. The geometry of the occluded

areas is computed by illuminating the scene from the robot’s

camera perspective. We use a black line to represent the

shelf edge and brown for the shelf walls. The top-down view

enables data from the execution environment and task priors

to be combined.

• Object detection in the execution environment identifies

the poses and types of visible objects in the camera

FOV. The objects’ poses and types allow the simula-

tion environment to place the correct object shape and

colour in the abstract image-based representation of the

observation. The pose of the robot’s gripper is computed

from the robot forward kinematics.

• The task priors consist of observation-invariant informa-

tion: the type of the target object, the shape correspond-

ing to every object type, the shape of the shelf (walls

and edge), the geometry of the gripper, and the camera

FOV. By including task priors in the representation,

the learner does not need to remember them from the

observation stream.

B. Hybrid Planner

The hybrid planner algorithm, presented in Alg.1 and

illustrated in Fig. 3, is detailed as follows:

State Generation (Alg. 1, line 2): With information from

previous observations captured in the NN recurrent units,

the NN uses the current observation to generate an updated

distribution over target object pose. For each peak in the



Algorithm 1: Hybrid planner (NN, ō, m, h)

Input: trained neural network NN, observation history ō,

number of roll-outs m, horizon depth h
Output: action ar

1 rootActions ← [ ], weightedReturns ← [ ]

2 rootStates, rootWeights ← generateStates(NN, ō)

3 for so, w in [rootStates, rootWeights] do

4 ar, R0:h ← RHP(NN, so, ō, m, h)

5 rootActions.append(ar)

6 weightedReturns.append(w × R0:h)

7 end

8 return rootActions[argmax(weightedReturns)]

Algorithm 2: RHP (NN, so, ō, m, h) with an occlusion-aware heuristic

Input: trained neural network NN, root state s0, observation history ō,

number of roll-outs m, horizon depth h
Output: action a0, return R
RolloutsReturn← [ ], FirstAction← [ ]

for i = 1,2, . . . , m do
R← 0, ōi ← ō
s, o← setSimulatorTo(s0)
ōi.append(o)
for j = 1,2, . . . , h do

a ∼ π(.|ōi)
if j is 1 then

FirstAction.append(a)

end

s, o, r ← simulatePhysics(s, a)

R← R + γj−1r
ōi.append(o)
if isTerminal(s) then break ;

end

if not isTerminal(s) then R← R + γhV (ōi) ;

RolloutsReturn.append(R)
end

return FirstAction[argmax(RolloutsReturn)], max(RolloutsReturn)

distribution, the hybrid planner creates a root state with the

target object placed at the peak location, while the obstacle

poses remain the same as in the current observation. The

weight of a root state is computed as the relative likelihood

of its corresponding peak. It measures how likely it is for the

target object to be found at the predicted location compared

to the other potential sites. RHP is then called over each of

the root states (Alg. 1, line 4)

Occlusion-aware RHP (Alg.2): RHP performs m stochastic

roll-outs from root state s0 up to a fixed horizon depth

h in the physics simulator. Each roll-out is executed by

following the stochastic policy π(ō) acting on the observation

history. The return R0:h of a roll-out is computed as the sum

of the discounted rewards generated by the model and the

expected return beyond the horizon estimated by the value

function V (ōh): R0:h = r1+γr2+ . . .+γh−1rh+γhV (ōh).
RHP returns the first action a0 and R0:h of the roll-out that

obtained the highest return.

Action Selection (Alg. 1, line 8): The return of every RHP

query is scaled by the weight of its root state (Alg. 1, line 6).

Therefore, the robot picks the action that maximizes the

return with respect to both the probability of the roll-out,

and the probability of the location of the target object.

V. TRAINING THE THREE-HEADED NN

Prior to using the NN in the closed-loop decision making

scheme, the NN is trained in a physics simulation envi-

ronment (the same environment that will be used by the

hybrid planner). The NN must (i) generalize over variable

number of objects and shapes in the observations, (ii) and

observation
CNN  +  LSTM DNN policy head

 𝑏 𝑉
𝜋

Target object 

pose distribution

Fig. 4. NN architecture.

maintain a belief from the observation stream in order to

predict the distribution over the target object pose and to

generate an informed search and retrieve policy and value

function for RHP to use them as a heuristic. The NN

architecture that satisfies these conditions is illustrated in

Fig.4. The first two components are a Convolutional Neural

Network (CNN) connected to LSTM units. The CNN takes

advantage of having an abstract image-based representation

of the observation to ensure generalization over object shapes

and numbers. The output of the LSTM layer, b̂, summarizes

the stream of CNN embeddings into a latent belief vector. b̂
is then passed through a feed-forward Deep Neural Network

(DNN) that models the policy, another DNN for the value

function, and a generative head for estimating the pose

distribution of the target object. The generative head outputs

a heat-map, ŷ, of size equal to the input image, where higher

pixel values indicate higher chances that the target object is

at that location. As it is common to have the policy and value

function sharing some of NN parameters to stabilize the

learning [29], [30], we also found that having the generative

head sharing the CNN and LSTM components of the NN

with the policy and value function acts as a regularizing

element.

Training a randomly seeded θ-parametrized NN with re-

current units over images in a partially observable environ-

ment with complex physics and in a continuous actions space

is particularly challenging [31]. To increase the likelihood

of convergence, the learning algorithm uses RL with a cur-

riculum [32]. The curriculum is constructed over three task

parameterizations to gradually increase the clutter density

and, by consequence, the occlusion in the environment. The

first parameterization consists of environments with random

number of objects between 1 and 4. The initial poses of the

target and clutter objects are sampled from a uniform dis-

tribution over the shelf. The next task parameterization uses

between 5 and 10 objects. The final task parameterization

limits the minimum number of objects to 7 and the pose

of the target object is sampled from a uniform distribution

covering only the back half of the shelf. Throughout the

training, we use random polygon-shaped objects for the NN

to learn generalizable features.

The policy and the value function are trained with syn-

chronous Advantage Actor-Critic (A2C) [33]. The generative

head is trained in a supervised fashion. The target y for

updating the generative head is a heat-map showing the

ground truth pose of the target object as given by the



simulator. The combined loss function is, therefore:

L(θ) =
1

M

M∑

i=1

−Adv(ōi, ri, ō
′
i) logπθ(ai|ōi)

+ c1 (ri + γVθold(ō
′
i)− Vθ(ōi))

2

− c2 H(πθ(.|ōi))

− c3
1

jk

∑

j,k

(yjki logŷjkθ (ōi) + (1− yjki )log(1− ŷjkθ (ōi)),

where c1, c2, and c3 are hyper-parameters, M is the batch

size, H is the entropy term added to encourage exploration,

j and k are the heat-map pixel indices, and Adv is the

advantage function estimate formulated over the observation

history:

Adv(ōi, ri, ō
′
i) = ri + γVθold(ō

′
i)− Vθold(ōi).

VI. EXPERIMENTS

We ran a number of experiments in a physics simulator and

in the real world. The goals of the experiments are two-fold:

(i) to evaluate the performance of the proposed approach

in dealing with occlusion and physics uncertainties, (ii)

to verify the approach’s transferability to retrieve different

target objects in the real world.

A. Evaluation Metrics

We select evaluation metrics that allow us to quantitatively

measure the aforementioned goals. (i) The first metric is

success rate. A task is considered successful if the target

object is retrieved in under 50 actions, the total task planning

and execution time is under 2 minutes, and none of the

objects are dropped off the shelf. (ii) As we also target real-

time applications, the second metric is the average planning

and execution time per task. (iii) The average number of

actions per task is the third metric as the learning objective

is to solve the problem with the minimum number of actions.

B. The hybrid Planner and Baseline Methods

Hybrid planner: The NN is trained as in Sec. V. It takes

a 64×64×3 input image1. The CNN is composed of three

consecutive layers of convolution, batch normalization, and

maxpooling. We use 8, 8, 16 filters of size 3×3 and strides

2×2. The CNN is followed by a single LSTM layer of 128
units. The policy head is composed of two dense layers with

128 neurons each. The policy output layer has 8 neurons

corresponding to the means and standard deviations of the

horizontal, lateral, rotational, and gripper actions. We use

tanh activation function for the means and sigmoid for

the standard deviation. The value head has two dense layers

with 128 and 64 neurons respectively, and a single neuron

for the output with linear activation function. The generative

head follows a sequence of three upsampling and convolution

layers. The filter sizes are 8, 8, 16 and 3×3. The final

1We used robot-centric images, i. e., the colour-labelled abstract images
track the robot from the top-view perspective. We found that the robot-
centric view reduces the amount data required by the learning algorithm
due to the symmetry of the scene when compared to a world-centric view.

layer is a 64×64×1 convolution layer with linear activation

function followed by a sigmoid function to decode the heat-

map. Except for the output layers, we use a leaky relu
activation throughout the network. The NN is updated using

the RMSProp optimizer in TensorFlow [34]. We use the PPO

formulation for the policy loss function [30]. Following the

proposed training curriculum, the difficultly of the task is

increased every time the success rate of the hybrid planner

with m=4 and h=4 exceeds 80%. The training is terminated

once the success rate converges. We use the following learn-

ing parameters: learning rate=0.00005, c1=0.5, c2=0.01,

c3=1.0, γ=0.995, and M=1500. We compare three versions

of the hybrid planner with m and h RHP parameters of 2×2,

4×4, and 6×6.

Hybrid planner limited: Instead of performing weighted

evaluations of multiple RHP queries, this baseline only eval-

uates the most likely target pose and executes the predicted

action. We implement it with m=4 and h=4.

Greedy: This policy presents a deterministic model-free

approach. The NN is trained similarly to our approach

excluding the generative head from the architecture. The

robot is directly controlled by the policy head of the NN

(without RHP). Actions are defined by the mean of the action

distribution outputted by the policy head over the continuous

planar actions space. It is inspired by [28].

Stochastic: This policy is a stochastic version of the greedy

policy. Actions are sampled from the policy output. As shown

in [35], RL trained stochastic policies provide higher return

than deterministic ones in a POMDP.

Stochasticgen: We also evaluate an additional stochastic

policy that samples the policy head of the NN trained with

the generative head. The purpose is to investigate if the

policy learns a better reasoning about the target object pose

distribution when trained using our proposed approach.

Hierarchical planner: This approach offers a model-base

baseline. The low level plans are generated either with

kinodynamic RRT [36] or following a hand-crafted heuristic.

The low level plans are executed in open-loop. The high

level planner has access to the following actions: Search( ):

positioned outside the shelf, the robot moves from the far

left to the far right of the shelf while pointing the camera

inwards. Throughout this motion, information is collected on

the pose and type of detected objects. Rearrange(Obji): move

a certain object to a free-space in the back of the shelf by

planning with Kinodynamic RRT on collected information

from the previous Search action. Move out( ): rotates the

robot to face the inside of the shelf, then moves the robot

out following a straight line heuristic. Retrieve(Obji): plan

with Kinodynamic RRT on available information to reach,

grasp, and pull-out the target object. The high level planner

is outlined in Alg. 3. This baseline is an adaptation of [27].

C. Simulation Experiments

Setup: We use two Box2D physics simulators [37],

one acting as the execution environment and the other as

the simulation environment where RHP is performed. The

experiments are conducted on an Intel Xeon E5-26650
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Fig. 5. Performance w. r. t. different clutter densities and

noise levels.

Algorithm 3: Hierarchical planner

while target object not retrieved do
Search( )

if target object not located then
Rearrange(closest object to robot)

Move out( )
else

Retrieve(target object)

end

end

computer equipped with an NVIDIA Quadro P6000 GPU.

The experiments evaluate the performance w. r. t. increased

clutter density and increased noise level on the shape

and physics parameters in the execution environment. The

increase in clutter density is aimed at challenging the robot

with higher occlusion ratios and more complex multi-object

interactions. The increase in the noise level addresses

modelling errors between the execution environment and the

simulation environment. Noise is added on the parameters

of an object before the execution of an action. The noise is

generated from a Gaussian distribution centred around the

mean of the object’s density 1 kg/m2 and friction coefficient

0.3. Additionally, the shapes of the objects are altered by

adding noise on the coordinates of an object’s vertices w. r. t.

its centre of mass. We evaluate the performance over noise

levels with standard deviation ranging from 0.0 to 0.25
with random number of obstacles up to 10. An experiment

with noise level = 0.15 using Hybrid4×4 is shown in Fig.6.

The width and depth of the shelf are W:50×D:35 cm. The

a b c d

e f g h

Fig. 6. Snippets of the current observation with noise

level=0.15. Task solved with Hybrid4×4.

dimensions of the gripper are modelled after a Robotiq

2F-85 gripper mounted on a UR5 robot.

Results: The results are shown in Fig.5. Each data point in

the results is averaged over 300 task instances with random

object configuration. In terms of success rate, we observe

a decreasing trend w. r. t. clutter density and higher noise

levels. This is expected as the task becomes more challenging

with higher occlusion ratio and changing dynamics. The

hybrid planner outperforms the other baselines. Its success

rate improves with higher number of roll-outs and horizon

depth as evident by the higher success rate of Hybrid6×6

compared to Hybrid2×2. Performing a weighted evaluation

over the predicted poses achieves a slightly higher success

rate than just evaluating the most likely one. Furthermore,

the stochastic policies outperform the greedy policy. This

improvement may be the result of the additional information

gained from a stochastic motion. The stochastic and greedy

policies exhibit similar success rates with higher noise levels.

This is because the changes in physics and object shapes

introduce enough randomness in the system for the greedy

policy to act in a similar fashion to the stochastic policy.

The stochasticgen results are slightly better than its stochastic

counterpart, but the difference is not big enough to draw any

major conclusion. The hierarchical planner suffers from the

sharpest drop in success rate in both experiments. The open-

loop execution often fails to produce the intended results.

The average time per task shows a clear advantage

for the model-free approaches (greedy, stochastic, and

stochasticgen). Actions are generated almost instantaneously.

The hybrid planner time degrades with more exhaustive RHP

searches. The difference between Hybrid4×4 and Hybrid4×4lim

is not significant despite the latter achieving lower time per

task. This result indicates that the hybrid planner does not

often generate a large number of potential positions for the

target object which would have otherwise resulted in a bigger

time difference. The hierarchical planner average time is on

par with the Hybrid6×6 planner. These results indicate that

simulating the physics during planning is the computation

bottleneck in a contact-rich environment.

Except for the hierarchical planner, all of the approaches

perform a similar number of actions per task. Evidently, the

stochastic policies perform slightly worse than the hybrid

planner, while the greedy policy is the most efficient. The

hybrid planner, despite relying on stochastic roll-outs, exe-

cutes fewer actions than the stochastic policies as decision

making is better informed with RHP. The scale of the number

of actions for the hierarchical planer is highly dependent

on the parameters of the underlying low level planners.

Nevertheless, with a high noise level and clutter density, the

high level planner increasingly calls the low level planner

for re-planning.

D. Real-World Experiments

To validate the simulation results, we conducted a num-

ber of real-world experiments using the hybrid planner for

retrieving a variety of everyday objects (oil bottle, tomato



Vinegar

bottle

Horseradish

jar

Marierose

jar

Fig. 7. Snapshots of the hybrid planner retrieving different target objects.

box, jars, oat box, vinegar bottle) from a cluttered shelf. We

used m=4 and h=4 as the previous section have showed that

these parameters offer a reasonable balance between success

rate and execution time. We mounted an RGB camera on

the end-effector of a UR5 with a Robotiq 2F-85 gripper

and manually calibrated the hand-camera transformation. We

used the Alvar AR tag tracking library for object poses and

types detection [38]. We used Box2D as the simulation envi-

ronment to run the hybrid planner. The shelf dimensions are

W:50×D:35×H:40 cm. Snapshots from these experiments

are shown in Fig. 1 and Fig. 7. A video of these experiments

is available on https://youtu.be/dY7YQ3LUVQg.

We conducted a total of 30 experiments with up to 8

objects. The robot achieves a success rate of 90% with an

average of 50 seconds per experiment. The robot exhibits an

informed search behaviour by executing actions that increase

the visibility of previously unobserved spaces and by manip-

ulating objects to reveal occluded areas behind them. In the

experiment where the robot is tasked with retrieving the oil

bottle, the robot first approaches the middle of the shelf and

searches the area behind the oat box. Once the oil bottle is

spotted, the robot goes around the cereal box, losing sight

of the oil bottle, then reaches again for the oil bottle from a

less cluttered direction. In the second experiment where the

robot is tasked with retrieving the vinegar bottle, we observe

the importance of a reactive behaviour when the bottle slips

from the robot’s grasp. The robot is able to recover from this

situation by reopening the gripper, approaching the bottle,

and then re-grasping it and pulling it out of the shelf. In

the experiment where the robot is tasked with retrieving the

horseradish jar, the robot pushes obstructing objects to clear

an approach for grasping and retrieving the jar.

Two failed cases were due to the inverse kinematics

solver failing to map an action from the end-effector planar

Cartesian space to the robot joint space. A potential future

solution would be to mount the robot arm on a mobile base

and leverage the additional gain in Degrees of Freedom.

Another failure was attributed to the hybrid planner failing

to grasp a jar target object wedged in the corner between the

shelf wall and another obstacle object.

VII. CONCLUSIONS

The experiments have shown the efficiency and transfer-

ability of our approach in challenging environments. The

robot’s behaviour validates that the NN stores relevant infor-

mation from past observation to guide future actions. Despite

being limited to 2D planar actions, it offers a stepping stone

towards applications such as object retrieval from fridges and

supermarket shelves with limited height.

This work forms a solid foundation for extending the

hybrid planner to 3D manipulations actions where the robot

can move along the z-axis. We intend to use tags-free object

pose detectors in clutter to allow for greater flexibility [39],

[40]. Additionally, we envision using an abstract colour-

labelled 3D voxelized representation of the space with 3D-

CNN and transformer architectures.
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