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Learning Graph Convolutional Networks based on

Quantum Vertex Information Propagation

Lu Bai1,2,3, Yuhang Jiao1, Lixin Cui1,2,3∗, Luca Rossi4, Yue Wang1,

Philip S. Yu5, IEEE Fellow and Edwin R. Hancock6, IEEE Fellow

Abstract—This paper proposes a new Quantum Spatial Graph
Convolutional Neural Network (QSGCNN) model that can direct-
ly learn a classification function for graphs of arbitrary sizes.
Unlike state-of-the-art Graph Convolutional Neural Network
(GCNN) models, the proposed QSGCNN model incorporates
the process of identifying transitive aligned vertices between
graphs and transforms arbitrary sized graphs into fixed-sized
aligned vertex grid structures. In order to learn representative
graph characteristics, a new quantum spatial graph convolution is
proposed and employed to extract multi-scale vertex features, in
terms of quantum information propagation between grid vertices
of each graph. Since the quantum spatial convolution preserves
the grid structures of the input vertices (i.e., the convolution
layer does not alter the original spatial position of vertices), the
proposed QSGCNN model allows to directly employ the tradi-
tional convolutional neural network architecture to further learn
from the global graph topology, providing an end-to-end deep
learning architecture that integrates the graph representation
and learning in the quantum spatial graph convolution layer
and the traditional convolutional layer for graph classifications.
We indicate the effectiveness of the proposed QSGCNN model
in relation to existing state-of-the-art methods. Experiments
on benchmark graph classification datasets demonstrate the
effectiveness of the proposed QSGCNN model.

Index Terms—Graph Neural Networks, Quantum Walks,
Quantum Graph Convolution, Quantum Propagation

I. INTRODUCTION

G
Raph-based representations have been widely employed

to model and analyze data that lies on high-dimensional

non-Euclidean domains and that is naturally described in

terms of pairwise relationships between its parts [1]. Typical

instances where data can be represented using graphs include

a) classifying proteins or chemical compounds [2], b) recog-

nizing objects from digital images [3], c) visualizing social

networks [4]. A fundamental challenge arising in the analysis

of real-world data represented as graphs is the lack of a clear

and accurate way to represent discrete graph structures as
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numeric features that can be directly analyzed by standard

machine learning techniques [5]. This paper aims to develop a

new graph convolutional neural network using quantum vertex

saliency, for the purpose of graph classification. Our method

is based on identifying the transitive alignment information

between vertices of all different graphs. That is, given three

vertices v, w and x from three sample graphs, suppose v and

x are aligned, and w and x are aligned, the proposed model

can guarantee that v and w are also aligned. The alignment

procedure not only provides a way of mapping each graph

into a fixed-sized vertex grid structure, but also bridges the

gap between the graph convolution layer and the traditional

convolutional neural network layer.

A. Literature Review

There have been a large number of methods aimed at

converting graph structures into numeric representations, thus

providing a way of directly applying standard machine learn-

ing algorithm to problems of graph classification or clustering.

Generally speaking, in the last three decades, most classical

state-of-the-art approaches to the analysis of graph structures

can be divided into two classes, namely 1) graph embedding

methods and 2) graph kernels. The methods from the first class

aim to represent graphs as vectors of permutation invariant

features, so that one can directly employ standard vectorial

machine learning algorithms [6]. All of the previous approach-

es are based on the computation of explicit embeddings into

low dimensional vector spaces, which inevitably leads to the

loss of structural information. Graph kernels, on the other

hand, try to soften this limitation by (implicitly) mapping

graphs to a high dimensional Hilbert space where the structural

information is better preserved [7]. The majority of state-

of the-art graph kernels are instances of the R-convolution

kernel originally proposed by Haussler [8]. The main idea

underpinning R-convolution kernels is that of decomposing

graphs into substructures (e.g, walks, paths, subtrees, and

subgraphs) and then to measure the similarity between a

pair of input graphs in terms of the similarity between their

constituent substructures. Representative R-convolution graph

kernels include the Weisfeiler-Lehman subtree kernel [9], the

subgraph matching kernel [10], the aligned subtree kernel [11],

and the aligned subgraph kernel [12]. A common limitation

shared by both graph embedding methods and kernels is that

of ignoring information from multiple graphs. This is because

graph embedding methods usually capture structural features

of individual graphs, while graph kernels reflect structural

characteristics for pairs of graphs.
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Recently, deep learning networks have emerged as an ef-

fective way to extract highly meaningful statistical patterns in

large-scale and high-dimensional data [13]. As evidenced by

their recent successes in computer vision problems, convolu-

tional neural networks (CNNs) [14] are one of the most pop-

ular class of deep learning architectures and many researchers

have devoted their efforts to generalizing CNNs to the graph

domain [15]. Unfortunately, applying CNNs for graphs in a

straightforward way is not trivial, since these networks are

designed to operate on regular grids [1] and the associated

operations of convolution, pooling and weight-sharing cannot

be easily extended to graphs.

To address the aforementioned problems, two popular strate-

gies have been proposed and employed to extend convolutional

neural networks to graph domains, i.e., the spectral and the

spatial strategies. Specifically, approaches using the spectral s-

trategy utilise the property of the convolution operator from the

graph Fourier domain, and relate to the graph Laplacian [16].

By transforming the graph into the spectral domain through the

Laplacian matrix eigenvectors, the filter operation is performed

by multiplying the graph by a series of filter coefficients. Un-

fortunately, most spectral-based approaches demand the size

of the graph structures to be the same and cannot be performed

on graphs with different sizes and Fourier bases. As a result,

approaches based on the spectral strategy are usually applied

to vertex classification tasks. By contrast, methods based

on the spatial strategy are not restricted to the same graph

structure. These methods generalize the convolution operation

to the spatial structure of a graph by propagating features

between neighboring vertices [17]. For instance, Duvenaud et

al. [18] have proposed a Neural Graph Fingerprint Network

by propagating vertex features between their 1-layer neighbors

to simulate the traditional circular fingerprint. Atwood and

Towsley [19] have proposed a Diffusion Convolution Neural

Network by propagating vertex features between neighbors

of different layers rooted at a vertex. Although spatially

based approaches can be directly applied to real-world graph

classification problems, most existing methods have fairly poor

performance. This is because these methods tend to directly

sum up the extracted local-level vertex features from the

convolution operation as global-level graph features through

a SumPooling layer. It is then difficult to learn the topological

information residing in a graph through these global features.

To overcome the shortcoming of the graph convolutional

neural networks associated with SumPooling, unlike the works

in [18] and [19], Nieper et al. [20] have developed a different

graph convolutional neural network by constructing a fixed-

sized local neighborhood for each vertex and re-ordering the

vertices based on graph labeling methods and graph canon-

ization tools. This procedure naturally forms a fixed-sized

vertex grid structure for each graph, and the graph convolution

operation can be performed by sliding a fixed-sized filter over

spatially neighboring vertices. This operation is similar to

that performed on images with standard convolutional neural

networks. Zhang et al. [21] have developed a novel Deep

Graph Convolutional Neural Network model that can preserve

more vertex information and learn from the global graph

topology. Specifically, this model utilizes a newly developed

SortPooling layer, that can transform the extracted vertex

features of unordered vertices from spatial graph convolution

layers into a fixed-sized vertex grid structure. Then a tradi-

tional convolutional neural networks can be applied to the grid

structures to further learn the graph topological information.

Although both methods of Nieper et al. [20] and Zhang et

al. [21] outperform state-of-the-art graph convolutional neural

network models and graph kernels on graph classification

tasks, these approaches suffer from the drawback of ignoring

structural correspondence information between graphs, or rely

on simple but inaccurate heuristics to align the vertices of

the graphs, i.e., they sort the vertex orders based on the local

structure descriptor of each individual graph and ignore the

vertex correspondence information between different graphs.

As a result, both the methods cannot reflect the precise topo-

logical correspondence information for graph structures. These

approaches also lead to significant information loss. This

usually occurs when these approaches form the fixed-sized

vertex grid structure and some vertices associated with lower

ranking may be discarded. In summary, developing effective

methods to preserve the structural information residing in

graphs still remains a significant challenge.

B. Contribution

The aim of this paper is to overcome the shortcomings of the

aforementioned methods by developing a new Quantum Spa-

tial Graph Convolutional Neural Network (QSGCNN) model.

The starting point of the new model is the identification of

the transitive vertex alignment information between graphs.

Specifically, the new model can employ the transitive align-

ment information to map different sized graphs into fixed-

sized aligned representations, i.e., it can transform different

graphs into fixed-sized aligned grid structures with consistent

vertex orders. With the aligned grid structures of graphs to

hand, a novel quantum spatial graph convolutional operation

is developed to further extract multi-scale graph features from

the grid structures. The aligned grid structure can precisely

integrate the structural correspondence information and all the

original vertex information will be mapped into the grid struc-

ture through the transitive alignment, i.e., the mapping process

does not discard any vertex. The proposed graph convolutional

operation associated with the aligned grid structures can not

only bridge the gap between the spatial graph convolution

layer and the traditional convolutional neural network layer,

but also reduce the shortcomings of information loss and

imprecise information representation arising in most state-of-

the-art graph convolutional neural networks associated with

SortPooling or SumPooling layers. The computational archi-

tecture of the proposed model is shown in Fig.1. Specifically,

the main contributions of this work are threefold.

First, we introduce a framework for transitively aligning

the vertices of a family of graphs in terms of vertex point

matching. This framework can establish reliable vertex corre-

spondence information between graphs, by gradually minimiz-

ing the inner-vertex-cluster sum of squares over the vertices

of all graphs. We show that this framework can be further

employed to map graphs of arbitrary sizes into fixed-sized
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Fig. 1. The architecture of the proposed QSGCNN model. (1) An input graph Gp(Vp, Ep) ∈ G of arbitrary size is first aligned to the prototype graph
GR(VR, ER), by identifying the structure correspondence information between the vertices of Gp and GR. Then, the vertices of Gp aligned to the same
vertex of GR will be mapped into the same aligned vertex, where each aligned vertex follows the same vertex order of the corresponding vertex of GR, i.e.,
these new aligned vertices follow the same vertex spatial positions of GR. Here, the red curved arrow on the graph GR indicates the predetermined spatial
orders of its vertices. This process in turn forms a nature fixed-sized aligned vertex grid structure (see details in III-A), where a standard CNN can be directly
performed. Since the above construction process will not discard any original vertex of Gp, the resulting aligned vertex grid structure can reduce the problem
of information loss that arises in existing graph convolutional neural network models associated with the SortPolling operation. (2) The grid structure of Gp

is passed through multiple quantum spatial graph convolution layers to extract multi-scale vertex features, where the vertex information is propagated between
specified vertices following the average mixing matrix. (3) Since the graph convolution layers preserve the original vertex orders of the input grid structure,
the concatenated vertex features through the graph convolution layers form a new vertex grid structure for Gp. This vertex grid structure is then passed to a
traditional CNN layer to learn a classification function. Note, vertex features are visualized as different colors.

aligned vertex grid structures, integrating precise structural

correspondence information and thus minimizing the loss of

structural information. The resulting grid structures can bridge

the gap between the spatial graph convolution layer and the

traditional convolutional neural network layer.

Second, with the aligned vertex grid structures and their

associated adjacency matrices to hand, we propose a novel

quantum spatial graph convolution layer to extract multi-scale

vertex features. Unlike the existing spatial graph convolution

neural network models that propagate features between spec-

ified vertices through the vertex adjacency matrix (i.e., these

models rely on the vertex visiting probability information of

classical random walks [22]), the proposed graph convolution

layer propagates the feature information between aligned grid

vertices based on the vertex visiting information of continuous-

time quantum walks [23]. In quantum information theory [24],

the continuous-time quantum walk is the natural quantum

analogue of the classical random walk [23], and has been

widely employed to develop novel quantum algorithms in

machine learning and data mining [25]. More specifically, in

this work we employ the average mixing matrix to capture

the visiting information of the quantum walks. The reasons

for using the quantum walk is that it not only reduces

the tottering effect arising in classical random walks, but it

also reflects richer graph characteristics than classical random

walks [23] (see details in Section II-A). We show that the new

convolution layer not only overcomes the aforementioned in-

formation loss problem of popular graph convolutional neural

networks associated with SortPooling or SumPooling layers,

but also reduces the notorious tottering problem of existing

graph kernels based on the Weisfeiler-Lehman algorithm [9]

(see details in Section III-D) that may result in redundant

information [26]. This in turn support the empirical evidence

collected in our experimental validation. Moreover, since the

proposed convolution layer does not alter the original spatial

position of vertices, it also allows us to directly employ

the traditional convolutional neural network to further learn

from the global graph topology, providing an end-to-end deep

learning architecture that integrates the graph representation

and learning into both the quantum spatial graph convolution

and the traditional convolutional layers for graph classification.

Third, we empirically evaluate the proposed Quantum

Spatial Graph Convolutional Neural Network (QSGCNN). Ex-

perimental results on benchmark graph classification datasets

demonstrate that our proposed QSGCNN significantly outper-

forms state-of-the-art graph kernels and deep graph convolu-

tional network models for graph classifications.

II. PRELIMINARY CONCEPTS

A. Continuous-time Quantum Walks

One main objective of this work is to develop a new

spatial graph convolution layer to extract multi-scale vertex

features by gradually propagating information for each vertex

to its neighboring vertices as well as the vertex itself. This

usually requires connection information between each vertex

and its neighboring vertices. Most existing methods employ

the vertex adjacency matrix of each graph in the formulation of

the information propagation framework [18], [19], [20], [21],

i.e., these methods rely on the vertex visiting information of

classical random walks. Recently, quantum algorithms have

been used to develop novel approaches in machine learning

and data mining [27], because of the richer structure than their

classical counterparts. For instance, Melucci [28] has devel-

oped a relevance feedback algorithm based on the quantum

probability subspace [29]. Fawaz et al. [30] have developed

a novel strategy to train binary neural networks associated

with quantum amplitude amplifications. In this work, in order

to capture richer vertex features from the proposed graph

convolutional layer, we employ the vertex information prop-
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agation process of the continuous-time quantum walk, that is

the quantum analogue of the classical random walk [23].

The main reason for relying on quantum walks is that,

unlike classical random walks, whose state is described by

a real-valued vector and where the evolution is governed by

a doubly stochastic matrix, the state vector of the quantum

walks is complex-valued and its evolution is governed by a

time-varying unitary matrix. Thus, the quantum walk evolution

is reversible, implying that it is non-ergodic and does not

possess a limiting distribution. As a result, the behaviour of

quantum walks is significantly different from their classical

counterpart and possesses a number of important properties,

e.g., it allows interference to take place. This interference,

in turn, helps to reduce the tottering problem of random

walks, as a quantum walkers backtracking on an edge does

so with reversed phase. Furthermore, since the evolution of

the quantum walk is not dominated by the low frequency

components of the Laplacian spectrum, it has better ability to

distinguish different graph structures. In Section III, we will

show that the proposed graph convolutional layer associated

with the continuous-time quantum walk can not only reduce

the tottering problem arising in some state-of-the-art graph

kernels and graph convolutional network models, but also

better discriminate between different graphs.

In this subsection, we briefly review the concept of

continuous-time quantum walks. Specifically, we use the av-

erage mixing matrix to capture the time-averaged behaviour

of the quantum walk and to measure the quantum information

being transmitted between the graph vertices. The continuous-

time quantum walk is the quantum analogue of the continuous-

time classical random walk [23], where the latter models

a Markovian diffusion process over the vertices of a graph

through the transitions between adjacent vertices. Let a sample

graph be denoted as G(V,E) with vertex set V and edge set E.

Like the classical random walk, the state space of the quantum

walk is the vertex set V . Using the Dirac notation, the basis

state of the quantum walk being at vertex u ∈ V is defined as

|u〉, where |.〉 corresponds to an orthonormal vector in a |V |-
dimensional complex-valued Hilbert space H. Its state |ψ(t)〉
at time t is a complex linear combination of these orthonormal

basis states |u〉, i.e.,

|ψ(t)〉 =
∑

u∈V

αu(t) |u〉 , (1)

where αu(t) ∈ C is the complex amplitude. Furthermore,

αu(t)α
∗
u(t) indicates the probability of the walker visiting ver-

tex u at time t, where α∗
u(t) is the complex conjugate of αu(t),∑

u∈V αu(t)α
∗
u(t) = 1, and αu(t)α

∗
u(t) ∈ [0, 1] for all u ∈ V

and t ∈ R
+. Unlike the classical counterpart, the continuous-

time quantum walk evolves based on the Schrödinger equation

∂/∂t |ψt〉 = −iH |ψt〉 , (2)

where H represents the system Hamiltonian and accounts

for the total energy of the system. In this work, we use

the adjacency matrix as the Hamiltonian. The behaviour of

a quantum walk over the graph G(V,E) at time t can be

summarized using the mixing matrix [31]

QM (t) = U(t) ◦ U(−t) = eiHt ◦ e−iHt, (3)

where the operation symbol ◦ represents the Schur-Hadamard

product of eiHt and e−iHt. Because U is unitary, QM (t) is

a doubly stochastic matrix and each entry QM (t)uv indicates

the probability of the walk visiting vertex v at time t when

the walk initially starts from vertex u. However, QM (t) cannot

converge, because U(t) is also norm-preserving. To overcome

this problem, we can enforce convergence by taking a time

average. Specifically, we take the Cesàro mean and define the

average mixing matrix as

Q = lim
T→∞

∫ T

0

QM (t)dt, (4)

where each entry Qvivj
of the average mixing matrix Q

represents the average probability for a quantum walk to visit

vertex vj starting from vertex vi, and Q is still a doubly

stochastic matrix. Furthermore, Godsil [31] has indicated that

the entries of Q are rational numbers. We can easily compute

Q from the spectrum of the Hamiltonian. Specifically, let

the adjacency matrix A of G be the Hamiltonian H. Let

λ1, . . . , λ|V | represent the |V | distinct eigenvalues of H and

Pj is the matrix representation of the orthogonal projection on

the eigenspace associated with the λj , i.e., H =
∑|V |

j=1 λjPj .
Then, we can re-write the average mixing matrix Q as

Q =

|V |∑

j=1

Pj ◦ Pj . (5)

B. Transitive Alignment Between Vertices of Graphs

We introduce a new transitive vertex alignment method. To

this end, we commence by identifying a family of prototype

representations that reflect the main characteristics of the vec-

torial vertex representations over a set of graphs G. Assume

there are n vertices over all graphs in G, and the associated

K-dimensional vectorial representations of these vertices are

R
K = (RK

1 ,R
K
2 , . . . ,R

K
n ), we use k-means [33] to identify

M centroids over all representations in R
K . Specifically, given

M clusters Ω = (c1, c2, . . . , cM ), the aim of k-means is to

minimize the following objective function

argmin
Ω

M∑

i=1

∑

RK
j
∈cK

i

‖RK
j − µK

i ‖2, (6)

where µK
i is the mean of the vectorial vertex representations

belonging to the i-th cluster ci. Since Eq.(6) minimizes the

sum of the square Euclidean distances between the vertex

points RK
j and the centroid point of cluster cKi , the M centroid

points {µK
1 , · · · , µ

K
i , · · · , µ

K
M} can be seen as a family of

K-dimensional prototype representations that encapsulate

representative characteristics over all graphs in G.

Let G = {G1, · · · , Gp, · · · , Gq, · · · , GN} be a set of

graphs. For each graph Gp(Vp, Ep) ∈ G and each vertex vi ∈
Vp associated with its K-dimensional vectorial representation

RK
p;i, we commence by identifying the set of K-dimensional

prototype representations as PR
K = {µK

1 , . . . , µ
K
j , . . . , µ

K
M}
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Fig. 2. The procedure for computing the vertex correspondence matrix. Given a set of graphs G, for each sample graph Gp ∈ G: (1) we compute

the K-dimensional DB representation DBK
p;v rooted at each vertex (e.g., vertex v2 of Gp). We represent this as a K-dimensional vertex vector, where each

element Hs(GK
p;2) of DBK

p;v represents the Shannon entropy of the K-layer expansion subgraph rooted at v2 [32]. (2) We identify a family of K-dimensional

prototype representations PR
K = {µK

1 , . . . , µK
j , . . . , µK

M
} (shown in purple) by applying the k-means algorithm to the K-dimensional DB representations

of the complete set of sample graphs, i.e., we construct M mean vectorial representations of M clusters through k-menas. (3) We align the K-dimensional DB
representations to the K-dimensional prototype representations and compute a K-level correspondence matrix CK

p . The correspondence matrix CK
p records

the correspondence information, where the element CK
p (i, j) = 1 indicates a structural correspondence between the i-th vertex of Gp and the j-th vertex of

GR.

for the graph set G. To establish a set of correspondences

between the graph vertices, we align the vectorial vertex

representations of each graph Gp to the family of prototype

representations PR
K . The alignment process is similar to

that introduced in [11] for point matching in a pattern space.

Specifically, we compute a K-level affinity matrix in terms of

the Euclidean distances between the two sets of points

AK
p (i, j) = ‖RK

p;i − µK
j ‖2. (7)

where AK
p is a |Vp| ×M matrix, and each element AK

p (i, j)
represents the distance between the vectorial representation

RK
p;i of v∈Vp and the j-prototype representation µK

j ∈ PR
K .

If the value of AK
p (i, j) is the smallest in row i, we say that

RK
p;i is aligned to µK

j , i.e., the vertex vi is aligned to the j-th
prototype representation. Note that for each graph there may

be two or more vertices aligned to the same prototype rep-

resentation. We record the correspondence information using

the K-level correspondence matrix CK
p ∈ {0, 1}|Vp|×M

CK
p (i, j) =

{
1 if AK

p (i, j) is the smallest in row i
0 otherwise.

(8)

For a pair of graphs Gp and Gq , if their vertices vp and

vq are aligned to the same prototype representation PRK
j , we

say that vp and vq are also aligned. Thus, we can identify

the transitive alignment information between the vertices of

all graphs in G, by matching their vertices to a common set

of reference points, i.e., the prototype representations.

To construct reliable correspondence information for the

graphs, in this work we employ a depth-based (DB) repre-

sentation [32] as the initial vectorial vertex representations

(i.e.RK). This is because the DB representation of each vertex

is computed by measuring the entropies on a family of k-layer

expansion subgraphs rooted at the vertex, where the parameter

k varies from 1 to K. It has been shown that such a K-

dimensional DB representation can be viewed as a nested

vertex representation that encapsulates a rich nested entropy-

based information content flow from each local vertex to the

global graph structure, as a function of depth. Fig.2 illustrates

the process of computing the K-level correspondence matrix

CK
p associated with DB representations.

III. THE QUANTUM SPATIAL GRAPH CONVOLUTIONAL

NEURAL NETWORK

In this section, we develop a new Quantum Spatial Graph

Convolutional Neural Network (QSGCNN) model. The ar-

chitecture of the proposed model has been shown in Fig.1.

Specifically, the architecture is composed of three sequential

stages, i.e., 1) the grid structure construction and input layer,

2) the quantum spatial graph convolution layer, and 3) the

traditional convolutional neural network and Softmax layers.

Specifically, the grid structure construction and input layer

a) first maps graphs of arbitrary sizes into fixed-sized grid

structures with consistent vertex orders, and b) inputs the

grid structures into the proposed QSGCNN model. With the

input graph grid structures to hand, the quantum spatial graph

convolution layer further extracts multi-scale vertex features

by propagating vertex feature information between the aligned

grid vertices. Since the extracted vertex features from the

graph convolution layer preserve the original vertex orders of

the input grid structures, the traditional convolutional neural

network and Softmax layer can read the extracted vertex

features and predict the graph class.
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A. Aligned Vertex Grid Structures of Graphs

In this subsection, we show how to map graphs of dif-

ferent sizes onto fixed-sized aligned vertex grid structures

and associated corresponding fixed-sized aligned grid vertex

adjacency matrices. For the set of graphs G defined earlier,

suppose Gp(Vp, Ep, Ap) ∈ G is a sample graph, with Vp
representing the vertex set, Ep representing the edge set, and

Ap representing the vertex adjacency matrix. Suppose each

vertex vp ∈ Vp is represented as a c-dimensional feature vector.

Then the features of all the n vertices can be encoded using

the n × c matrix Xp, i.e., Xp ∈ R
n×c. Note that the row

of Xp follows the same vertex order of Ap. If the graphs

in G are vertex attributed graphs, Xp can be the one-hot

encoding matrix of the vertex labels. For unattributed graphs,

we propose to use the vertex degree as the vertex label. Based

on the transitive vertex alignment method introduced in Sec-

tion II, for each graph Gp ∈ G, we commence by computing

the K-level vertex correspondence matrix CK
p that records

the correspondence information between the K-dimensional

vectorial vertex representation of Gp and the K-dimensional

prototype representations in PR
K = {µK

1 , . . . , µ
K
j , . . . , µ

K
M}

of G. The rows and columns of CK
p are indexed by the vertices

in Vp and the prototype representations in PR
K , respectively.

With CK
p to hand, we compute the K-level aligned vertex

feature matrix for Gp as

X̂K
p = (CK

p )TXp, (9)

where X̂K
p is a M × c matrix and each row of X̂K

p represents

the feature of a corresponding aligned vertex. Moreover, we

also compute the associated K-level aligned vertex adjacency

matrix for Gp as

ÂK
p = (CK

p )T (Ap)(C
K
p ), (10)

where ÂK
p is a M×M matrix. With the correspondence matrix

CK
p to hand, X̂K

p and ÂK
p are computed from the original

vertex feature matrix and adjacency matrix, respectively, by

mapping the original feature and adjacency information of

each vertex vp ∈ Vp to that of the new aligned vertices indexed

by the corresponding prototypes in PR
K . In other words

X̂K
p and ÂK

p encapsulate the original feature and structural

information of Gp. Note also that according to Eq. 8 each

vertex vp ∈ Vp can be aligned to more than one prototype,

and thus in general ÂK
p is a weighted adjacency matrix.

In order to construct the fixed-sized aligned grid structure

for each graph Gp ∈ G, we need to establish a consistent

order for the vertices of each graph. Since the vertices of each

graph are aligned to the same prototype representations, we

determine the vertex orders by reordering the prototype repre-

sentations. To this end, we compute a quasi graph GR(VR, ER)
with each vertex vj ∈ VR representing the prototype µK

j ∈

PR
K and each edge (vj , vk) ∈ ER representing the similarity

between µK
j ∈ PR

K and µK
k ∈ PR

K . Specifically, we

employ the well-known Gaussian kernel [1] (a widely used

way of characterising attribute vector similarity) to compute

the similarity between two vertices of GR

s(µK
j , µ

K
k ) = exp(−

‖µK
j − µK

k ‖2

K
). (11)

The degree of each prototype µK
j is DR(µ

K
j ) =∑M

k=1 s(µ
K
j , µ

K
k ). We sort the K-dimensional prototype rep-

resentations in PR
K according to their degree DR(µ

K
j ), and

rearrange X̂K
p and ÂK

p accordingly.

As we have stated in Section II-B, in this work we employ

the K-dimensional DB representations [32] as the initialized

vectorial vertex representations to compute the K-level cor-

respondence matrix (CK
p ) of each graph Gp. Specifically, the

DB representation can encapsulate rich nested structure in-

formation from each local vertex to the global graph structure

through the K-layer expansion subgraphs rooted at the vertex.

To construct reliable grid structures for graphs with rich multi-

scale structure information, we vary the parameter K from 1
to L (K ≤ L) and compute the final aligned vertex grid

structure for each graph Gp ∈ G as

X̂p =

L∑

K=1

X̂K
p

L
, (12)

and the associated aligned grid vertex adjacency matrix as

Âp =

L∑

K=1

ÂK
p

L
, . (13)

Remarks: Eq.(12) and Eq.(13) transform the original graphs

Gp ∈ G with varying number of nodes |Vp| into a new aligned

grid graph structure with the same number of vertices, where

X̂p is the corresponding aligned grid vertex feature matrix and

Âp is the corresponding aligned grid vertex adjacency matrix.

Since for any graph Gp ∈ G the rows of X̂p are consistently

indexed by the same prototype representations, the fixed-sized

vertex grid structure X̂p can be directly employed as the input

of a traditional convolutional neural network. In other words,

one can apply a fixed sized classical convolutional filter to

slide over the rows of X̂p and learn the feature for Gp ∈

G. Finally, note that X̂p and Âp accurately encapsulate the

original feature and structural information of Gp, respectively.

B. The Quantum Spatial Graph Convolution Layer

In this subsection, we propose a new quantum spatial

graph convolution layer to further extract the features of the

vertices of each graph. This is defined by quantum information

propagation between aligned grid vertices. To this end, we

employ the average mixing matrix of the continuous-time

quantum walk on the associated aligned grid vertex adjacency

matrix. For the sample graph Gp(Vp, Ep), we pass the aligned

vertex grid structure X̂p ∈ R
M×c and the associated aligned

grid vertex adjacency matrix Âp ∈ R
M×M of Gp as the input

of the quantum spatial graph convolution layer. The proposed

spatial graph convolution layer takes the following form

Z = Relu(QX̂pW ), (14)

where Relu is the rectified linear units function (i.e., a non-

linear activation function), Q is the average mixing matrix

of the continuous-time quantum walk on Âp of Gp defined in

Section II-A, W ∈ R
c×c

′

is the matrix of trainable parameters

of the proposed graph convolutional layer, and Z ∈ R
M×c

′

is

the output activation matrix.
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The proposed quantum spatial graph convolution layer de-

fined by Eq.(14) consists of three steps. In the first step the

operation X̂pW is applied to transform the aligned grid vertex

information matrix into a new aligned grid vertex information

matrix. This in turn maps the c-dimensional features of each

aligned grid vertex into new c
′

-dimensional features, i.e.,

X̂pW maps the c feature channels to c
′

channels in the

next layer. The weights W are shared among all aligned grid

vertices. The second step computes QY , where Y := X̂pW .

This propagates the feature information of each aligned grid

vertex to the remaining vertices as well as the vertex itself,

in terms of the vertex visiting information of quantum walks.

Specifically, we note that Qij encapsulates the average prob-

ability for a continuous-time quantum walk to visit the j-th
aligned grid vertex starting from the i-th aligned grid vertex,

and (QX̂
′

p)i =
∑

j QijYj . Here, i can be equal to j, i.e., Q
includes the self-loop information for each vertex. Thus, the i-
th row of the resulting matrix of QX̂

′

p is the feature summation

of the i-th aligned grid vertex and the remaining aligned grid

vertices associated with the average visiting probability of

quantum walks from the i-th vertex to the remaining vertices

as well as the i-th vertex itself. The final step applies the

rectified linear unit function to QX̂pW and outputs the graph

convolution result.

The proposed quantum spatial graph convolution propagates

the aligned grid vertex information in terms of the vertex

visiting information associated with the continuous-time quan-

tum walk between vertices. To further extract the multi-scale

features of the aligned grid vertices, we stack multiple graph

convolution layers defined by Eq.(14) as follows

Zt+1 = Relu(QZtWt), (15)

where Z0 is the input aligned vertex grid structure X̂p, Zt ∈
R

M×ct is the output of the t-th spatial graph convolution layer,

and Wt ∈ R
ct×ct+1 is the trainable parameter matrix mapping

ct channels to ct+1 channels.

After each t-th graph convolutional layer, we add a layer to

horizontally concatenate the output Zt associated with the out-

puts of the previous 1 to t−1 spatial graph convolutional layers

and the original input Z0 as Z0:t, i.e., Z0:t = [Z0, Z1, . . . , Z
t]

and Z0:t ∈ R
M×

∑
t
z=0

cz . As a result, for the concatenated

output Z0:t, each of its row can be seen as the new multi-

scale features for the corresponding grid vertex.

Remarks: Note that the proposed quantum spatial graph

convolution only extracts new features for the grid vertex and

does not change the orders of the vertices. As a result, both the

output Zt and the concatenated output Z0:t preserve the grid

structure property of the original input Z0 = X̂p, and can be

directly employed as the input of the traditional convolutional

neural network. This provides an elegant way of bridging the

gap between the proposed quantum spatial graph convolution

layer and the traditional convolutional neural network, making

an end-to-end deep learning architecture that integrates the

graph representation and learning in both the quantum spatial

graph convolution layer and the traditional convolution layer

for graph classification problems.

C. The Remaining Convolutional Neural Network Layers

After the t-th proposed quantum spatial graph convolution

layers, we get a concatenated vertex grid structure Z0:t ∈
R

M×
∑

t
z=0

cz , where each row of Z0:t represents the multi-

scale feature for a corresponding grid vertex. As we mentioned

above, each grid structure Z0:t can be directly employed

as the input to the traditional convolutional neural network

(CNN). Specifically, the Classical One-dimensional CNN part

of Fig.1 exhibits the architecture of the traditional CNN layers

associated with each Z0:t. Here, each concatenated vertex grid

structure Z0:t is seen as a M × 1 (in Fig.1 M = 5) vertex

grid structure and each vertex is represented by a
∑t

z=0 cz-

dimensional feature, i.e., the channel of each grid vertex is∑t

z=0 cz . Then, we add a one-dimensional convolutional layer.

The convolutional operation can be performed by sliding a

fixed-sized filter of size k×1 (in Fig.1 k = 3) over the spatially

neighboring vertices. After this, several MaxPooling layers and

remaining one-dimensional convolutional layers can be added

to learn the local patterns on the aligned grid vertex sequence.

Finally, when we vary t from 0 to T (in Fig.1 T = 2), we will

obtain T +1 extracted pattern representations. We concatenate

the extracted patterns of each Z0:t and add a fully-connected

layer followed by a Softmax layer.

D. Advantages of the Proposed QSGCNN Model

The proposed QSGCNN model is related to some existing

state-of-the-art graph convolution network models and graph

kernels. However, there are a number of significant theoretical

differences between the QSGCNN model and these existing

methods, explaining the effectiveness of the proposed model.

First, similar to the quantum spatial graph convolution

of the proposed QSGCNN model, the associated graph con-

volution of the Deep Graph Convolutional Neural Network

(DGCNN) [21] and the spectral graph convolution of the Fast

Approximate Graph Convolutional Neural Network (FAGC-

NN) [34] also propagate the features between the graph

vertices. Specifically, the graph convolutions of the DGCNN

and FAGCNN models use the graph adjacency matrix or

the normalized Laplacian matrix to determine how to pass

the information among the vertices. In contrast, our quantum

spatial graph convolution utilizes the average mixing matrix

of the continuous-time quantum walk associated with the

graph. As we mentioned in Section II-A, the quantum walk is

not dominated by the low frequency values of the Laplacian

spectrum and thus has a better ability to distinguish different

graph structures. As a result, the proposed method can extract

more discriminative vertex features.

Second, in order to maintain the scale of the vertex features

after each graph convolution layer, the graph convolution of

the DGCNN model [21] and the spectral graph convolution

of the FAGCNN model [34] need to perform a multiplication

by the inverse of the vertex degree matrix. For instance, the

graph convolution layer of the DGCNN model associated with

a graph having n vertices is

Z = f(D̃−1ÃXW ), (16)

where Ã = A + I is the adjacency matrix of the graph

with added self-loops, D̃ is the degree matrix of Ã, Xn×c
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is the vertex feature matrix with each row representing the

c-dimensional features of a vertex, W c×c
′

is the matrix of

trainable parameters, f is a nonlinear activation function (e.g.,

the Relu function), and Zn×c
′

is the output. In a manner

similar to the proposed quantum spatial graph convolution de-

fined in Eq.(14), XW maps the c-dimensional features of each

vertex into a set of new c
′

-dimensional features. Moreover,

ÃY (Y := X̂pW ) propagates the feature information of each

vertex to its neighboring vertices as well as the vertex itself.

The i-th row (ÃY )i of the resulting matrix ÃY represents the

extracted features of the i-th vertex, and corresponds to the

summation of Yi itself and Yj from the neighbor vertices of

the i-th vertex. Multiplying by the inverse of D̃ (i.e., D̃−1)

can be seen as the process of normalizing and assigning equal

weights between the i-th vertex and each of its neighbours.

In other words, the graph convolution of the DGCNN model

considers the mutual-influences between specified vertices for

the convolution operation as the same. In contrast, the quantum

spatial graph convolution of the proposed QSGCNN model

defined in Eq.(14) assigns an average quantum walk visiting

probability distribution to specified vertices with each vertex

having a different visiting probability as the weight. Therefore,

the extracted vertex feature is the weighted summation of

the specified vertex features. As a result, the quantum spatial

graph convolution of the proposed QSGCNN model not only

maintains the feature scale, but also discriminates the mutual-

influences between specified vertices in terms of the different

visiting probabilities during the convolution operation.

Third, similar to the proposed QSGCNN model, both

the PATCHY-SAN based Graph Convolution Neural Network

(PSGCNN) model [20] and the DGCNN model [21] need

to rearrange the vertex order of each graph structure and

transform each graph into the fixed-sized vertex grid structure.

Specifically, the PSGCNN model first forms the grid structures

and then performs the standard classical CNN on the grid

structures. The DGCNN model sorts the vertices through a

SortPooling associated with the extracted vertex features from

multiple spatial graph convolution layers. Unfortunately, both

the PSGCNN model and the DGCNN model sort the vertices

of each graph based on the local structural descriptor, ig-

noring consistent vertex correspondence information between

different graphs. By contrast, the proposed QSGCNN model

associates with a transitive vertex alignment procedure to

transform each graph into an aligned fixed-sized vertex grid

structure. As a result, only the proposed QSGCNN model

can integrate the precise structural correspondence information

over all graphs under investigations.

Fourth, when the PSGCNN model [20] and the DGCNN

model [21] form fixed-sized vertex grid structures, some ver-

tices with lower ranking will be discarded. Moreover, the Neu-

ral Graph Fingerprint Network (NGFN) [18] and the Diffusion

Convolution Neural Network (DCNN) [19] tend to capture

global-level graph features by summing up the extracted local-

level vertex features through a SumPooling layer, since both

the NGFN model and the DCNN model cannot directly form

vertex grid structures. This leads to significant information loss

for local-level vertex features. By contrast, the required aligned

vertex grid structures and the associated grid vertex adjacency

matrices for the proposed QSGCNN model can encapsulate

both the original vertex features and the topological structure

information of the original graphs, i.e., computing the local-

level vertex grid structures will not discard any vertex of

original graphs. As a result, the proposed QSGCNN reduces

the shortcoming of information loss arising in the mentioned

state-of-the-art graph convolutional neural network models.

Fifth, similar to the DGCNN model [21], the quantum

spatial graph convolution of the proposed QSGCNN model

is also related to the Weisfeiler-Lehman subtree kernel (WL-

SK) [9]. Specifically, the WLSK kernel employs the classical

Weisfeiler-Lehman (WL) algorithm as a canonical labeling

method to extract multi-scale vertex features corresponding

to subtrees for graph classification. The key idea of the WL

method is to concatenate a vertex label with the labels of

its neighbor vertices, and then sort the concatenated label

lexicographically to assign each vertex a new label. The

procedure repeats until a maximum iteration h, and each

vertex label at an iteration h corresponds to a subtree of

height t rooted at the vertex. If the concatenated label of two

vertices are the same, the subtree rooted at the two vertices are

isomorphic, i.e., the two vertices are seen to share the same

structural characteristics within the graph. The WLSK kernel

uses this idea to measure the similarity between two graphs.

It uses the WL method to update the vertex labels, and then

counts the number of identical vertex labels (i.e. counting the

number of the isomorphic subtrees) until the maximum of the

iteration h in order to compare two graphs at multiple scales.

To exhibit the relationship between the proposed quantum

spatial graph convolution defined in Eq.(14) and the WLSK

kernel, we decompose Eq.(14) in a row-wise manner, i.e.,

Zi = Relu(Qi,:Y ) = Relu(QiiYi +
∑

j

QijYj), (17)

where Y = X̂pW . For Eq.(17), Yi can be seen as the

continuous valued vectorial vertex label of the i-th vertex.

Moreover, if Qij > 0, the quantum walk starting from the i-th
vertex can visit the j-th vertex, and the visiting probability

is Qij . In a manner similar to the WL methods, Eq.(17)

aggregates the continuous label Yi of the i-th vertex and the

continuous labels Yj of the vertices, that can be visited by the

quantum walk starting from the i-th vertex, as a new signature

vector QiiYi +
∑

j QijYj for the i-th vertex. The Relu
function maps QiiYi+

∑
j QijYj to a new continuous vectorial

label. As a result, the quantum spatial graph convolution of

the proposed QSGCNN model can be seen as a quantum

version of the WL algorithm, in terms of the quantum

vertex information propagation formulated by the quantum

walk. As we mentioned in Section II-A, the quantum walk

can significantly reduce the effect of the tottering problem.

On the other hand, the classical WL method also suffers

from tottering problem [11]. As a result, the quantum spatial

graph convolution can address the tottering problem arising

in the classical WL method, and the graph convolution of the

DGCNN model is similar to the clasical WL method. In other

words, the quantum spatial graph convolution of the proposed

QSGCNN model can learn better vertex features of graphs.
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Finally, note that the proposed QSGCNN model for each

graph is invariant with respect to the permutation of the

vertices, indicating that the activations of a pair of isomorphic

graphs will be the same. As we mentioned, the proposed

QSGCNN model consists of three stages, i.e., a) the grid

structure construction and input layer, b) the quantum spatial

graph convolution layer, and c) the traditional CNN layer.

For the first layer, the construction of grid structures relies

on the vertex features and adjacency matrix, and is invariant

to vertex permutations. As a result, the grid structures for

a pair of isomorphic graphs are the same. For the second

layer, the input grid structures of different graphs share the

same parameter weights, thus the quantum spatial graph con-

volutions will produce the same extracted vertex features for

a pair of isomorphic graphs associated with the same grid

structures. Consequently, the subsequent classical CNN layer

will correctly identify the isomorphic graphs. As a result,

the proposed QSGCNN model can correctly identify pairs of

isomorphic graphs.

IV. EXPERIMENTS

In this section, we empirically compare the performance of

the proposed QSGCNN model to state-of-the-art approaches.

Specifically, we utilize nine benchmark graph datasets from

bioinformatics [35], [36], [37], [38] and social networks [39]

to evaluate the graph classification performance of the pro-

posed QSGCNN model. These benchmark datasets include

MUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-

B, IMDB-M and RED-B, and are all available on the website

https://chrsmrrs.github.io/datasets. A selection of statistics of

these datasets are shown in Table I. Note that, all the bench-

mark social network datasets (i.e., the COLLAB, IMDB-B,

IMDB-M and RED-B datasets) used in this work consist of

multiple graphs, and have been widely employed to evaluate

the classification performance of existing graph convolutional

neural network models and graph kernels.

A. Comparisons with Graph Kernels

Experimental Setup: We evaluate the performance of the

proposed QSGCNN model on graph classification problems

against eight alternative state-of-the-art graph kernels. These

graph kernels include 1) Jensen-Tsallis q-difference kernel

(JTQK) with q = 2 [25], 2) the Weisfeiler-Lehman subtree

kernel (WLSK) [9], 3) the Weisfeiler-Lehman kernel based

on core variants (CORE WL) [40], 4) the shortest path graph

kernel (SPGK) [41], 5) the shortest path kernel based on core

variants (CORE SP) [40], 6) the random walk graph kernel

(RWGK) [42], 7) the graphlet count kernel (GK) [43], and 8)

the propagated information graph kernel (PIGK) [44].

For the evaluation, the proposed QSGCNN model uses

the same network structure on all graph datasets. We

commence by setting the number of prototype representations

to M = 64, since we observe that about 60% to 70% of the

graphs have less than 64 vertices in our experiments. This

can guarantee that the proposed QSGCNN model not only

preserves all original vertices, but also retains the independent

edge connections between vertices as much as possible. In

other words, most edge connections between vertices will not

be merged into one edge during the process of transforming

each arbitrary sized graph into the fixed-sized grid structure.

Moreover, we set the number of the quantum spatial graph

convolution layers as 5 (note that, including the original input

grid structures, the spatial graph convolution produces 6 con-

catenated outputs), and the channels of each quantum spatial

graph convolution as 32. Following each of the concatenated

outputs after the quantum graph convolution layers, we add

a traditional CNN layer with the architecture as C64-P2-C64-

P2-C64-F64 to learn the extracted patterns, where Ck denotes

a traditional convolutional layer with k channels, Pk denotes

a classical MaxPooling layer of size and stride k, and Fk
denotes a fully-connected layer consisting of k hidden units.

The filter size and stride of each Ck are all 5 and 1. With

the six sets of extracted patterns after the CNN layers to

hand, we concatenate them and add a new fully-connected

layer followed by a Softmax layer with a dropout rate of 0.5.

We use the rectified linear units (ReLU) in either the graph

convolution or the traditional convolution layer. The learning

rate of the QSGCNN model is 0.0005 for all datasets. The only

hyperparameter we optimized is the number of epochs and

the batch size for the mini-batch gradient descent algorithm.

To optimize the QSGCNN model, we use the Stochastic

Gradient Descent with the Adam updating rules. Finally, note

that, the QSGCNN model needs to construct the prototype

representations to identify the transitive vertex alignment in-

formation over all graphs. The prototype representations can

be computed from the training graphs or both the training

and testing graphs. We observe that the QSGCNN model

associated with the two variants does not influence the final

performance. Thus, in our evaluation we proposed to compute

the prototype representations from both the training and testing

graphs. In this sense, our model can be seen as an instance

of transductive learning [45], where all the graphs are used

to compute the prototype representations, and the class labels

of the test graphs are not observed during the training phase.

For the QSGCNN model, we perform 10-fold cross-validation

to compute the classification accuracies, with nine folds for

training and one folds for testing. For each dataset, we repeat

the experiment 10 times and report the average classification

accuracies and standard errors in Table II.

We set the parameters controlling the maximum height of

the subtrees for the Weisfeiler-Lehman isomorphism test (WL-

SK kernel) and for the tree-index method (JTQK kernel) to 10.

This is based on the previous empirical studies of Shervashidze

et al. [9] and Bai et al. [25]. For each graph kernel, we perform

10-fold cross-validation using the LIBSVM implementation

of C-Support Vector Machines (C-SVM) and we compute the

classification accuracies. We perform cross-validation on the

training data to select the optimal parameters for each kernel

and fold. We repeat the experiment 10 times for each kernel

and dataset and report the average classification accuracies

in Table II. Note that for some kernels we directly report

the best results from the original corresponding papers, since

the evaluation of these kernels followed the same setting of

ours. Note that, the symbol − in Table II indicates that some

approaches were not evaluated on the corresponding datasets
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TABLE I
INFORMATION OF THE GRAPH DATASETS

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

Max # vertices 28 111 620 5748 109 492 136 89 3783

Mean # vertices 17.93 29.87 39.06 284.30 25.60 74.49 19.77 13.00 429.61

Mean # edges 19.79 32.30 72.82 715.65 14.69 4914.99 193.06 131.87 497.80

# graphs 188 4110 1113 1178 344 5000 1000 1500 2000

# vertex labels 7 37 61 82 19 − − − −

# classes 2 2 2 2 2 3 2 3 2

Description Chemical Chemical Chemical Chemical Chemical Social Social Social Social

by the original authors, and this symbol has the same meaning

in the following Table III and Table IV

Experimental Results and Discussion: Table II shows that

the proposed QSGCNN model significantly outperforms the

alternative state-of-the-art graph kernels in this study. Al-

though, the proposed model cannot achieve the best classi-

fication accuracy on the NCI1 and COLLAB datasets, the

proposed model is still competitive and the accuracy on the

COLLAB dataset is only a little lower than the WL-OA kernel.

On the other hand, the accuracy of the proposed model on the

NCI1 dataset is still higher than the SPGK, CORE SP, GK and

RWGK kernels. The reasons for the effectiveness are twofold.

First, the state-of-the-art graph kernels for comparisons are

typical examples of R-convolution kernels. Specifically, these

kernels are based on the isomorphism measure between any

pair of substructures, ignoring the structure correspondence

information between the substructures. By contrast, the asso-

ciated aligned vertex grid structure for the proposed QSGCNN

model incorporates the transitive alignment information be-

tween vertices over all graphs. Thus, the proposed model can

better reflect the precise characteristics of graphs. Second, the

C-SVM classifier associated with graph kernels can only be

seen as a shallow learning framework [46]. By contrast, the

proposed QSGCNN model can provide an end-to-end deep

learning architecture for graph classification, and can better

learn the graph characteristics. The experiments demonstrate

the advantages of the proposed QSGCNN model, compared

to the shallow learning framework. Third, some alternative

kernels are related to the Weisfeiler-Lehman method. As

we have stated in Section III-D, the kernels based on the

Weisfeiler-Lehman method may suffer from the tottering prob-

lem. By contrast, the proposed model based on quantum walk

can significantly reduce the effect of tottering walks. The

experiments also demonstrate the effectiveness.

B. Comparisons with Deep Learning Methods

Experimental Setup: We evaluate the performance of the

proposed QSGCNN model on graph classification problems

against eleven alternative state-of-the-art deep learning meth-

ods for graphs. These methods include 1) the deep graph

convolutional neural network (DGCNN) [21], 2) the PATCHY-

SAN based convolutional neural network for graphs (PS-

GCNN) [20], 3) the diffusion convolutional neural network

(DCNN) [19], 4) the edge-conditioned convolutional networks

(ECC) [47], 5) the deep graphlet kernel (DGK) [48], 6) the

graph capsule convolutional neural network (GCCNN) [49],

7) the anonymous walk embeddings based on feature driven

(AWE) [50], 8) the graph convolution network based on Dif-

ferentiable Pooling (DiffPool) [51], 9) the graph convolution

network based on Self-Attention Pooling (SAGPool) [52], 10)

the graph convolutional network with EigenPooling (Eigen-

TABLE IV
CLASSIFICATION ACCURACY FOR COMPARISONS WITH DEEP LEARNING

METHODS ON BIOINFORMATICS DATASETS.
Datasets MUTAG NCI1 PROTEINS D&D PTC

QSGCNN 91.32 77.50 75.90 81.70 63.37

DiffPool 82.66 76.00 76.25 80.64 −

SAGPool − 74.06 71.86 76.45 −

EigenPool 79.50 77.00 78.60 76.60 −

DEMO-Net 81.40 − − 70.80 57.20

Pool) [52], and 11) the degree-specific graph neural networks

(DEMO-Net) [53]. For the proposed QSGCNN model, we use

the same experimental setups when we compare the proposed

model to graph kernels. For the PSGCNN, ECC, and DGK

model, we report the best results from the original papers [20],

[47], [48]. Note that, these methods follow the same setting

with the proposed QSGCNN model. For the DCNN model,

we report the best results from the work of Zhang et al. [21],

following the same setting of our network. For the AWE

model, we report the classification accuracies of the feature-

driven AWE, since the authors have stated that this kind of

AWE model can achieve competitive performance on label

dataset. Moreover, the PSCN and ECC models can leverage

additional edge features. Since most graph datasets and all the

alternative methods used for comparisons do not leverage edge

features, in this work we do not report the results associated

with edge features. Finally, since the SAGPool, EigenPool,

DEMO-Net models have not been evaluated on the social

network datasets by the original authors, and ECC and the

DiffPool models are only evaluated on one social network

dataset (i.e., the COLLAB dataset) by the original author

where the accuracies (67.79 and 75.48) are obviously lower

than ours. For fair comparisons, we only report the accuracies

of these models on the bioinformatics datasets in Table.IV.

Finally, note that, in order to further demonstrate the ad-

vantage of the proposed QSGCNN model associated with

quantum walks, we perform the proposed spatial convo-

lutional operation associated with classical random walks.

More specifically, for the proposed QSGCNN model and

its associated spatial graph convolutional operation function

Z = Relu(QX̂pW ) defined by Eq.14, we replace the quantum

average mixing matrix Q by D̂−1
p Âp, where Âp is the aligned

vertex adjacency matrix, D̂−1
p is inverse of the degree matrix

for Âp, P = D̂−1
p Âp is the transition matrix of the classical

random walk, and P (i, j) represents the probability of a

random walk starting from vertex vi to vertex vj . As a result,

the revised convolutional operation Z = Relu(D̂−1
p ÂpX̂pW )

will propagate the feature information between aligned grid

vertices based on the vertex visiting information of classical

random walks. We report the results of the neural network

model based on classical random walks (CSGCNN) following

the same network architecture and experimental setup as for

the proposed QSGCNN model.

All the classification accuracies and standard errors for each

deep learning method are shown in Table.III.

Experimental Results and Discussion: Table III indicates
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TABLE II
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH GRAPH KERNELS.

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

QSGCNN 91.32±0.91 77.50±0.91 75.90±0.79 81.70±0.92 63.37±1.15 78.80±0.89 73.62±1.12 51.60±1.15 91.50±0.24

JTQK 85.50±0.55 85.32±0.14 72.86±0.41 79.89±0.32 58.50±0.39 76.85±0.40 72.45±0.81 50.33±0.49 77.60±0.35

WLSK 82.88±0.57 84.77±0.13 73.52±0.43 79.78±0.36 58.26±0.47 77.39±0.35 71.88±0.77 49.50±0.49 76.56±0.30

CORE WL 87.47±1.08 85.01±0.19 − 79.24±0.34 59.43±1.20 − 74.02±0.42 51.35±0.48 78.02±0.23

SPGK 83.38±0.81 74.21±0.30 75.10±0.50 78.45±0.26 55.52±0.46 58.80±0.2 71.26±1.04 51.33±0.57 84.20±0.70

CORE SP 88.29±1.55 73.46±0.32 − 77.30±0.80 59.06±0.93 − 72.62±0.59 49.43±0.42 90.84±0.14

PIGK 76.00±2.69 82.54±0.47 73.68±0.69 78.25±0.51 59.50±2.44 − − − −

GK 81.66±2.11 62.28±0.29 71.67±0.55 78.45±0.26 52.26±1.41 72.83±0.28 65.87±0.98 45.42±0.87 77.34±0.18

RWGK 80.77±0.72 63.34±0.27 74.20±0.40 71.70±0.47 55.91±0.37 − 67.94±0.77 46.72±0.30 −

TABLE III
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH GRAPH CONVOLUTIONAL NEURAL NETWORKS.

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

QSGCNN 91.32±0.91 77.50±0.91 75.90±0.79 81.70±0.92 63.37±1.15 78.80±0.89 73.62±1.12 51.60±1.15 91.50±0.24

DGCNN 85.83±1.66 74.44±0.47 75.54±0.94 79.37±0.94 58.59±2.47 73.76±0.49 70.03±0.86 47.83±0.85 76.02±1.73

PSGCNN 88.95±4.37 76.34±1.68 75.00±2.51 76.27±2.64 62.29±5.68 72.60±2.15 71.00±2.29 45.23±2.84 86.30±1.58

DCNN 66.98 56.61±1.04 61.29±1.60 58.09±0.53 56.60 52.11±0.71 49.06±1.37 33.49±1.42 −

ECC 76.11 76.82 72.65 74.10 − 67.79 − − −

GCCNN − 82.72±2.38 76.40±4.71 77.62±4.99 66.01±5.91 77.71±2.51 71.69±3.40 48.50±4.10 87.61±2.51

DGK 82.66±1.45 62.48±0.25 71.68±0.50 78.50±0.22 57.32±1.13 73.09±0.25 66.96±0.56 44.55±0.52 78.30±0.30

AWE 87.87±9.76 − − 71.51±4.02 − 70.99±1.49 73.13±3.28 51.58±4.66 82.97±2.86

CSGCNN 88.65±0.76 75.51±0.25 73.24±0.50 78.68±0.47 62.58±0.90 77.96±0.90 72.50±0.55 50.00±0.95 89.15±0.24

that the proposed QSGCNN model significantly outperforms

state-of-the-art deep learning methods for graph classifications,

on the MUTAG, D&D, COLLAB, IBDM-B, IBDM-M and

RET-B datasets. On the other hand, only the accuracy of the

GCCNN model on the NCI1 and PTC datasets and that of the

DGCNN model on the PROTEINS dataset are a higher than

the proposed QSGCNN model. But the proposed QSGCNN is

still competitive and outperform the remaining methods on the

three datasets. The reasons of the effectiveness are fivefold.

First, similar to the state-of-the-art graph kernels, all the

alternative deep learning methods (i.e., the DGCNN, PSGC-

NN, DCNN, GCCNN, DGK, AWE, HO-GCN, ECC, SAG-

Pool, EigenPool and DEMO-Net models) for comparisons

also cannot integrate the correspondence information between

graphs into the learning architecture. Especially, the PSGCNN,

DGCNN and ECC models need to reorder the vertices, but

these methods rely on simple but inaccurate heuristics to align

the vertices of the graphs, i.e., they sort the vertex orders

based on the local structure descriptor of each individual graph

and ignore the vertex correspondence information between

different graphs. Thus, only the QSDCNN model can reflect

the graph characteristics through the layer-wise learning.

Second, the PSGCNN and DGCNN models need to form

a fixed-sized vertex grid structure for each graph. Since the

vertex numbers of different graphs are different, forming such

fixed-sized grid structures means some vertices of each graph

may be discarded, leading to information loss. By contrast, as

we have mentioned in Section II and Section III, the associated

aligned vertex grid structures can completely preserve the

information of original graphs. As a result, only the proposed

QSGCNN model can completely integrate the original graph

characteristics into the learning process.

Third, the DCNN model needs to sum up the extracted

local-level vertex features from the convolution operation as

global-level graph features through a SumPooling layer. By

contrast, the QSGCNN model can learn the graph topological

information through the local vertex features.

Forth, unlike the DGCNN, PSGCNN, DCNN, GCCN-

N, DGK, AWE, HO-GCN, ECC, SAGPool, EigenPool and

DEMO-Net models that are based on the original vertex

adjacency matrix to formulate vertex connection information

of the graph convolution operation, the graph convolution

operation of the proposed QSGCNN model formulates the

vertex connection information in terms of the average mixing

matrix of continuous-time quantum walk. As we have stated

in Section II, the quantum walk is not dominated by the low

frequency of the Laplacian spectrum and can better distinguish

different graph structures. Thus, the proposed model has better

ability to identify the difference between different graphs.

Fifth, similar to the DGCNN, PSGCNN, DCNN, HO-

GCN, DEMO-Net and DGK models, the proposed QSGCNN

model is also related to the classical Weisfeiler-Lehman (WL)

method. Since the classical WL method suffers from tottering

problem, the related DGCNN, PSGCNN and DGK models

also possess the same drawback. By contrast, the graph

convolution operation of the proposed QSGCNN model can

be seen as the quantum version of the classical WL algorithm.

Since the quantum walk can reduce the tottering problem,

the proposed QSGCNN model overcomes the shortcoming of

tottering problem arising in the DGCNN, PSGCNN and DGK

models. Moreover, the AWE model is based on the classical

random walk. By contrast, the proposed QSGCNN model is

based on the quantum random walk, that has been proven

powerful to better distinguish different graph structures. The

evaluation demonstrates the advantages of the QSGCNN mod-

el, compared to the state-of-the-art deep learning methods.

Finally, we observe that the proposed QSGCNN model

significantly outperforms the CSGCNN model, that is based on

the proposed spatial graph convolutional operation associated

with classical random walks. This indicates that the proposed

QSGCNN model associated with quantum walks can better

discriminate different graph structures than the CSGCNN

model associated with classical random walks, demonstrating

the advantage of utilizing quantum walks in our framework.

On the other hand, excluding the QSGCNN model, we observe

that the CSGCNN model can outperform most of the alterna-

tive methods. This is because the CSGCNN model follows the

same architecture and experimental setup with the QSGCNN

model, i.e., the CSGCNN model also employs the fixed-sized

grid structures of graphs as inputs. Similar to the proposed

QSGCNN model, the CSGCNN model can also reduce the

problem of information loss and overcome the shortcoming of

lacking structure correspondence information, demonstrating

the advantage of the proposed fixed-sized grid structures.
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Fig. 3. Plots of accuracy and runtime vs parameter M, as well as accuracy and training loss vs epoch.

C. Computational Efficiency of the Proposed Model

In this subsection, we empirically evaluate the computation-

al efficiency of QSGCNN, and compare it with the fast WLSK

kernel [9] on the RED-B benchmark dataset. We choose this

dataset because the graphs it contains have the largest average

size among the available datasets used in our experimental

evaluation. The WLSK kernel takes 2, 170 seconds to compute

the kernel matrix, and another 837 seconds to train the C-

SVM associated with the kernel matrix for one round of

10-fold cross validation. For the proposed QSGCNN model,

computing the fixed-sized grid structures takes 3, 980 seconds,

and another 457 seconds to train the QSGCNN model for

one round of 10-fold cross validation. Note that, the training

time of the proposed QSGCNN model depends on the number

of epochs selected. Here we set the number of epochs to be

100. QSGCNN can significantly outperform the WLSK kernel

under in this setting, i.e., the accuracies of QSGCNN and

the WLSK kernel are 77.30 versus 76.56. As a result, the

overall runtimes for QSGCNN and the WLSK kernel are 4437
seconds versus 3, 007 seconds. In other words, although the

runtime of the proposed QSGCNN model is slightly higher,

this is still a competitive advantage when compared with

that of the WLSK kernel. More importantly, the proposed

QSGCNN model can significantly outperform the WLSK

kernel in terms of graph classification accuracy, i.e., QSGCNN

provides a better trade-off between classification accuracy and

computational efficiency.

D. Additional Performance Evaluation of the Proposed Model

In this subsection, we first evaluate how the selection of

the parameter M influences the classification performance of

the proposed model. Specifically, we vary the parameter M
from 16 to 64 (with steps of size 8). Figure 3(a) shows how

the classification accuracy of the proposed QSGCNN model

varies with increasing values of M on the COLLAB, PTC

and RED-B datasets. We select these three datasets due to

their representativeness in terms of different graph size and

graph sample size. We observe that the classification accuracy

gradually increases as the value of M increases, reaching a

more stable value when M is greater than 48. Moreover, we

evaluate how the training loss and the classification accuracies

vary as we increase the number of epochs. Specifically, we

vary the epoch number from 50 to 1000 (with steps of size 50).

We show the results in Figure 3(b) and Figure 3(c). Finally, we

investigate how the runtime varies with the above increasing

values of M when set the epoch as 1000. We show the results

in Figure 3(d). Note that although the above three evaluations

are only performed on the RED-B dataset, we observe similar

results on the remaining datasets. As the number of epochs in-

creases, the classification accuracy gradually increases and the

training loss gradually decreases, until they both converge to

stable values. Moreover, the runtime increases approximately

linearly with increasing values of M .

V. CONCLUSION

In this paper we have developed a new quantum graph

convolutional neural network, QSGCNN, that can directly

learn an end-to-end deep learning architecture for classifying

graphs of arbitrary sizes. The key idea is to present a novel

quantum spatial graph convolution operation on a fixed-sized

vertex grid structure for the original graphs. This transforma-

tion is achieved through transitive alignments between graphs.

We demonstrate that the proposed QSGCNN model not only

preserves the original graph characteristics, but also bridges

the gap between the spatial graph convolution layer and

the traditional convolutional neural network layer. Moreover,

QSGCNN can better distinguish different structures, and the

experiments demonstrate its effectiveness on graph classifica-

tion problems.

In previous work [54], [55] we have shown how to charac-

terize edge information in the original graphs through directed

line graphs, where each vertex of the line graph represents

an edge of the original graph. We have also illustrated the

relationship between discrete-time quantum walks and the

directed line graphs. It would be interesting to develop a novel

quantum edge-based convolutional network associated with

discrete-time quantum walks using the directed line graph.

Finally, Xu et al. [56] indicate that the convolutional operation

underpinning most graph convolutional networks based on an

adjacency matrix representation can be interpreted as directly

implementing a 1-layer perceptron followed by a non-linear

activation function. Moreover, they develop a new graph

isomorphism network model based on a vertex information

aggregation layer followed by multi-layer perceptrons, and

demonstrate a significant performance improvement. This can

inform our future work, and we will further extend QSGCNN

to develop a new quantum isomorphism dectection network.
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