
This is a repository copy of Using imagery and computer vision as remote monitoring 
methods for early detection of respiratory disease in pigs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176254/

Version: Accepted Version

Article:

Jorquera-Chavez, M, Fuentes, S, Dunshea, FR orcid.org/0000-0003-3998-1240 et al. (5 
more authors) (2021) Using imagery and computer vision as remote monitoring methods 
for early detection of respiratory disease in pigs. Computers and Electronics in Agriculture, 
187. 106283. ISSN 0168-1699 

https://doi.org/10.1016/j.compag.2021.106283

© 2021 Elsevier B.V. All rights reserved. This is an author produced version of an article, 
published in Computers and Electronics in Agriculture. Uploaded in accordance with the 
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Using imagery and computer vision as remote monitoring methods for 1 

early detection of respiratory disease in pigs  2 

Maria Jorquera-Chavez 1,2,5*, Sigfredo Fuentes 1, Frank R. Dunshea 1,3, Robyn D. Warner1, Tomas Poblete 1, 3 

Ranjith R. Unnithan4, Rebecca S. Morrison5 and Ellen C. Jongman2 4 

1 University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia 5 

2 Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 6 

Parkville, VIC 3010, Australia  7 

3 Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, United Kingdom 8 

4 University of Melbourne, Department of Electrical and Electronic Engineering, VIC 3010, Australia 9 

5 Rivalea (Australia) Pty. Ltd., Corowa, NSW 2646, Australia 10 

 11 

*Corresponding author email: mjorquera@student.unimelb.edu.au 12 

  13 



2 

 

Abstract 14 

Respiratory diseases in pigs impact the wellbeing of animals and increase the cost of 15 

production. One of the most appropriate approaches to minimizing these negative effects is the 16 

early detection of ill animals. The use of cameras coupled with computer-based techniques 17 

could assist the early detection of physiological changes in pigs when they are beginning to 18 

become ill and prior to exhibiting clinical signs. This study consisted of two experiments that 19 

aimed to (a) evaluate the use of computer-based techniques over RGB (red, green, and blue) 20 

and thermal infrared imagery to measure heart rate and respiration rate of pigs, and (b) to 21 

investigate whether eye-temperature, heart rate and respiration rate assessed remotely could be 22 

used to identify early signs of respiratory diseases in free-moving, and group-housed growing 23 

pigs in a commercial piggery. In the first experiment, the remotely-obtained heart rate and 24 

respiration rate were compared with the measures obtained with standard methods, showing 25 

positive correlations (r= 0.61 – 0.66; p< 0.05). In the second experiment, pigs were recorded 26 

by overhead cameras and the remotely-obtained physiological measures were analysed to 27 

identify whether physiological changes could be detected in sick pigs before clinical signs were 28 

observed. The changes in eye-temperature and heart rate remotely obtained showed clear 29 

differences between sick and healthy pigs two days before clinical signs were detected. While 30 

significant changes in respiration rate occurred the day before clinical signs of illness were 31 

identified. The results of the present study indicate the possible use of computer vision 32 

technique for constant animal monitoring and rapid detection of physiological changes related 33 

to illness in commercial pigs. Further research is recommended to continue the development, 34 

automatization, and commercial practicality of this novel technology. 35 

 36 

Keywords: Animal monitoring; non-invasive methods; contactless monitoring; animal health; 37 

physiological indicators. 38 
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1. Introduction 39 

The detection of health challenges affecting pigs is critical in maintaining appropriate levels of 40 

health and animal welfare within commercial piggeries. The early detection of illnesses is 41 

crucial to reduce the impact that these diseases have on the animals and the industry, and to 42 

increase the success of the treatments applied (Cowton et al., 2018). Pleuropneumonia is one 43 

of the diseases that greatly impacts the pig industry to a large part because it can easily 44 

propagate across pigs (Kerr et al., 2003). These diseases reduce the wellbeing of pigs and 45 

increase the cost of production through their effect on weight gain and death observed in 46 

affected pigs, as well as the increased use of antibiotics to prevent and treat these infections 47 

(Opriessnig et al., 2011; Maes et al., 2018).  48 

The pig industry is developing new early disease intervention and management tools to enable 49 

early disease identification, facilitating responsible antibiotic stewardship, reducing the risk of 50 

antimicrobial resistance (Lekagul, 2019; Jorquera-Chavez et al., 2020).  51 

Although the importance of early detection of diseases has been recognised, the 52 

implementation of effective detection systems has been limited by the difficulty and high cost 53 

of performing large-scale clinical and serological examinations (Schaefer et al., 2004). Novel 54 

non-invasive methods are being investigated in an attempt to overcome these limitations and 55 

assist stock people in detecting diseases at an early stage and take rapid action, minimising the 56 

propagation of the infection within the herd and reducing the use of medical treatments (Ferrari 57 

et al., 2010). As part of this attempt, Precision Livestock Farming (PLF) has appeared as one 58 

of the most appropriate approaches for constant animal monitoring and early detection of 59 

diseases. For instance, non-invasive methods to assess changes in animal behaviour, coughing 60 

sounds and skin temperature have been investigated for applications to detect illness in several 61 

species (Matthews et al., 2016; Matthews et al., 2017).  62 
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Physiological changes have been linked to respiratory diseases in animals. Nevertheless, the 63 

methods commonly used to measure parameters such as body temperature, heart rate (HR) and 64 

respiration rate (RR) require human interaction, and they normally are time-consuming and 65 

labour-intensive. For this reason, researchers are also investigating non-invasive techniques to 66 

measure the changes in these parameters (Soerensen and Pedersen, 2015; Stewart et al., 2017).  67 

Body temperature is one of the measures that has been extensively used for the detection of 68 

sick animals. As part of the search for less invasive and more practical methods, gastric sensors 69 

Kalantar-Zadeh et al., 2016) and infrared thermal (IRT) cameras (Rocha et al., 2019) have been 70 

studied to detect trends and relevant changes in body temperature of several species. For 71 

instance, Schaefer et al. (2012) indicated IRT images to be a useful tool to detect high 72 

temperatures related to bovine respiratory disease complex (BRD).  73 

The measurement of HR and RR of animal through the use of imagery and computer-based 74 

methods have been less investigated. However, some computer-based methods have been 75 

reported to assess HR and RR in humans (Barbosa Pereira et al., 2018; van der Kooij and 76 

Naber, 2019). Although these methods have been less explored in animals, some studies have 77 

investigated the possible use of RGB (red, green and blue) and IRT imagery to assess HR and 78 

RR in farm animals (Stewart et al., 2017; Jorquera-Chavez et al., 2019; Jorquera-Chavez et al., 79 

2020). 80 

Considering the impact that respiratory diseases have on the pig industry and the challenges 81 

related to its detection and treatment, this study investigated the use of IRT cameras and video 82 

cameras in a commercial indoor piggery. This study had the aim of (a) evaluating the proposed 83 

algorithms to measure HR and RR in pigs and (b) identify whether these technologies would 84 

be able to detect physiological changes (eye-temperature, HR and RR) before sick animals 85 

display clinical signs that would be detected by stock people. The result of this study could aid 86 
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further research and development of this technology as a tool to monitor pigs health and 87 

welfare, assisting the improvement of management of pigs on farms. 88 

 89 

2. Methodology 90 

2.1. Cameras and image processing 91 

FLIR Duo® Pro R (FLIR Systems, Wilsonville, OR. USA) cameras were used during this 92 

study. These combine a high resolution radiometric thermal sensor and a 4K visible RGB 93 

sensor. The IRT sensor had a spectral range of 7.5 – 13.5 μm, sensitivity < 50 mK, resolution 94 

of 640 x 512 pixels, emissivity of 0.985, and a frame rate of 30 Hz per second. The RGB sensor 95 

had a resolution of 4000 x 3000 pixels and a frame rate of 30 Hz per second. The average 96 

temperature and humidity obtained from the closest meteorological station was included in the 97 

settings of the camera. As the second part of this study required continuous monitoring, a 98 

storage system was developed using Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK). 99 

Collected images were processed using customised algorithms developed in Matlab® R2018b 100 

(Mathworks Inc. Natick, MA, USA). In the case of IRT images, this algorithm firstly extracted 101 

the radiometric information of each image, by using FLIR® Atlas SDK (FLIR Systems, 102 

Wilsonville, OR. USA) (Jorquera-Chavez et al., 2019). Secondly, it allowed to select the eye 103 

area as the region of interest (ROI; selected on the first frame and automatically tracked over 104 

the following frames), from where the maximum temperature was extracted. The selection of 105 

eye area as ROIs in this study was based on studies that have shown this area to be more 106 

practical and accurate when using IRT images to measure body temperature (Soerensen and 107 

Pedersen, 2015). 108 
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With the aim of remotely measuring HR over the RGB images, two algorithms were integrated. 109 

The first algorithm uses computer vision techniques to recognize spatial patterns on specific 110 

ROIs (eye area) and automatically track them along the video, as reported by Jorquera-Chavez 111 

et al. (2019). The second algorithm is based on the photoplethysmography (PPG) principles to 112 

assess HR changes by detecting changes on both light reflection off and transmission through 113 

body parts (van der Kooij and Naber, 2019). To assess HR in the present study, the eye area 114 

was used as ROI because it presents a low density of hair, and because this area has been shown 115 

to be useful when using imagery in humans and animals (Soerensen and Pedersen, 2015). 116 

 Furthermore, for the analysis of respiration rate IRT images were processed, using the nose 117 

area as ROI. Similarly to the HR analysis, the ROI (nose area) was firstly selected and tracked 118 

in order to improve the accuracy of the analysis. Subsequently, the algorithm extracts the 119 

maximum temperature within the ROI (nose area) in each frame, which were later used to 120 

calculate RR. The calculation is based on the changes of temperature that occur due to air flow 121 

(inhalation and exhalation), where the air that is expelled generates an increase in temperature 122 

within the nose area, decreasing later when the inhalation occurs (Jorquera-Chavez et al., 123 

2019). 124 

 125 

2.2. Animals and data collection 126 

The facilities and animals used in this project were provided by Rivalea Australia. All animal 127 

procedures had prior institutional ethical approval (Protocol ID:17V060C) under the 128 

requirement of the New South Wales Prevention of Cruelty to Animals Act (1979) in 129 

accordance with the National Health and Medical Research Council/Commonwealth Scientific 130 

and Industrial Research Organisation/Australian Animal Commission Australian Code of 131 

Practice for the Care and Use of Animals for Scientific Purposes (NHMRC, 2013).  132 
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This study was divided into two experiments. The “First experiment” refers to the evaluation 133 

of the proposed techniques, while the “Second experiment” refers to the implementation of 134 

these techniques for early detection of respiratory diseases in pigs under commercial 135 

conditions. 136 

The data management and analysis were conducted in Minitab® Statistical Software 18 137 

(Minitab Pty Ltd., Sydney, Australia) and Genstat® for Windows 18th Edition (VSN 138 

International, Hemel Hempstead, UK). 139 

 140 

2.2.1. First experiment: Evaluation of the proposed methods 141 

A total of twenty-eight, post-weaned pigs, at 9 weeks of age, were grouped into two adjacent 142 

pens (3.5m x 2.8m per pen). The procedures for this study were performed in November of 143 

2019, four days after these pigs were placed in their respective pens. 144 

A camera (FLIR Duo® Pro R; FLIR Systems, Wilsonville, OR, USA) was located in a corner 145 

of each pen, attached at a height of 2.5 m and the camera lenses were directed to record the 146 

largest area of the pen possible (Fig. 1). An area in the middle of the solid floor (close to the 147 

feeder) was selected as the place where pigs were individually held during the recording, which 148 

was at approximately 2.5-2.8 metres from the camera. 149 

 150 
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 151 

Fig. 1. Description of camera position. Cameras located at a height of 2.5 metres, each camera 152 

directed towards a respective pen.  153 

 154 

In order to be able to validate the use of imagery and computer-based techniques to measure 155 

HR and RR of pigs in commercial settings, each pig was recorded for a total of two minutes 156 

and each parameter was also measured with a gold-standard method during the same period 157 

(stethoscope and video-based observations of breathing movements, respectively). Each pig 158 

was firstly marked with its respective number using stock spray and then recorded while being 159 

held quietly by a technician for one minute with the face towards the camera, and another 160 

minute facing sideways to the camera. During this recording period, a skilled technician 161 

measured the HR by using a stethoscope (3M Littmann™ Cardiology II; Littmann™, St. Paul, 162 

Minnesota, USA) to hear the number of beats. Due to the challenge of maintaining pigs in the 163 

same position for a minute and some pigs vocalising while being held, the technician counted 164 

the beats occurring within 30 seconds and repeated this procedure for another consecutive 30-165 

second-period while the pig was toward the camera and two consecutive 30-second-periods 166 

while the pig was facing sideways. In addition, the RR was also measured during the same 167 

period by counting the breathing movements of the flanks that occurred in one minute. Due to 168 

excessive motion and vocalisation, it was not possible to hear the HR of one pig in any position, 169 

and in three pigs when they were facing towards the camera. 170 
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Once the images were processed, the HR and RR obtained remotely were compared to the HR 171 

and RR obtained with the standard methods. Pearson correlation and regression analysis were 172 

performed to measure the strength of the linear association between remotely measured HR 173 

and RR with its respective parameter measured with standard method (stethoscope for HR and 174 

visual observations for RR assessment). 175 

 176 

2.2.2. Second experiment: Early detection of respiratory diseases  177 

Two groups of weaned pigs were recorded in two separate periods during 2019-2020. The first 178 

group comprised 20 pigs, which were divided and placed into two adjoining pens of 3.5m x 179 

2.8m metres (10 pigs per pen) at 9 weeks of age. These pigs were recorded between 12 and 17 180 

weeks of age (August-September). The second group comprised 28 weaned pigs, which were 181 

divided and placed into two adjoining pens of 3.5m x 2.8m (14 pigs per pen) at 9 weeks of age. 182 

These pigs were recorded between the 9 and 20 weeks of age (November-January). 183 

One camera, together with a storage system and an external hard drive, was located in each of 184 

the pens by attaching it in a corner of the pen at a height of 2.5 m (Fig. 1). The location of the 185 

camera in the current study was chosen so that additional information on the behaviour of pigs 186 

could be collected, which can also potentially be used to identify clinical signs of disease. As 187 

the shed was naturally lighted, these cameras were set to stop recording from evening to early 188 

morning. Recordings were obtained during 15 minutes, every 30-35 minutes from 5:00 am to 189 

11:00 pm (approximately 30 fifteen-minutes recordings per day). In both groups (both periods 190 

of recording), after placing the cameras, each pig was identified using stock marker, being 191 

marked with a specific number before the start of the recording. In addition, pigs were re-192 

marked every 7 days. 193 
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Pigs were labelled as “sick” or “healthy” based on clinical observations (Table 1), which were 194 

performed daily by farm technicians (as part of their normal routine) and during one hour every 195 

7 days by an external technician, as well as by observing the daily video recordings (performed 196 

by the same external technician). When a pig was observed to have two or more symptoms 197 

shown in Table 1, it was considered to have a respiratory infection and labelled as “sick”. The 198 

animals that did not show any symptoms listed in Table 1 were labelled as “healthy”. From a 199 

total of six pigs labelled as “sick” during this study, only one of these pigs (referred as ‘S6’) 200 

was detected to be sick by the routine observations performed by stock people at the farm, and 201 

the rest of pigs showed very mild symptoms and were only identified as “sick” during 202 

observation of the daily video recordings. 203 

Table 1. Clinical observations used to identify animals with symptoms of respiratory disease. 204 

Symptoms Observations Sign of illness  

Nasal 

discharge 
None No 

Discharge for several observations Yes 

Coughing No coughing No 

Coughing episodes of 1-3 short coughs at a time Yes 

Laboured 

breathing 
Normal breathing No 

Abdominal breathing Yes 

Laboured breathing, breathing through mouth, head extended Yes 

Lethargy Alert and active No 

Depressed, disinclination to move about, ears laid back Yes 

Recumbent position, reluctance to get up Yes 

Anorexia Eats No 

Not observed eating Yes 

Roughness in coat, tucked in and extremely dehydrated Yes 

 205 

Once “sick” and “healthy” animals were identified and the images obtained were evaluated, 6 206 

“healthy” pigs were selected from the same pen where the “sick” pig was located, making sure 207 

that these six pigs could be observed in all video recordings across the period analysed. As the 208 

pigs that were labelled “sick” (6 pigs in total) were observed to have symptoms in different 209 
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periods across the study, each “sick” pig was paired with six “healthy” pigs from the same pen 210 

and during the same period, resulting in six groups (a total of 6 “sick” and 36 “healthy” pigs).  211 

To determine the period that was analysed in each group, the day when pigs were labelled as 212 

“sick” (based on the clinical observations) was considered as “day 0” and 1-2 days before and 213 

after “day 0” were analysed to identify whether changes of eye-temperature, HR and RR were 214 

evident in “sick” pigs before signs of illness were visually detected. The days before “day 0” 215 

were labelled as negative numbers (e.g. -2 and -1) and the days after “day 0” were labelled as 216 

positive numbers (e.g. +1 and +2). Due to the routine health management practices of the farm, 217 

the sick pig received a dose of injectable antibiotic (S6 only). When this treatment occurred 218 

within the analysed period, it was recorded and considered in the observations. 219 

Once the physiological parameters were obtained from each group/period, the trend of eye-220 

temperature, HR and RR were evaluated within each group and the daily mean was calculated 221 

per pig. Analysis of variance tests were performed in Genstat® to evaluate the main effects 222 

(Block= groups; Treatment= health status). Plots of residuals vs fitted values were evaluated 223 

to assess the assumption of constant variance. The least significant difference (LSD) was used 224 

to test whether these physiological parameters were significantly different between “sick” and 225 

“healthy” pigs the day when symptoms were evident (day 0) and two days before (day -1 and 226 

day -2). Following this analysis, further ANOVA tests were performed in Genstat® including 227 

the average obtained in each day (-2, -1 and 0) and the average obtained in two periods of each 228 

day (AM and PM) in order to identify in what period of the day the difference in physiological 229 

parameters between “sick” and “healthy” pigs became apparent. 230 

The trend within these group/periods was also visually evaluated to observe whether the 231 

tendency of the physiological parameters differed between each “sick” pig (referred as S)  and 232 
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its paired “healthy” pigs (referred as H)  across the analysed period (4-5 days; 25-30 233 

measurements per day).  234 

 235 

3. Results and Discussion 236 

3.1. First experiment: Evaluation of the proposed methods 237 

The data from the comparison between the HR measured with stethoscope and the HR obtained 238 

from image processing from individual pigs showed good correlation, with similar correlation 239 

coefficients (r= 0.61 – 0.65) in both positions, being slightly higher when pigs were facing 240 

sideways to the camera (Table 2, Fig. 2). When pigs were facing sideways, the computer-based 241 

technique, on average, under-estimated HR measures (Average Relative Error= 0.11). While 242 

the analysis of videos obtained when the face of pigs was towards the camera, on average, 243 

overestimated the HR measures (Average Relative Error= 0.11). Although inaccuracies may 244 

have occurred from analysis of the video data, some of the inaccuracy may have been caused 245 

by the challenge of manually counting heartrate with a stethoscope while a pig was being held. 246 

Nevertheless, both orientations resulted in good correlations in measurements, which indicates 247 

that as long as the eye area is visible, HR measures of free moving pigs using RGB cameras 248 

can be recorded. To our knowledge, no prior studies have investigated the use of similar 249 

techniques to measure HR of pigs. However, when comparing the present results to the results 250 

of a previous study in cattle (Jorquera-Chavez et al., 2019), RGB imagery and computer-based 251 

methods appeared to be more accurate in pigs (r= 0.65) than in cattle (r= 0.18). This could be 252 

related to the hair concentration and skin colour of pigs, among other similarities that have 253 

been shown between porcine and human skin (Simon and Maibach, 2000; Jacobi et al., 2007), 254 

in which these techniques have been implemented in several studies with promising results 255 

(Viejo et al., 2018; van der Kooij and Naber, 2019). The correlation between HR measures 256 
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shown in the present study is lower than the correlation observed in humans by Takano and 257 

Ohta (2007), who reported a correlation coefficient of 0.90 when comparing the human HR 258 

provided by pulse oximeters and the HR extracted by computer vision techniques that identified 259 

the change of brightness within the ROI (cheek). However, it was higher than the correlation 260 

reported by Cheng et al. (2017) when evaluating computer algorithms to assess human HR 261 

from RGB videos (r = 0.53). The studies that have implemented computer vision techniques 262 

over RGB videos to measure HR in humans normally involved the recording of people’s face 263 

within a short distance, with minimum motion and controlled light conditions. Although pigs’ 264 

motion and light condition are more difficult to control in farm settings, placing cameras in 265 

feeders or drinking stations could provide appropriate conditions, aiding a practical and more 266 

precise implementation of these techniques to assess HR changes in pigs.  267 

 268 

Table 2. Pearson correlation coefficients (r) between heart rate (HR) and respiration rate (RR) 269 

obtained with standard methods (stethoscope and visual observations respectively) and image 270 

processing (C.V.). Two different animal positions (toward and sideways) relative to the camera 271 

are compared. 272 

* (p < 0.05)     ** (p < 0.001) 273 
 274 

Variable 
Animal 

position 
Method Range Mean (SD) 

Correlation 

Coefficient (r)  

HR 

(BPM) 

Side 
Stethoscope 134-228 165.89 (26) 0.65** 

C.V. 123-235 164.69 (30) 

Front 
Stethoscope 144-242 187.17 (29) 0.61* 

C.V. 152-291 201.32 (28) 

RR 

(BPM) 

Side 
Visual observation 39-53 46 (3) 0.61* 

C.V. 36-60 48 (6) 

Front 
Visual observation 36-53 42 (4) 0.66** 

C.V.  30-58 45 (9) 
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 275 

 276 

Fig. 2. Regression analysis of the relationship between heart rate (beats per minute) obtained 277 

with stethoscope (Standard Heart Rate) and the heart rate remotely obtained (Remote Heart 278 

Rate), when pigs were held in different positions; (a) facing sideways, (b) face towards the 279 

camera. The solid line shows the line of best fit, the dotted lines show the 95% CL. The 280 

equation and associated r and p-value are shown.  281 

 282 

In the case of RR measures, these also showed positive correlations between the standard and 283 

computer-based methods (r= 0.61 – 0.66), being slightly larger when the pigs faced towards 284 

the camera (Table 2, Fig. 3). The computer-based technique, on average, overestimated the RR 285 

measures in both positions analysed (Average Relative Error= 0.08-0.13). Similarly to the 286 

present study, Stewart et al. (2017) investigated the use of IRT image recordings to identify the 287 

temperature changes within the nostrils to assess RR in cattle. The study of Stewart et al. 288 

(2017), similarly to the present study, reported good agreement between the standard and 289 

computer-based methods. However, their method involved the observation of the recordings 290 

and manual counting of air movement from the nostrils, while the present study involved the 291 

use of an algorithm to facilitate automatic recording. Pereira et al. (2019) used IRT imagery to 292 

measure RR in anesthetised piglets by identifying the mechanical chest movements related to 293 

the respiratory cycle, showing great agreement with the RR measures recorded by the 294 
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anesthesia machine (mean absolute error averaged= 0.27±0.48 BPM). Although the correlation 295 

presented by the study above was larger than the correlation presented in the present study, the 296 

methodology proposed by Pereira et al. (2019) was implemented in anesthetised animals and 297 

was not affected by the motion and variable conditions present on commercial farms. 298 

 299 

 300 

Fig. 3. Regression analysis of the relationship between respiration rate (breath per minute) 301 

obtained from visual observations (Standard Respiration Rate) and the heart rate remotely 302 

obtained (Remote Respiration Rate), when pigs were held in different positions; (a) facing 303 

sideways, (b) face towards the camera. The solid line shows the line of best fit, the dotted lines 304 

show the 95% CL. The equation and associated r and p-value are shown.  305 

 306 

3.2. Second experiment: Early detection of respiratory diseases 307 

The physiological parameters remotely assessed were compared across all groups and within 308 

each group. 309 

When eye-temperature of “sick” and “healthy” pigs was analysed across all groups, the 310 

ANOVA showed significantly (p< 0.05) higher eye-temperature in “‘sick” pigs than in 311 

“healthy” pigs from two days before the clinical symptoms were detected (Table 3). The daily 312 

average of eye-temperature in “sick” pigs was 0.8 °C higher than “healthy” pigs two days 313 
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before the symptoms were evident (day -2), 1.28 °C the day before the symptoms were evident 314 

(day -1), and 1.34 °C higher on the day that clinical symptoms were detected (day 0).  315 

When the ANOVA included the period of the day for this comparison, day/health (p< 0.001) 316 

and day/period/health interactions (p< 0.01) were observed. In addition, eye-temperature 317 

showed significant changes from the morning (AM) of the second last day (day -2) before 318 

clinical signs were detected in ill pigs (Table 3). As eye-temperature has been suggested as a 319 

good indicator of core body temperature (Soerensen and Pedersen, 2015), this would indicate 320 

that pigs that are affected by respiratory infections have an increase in temperature around 48 321 

hours before evident signs, such as cough, lethargy or refusing to eat. These results are 322 

consistent with the results reported previously by Jorquera-Chavez et al. (2020), who observed 323 

significantly higher eye-temperature in sick animals, compared to healthy animals the day after 324 

these pigs were inoculated with Actinobacillus pleuropneumoniae (APP), and 6 hours before 325 

the detection of clinical symptoms. This is also consistent with the observations of Schaefer et 326 

al. (2004), who also compared clinical scores and temperatures obtained from IRT images for 327 

detecting early signs of bovine viral diarrhoea virus (BVDV) in calves, reporting clear changes 328 

in temperatures remotely obtained several days before clinical observations were identified in 329 

sick animals. 330 

 331 

 332 

 333 

 334 

 335 
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Table 3. Summary of eye-temperature (T) means in the morning, afternoon and the average 336 

morning-afternoon obtained two days before (-2), the day before (day -1) and the day when 337 

clinical signs were detected (day 0). Least significant difference (LSD) is shown at the 0.05 338 

level. 339 

Variable Day Period Group Mean Day average L.S.D.  

T (°C) 

-2 

Morning 
Sick 

38.33 
38.53 

0.34†‡* 
Afternoon 38.72 

Morning 
Healthy 

37.72 
37.73 

Afternoon 37.73 

-1 

Morning 
Sick 

39.04 
39.07 

0.34†‡* 
Afternoon 39.09 

Morning 
Healthy 

37.78 
37.79 

Afternoon 37.8 

0 

Morning 
Sick 

39.06 
39.12 

0.34†‡* 
Afternoon 39.17 

Morning 
Healthy 

37.75 
37.78 

Afternoon 37.80 
† Difference between groups is larger than LSD in the respective morning. 340 
‡ Difference between groups is larger than LSD in the respective afternoon. 341 

* Difference between groups is larger than LSD in the respective day. 342 

 343 

Although only one of the sick (S6) animals showed obvious signs of porcine respiratory disease 344 

(PRD) and was detected as sick by routine observations performed by stock people at the farm 345 

(first aid performed and removed and placed in a recovery pen), the eye-temperature appeared 346 

to be higher in most of the “sick” pigs (Appendix Fig. A1). The day before evident symptoms 347 

(day -1), the average eye-temperature of most “sick” pigs (S1,S3,S4,S5,S6) was observed to 348 

differ significantly from the average eye-temperature of “healthy” pigs, with a difference 349 

ranging between 0.7 and 2.8 °C (LSD= 0.39). Only one “sick” pig (S2) showed a non-350 

significant difference (0.008 °C), which could be related to a lower level of infection in this 351 

pig compared to the rest of pigs. The day when symptoms were detected (day 0), the difference 352 
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between all “sick” pigs and “healthy” pigs were significant and ranged between 0.6 and 2.9 °C 353 

(LSD= 0.35). 354 

In the case of HR, the analysis of variance also showed day/health (p< 0.001) and 355 

day/period/health interactions (p< 0.05). The difference of HR became significant from the 356 

afternoon of the second last day before the day when clinical symptoms were detected (Table 357 

4; Appendix Fig. A2), being the HR of “sick” pigs 4.3 BPM higher than in “healthy” pigs 358 

(LSD= 3.7) that afternoon. The day before the symptoms were evident (day -1) the HR of 359 

“sick” pigs was 5.3 BPM higher than “healthy” pigs, and 10.8 BPM higher the day that clinical 360 

symptoms were detected (day 0). This difference between “sick” and “healthy” animals agrees 361 

with studies that have suggested HR measures as an indication of illness in animals (Reyes-362 

Lagos et al., 2016). Moreover, the present results agree with several studies that have observed 363 

increased HR in animals presenting respiratory infections. For instance, Reinhold et al. (2012) 364 

showed that calves affected by C. psittaci infection increased their HR up to 160%, compared 365 

to the baseline. Weingartl et al. (2009) and Geisbert et al. (2012) reported fever and tachycardia 366 

as some of the first signs in horses inoculated with the Hendra virus (HeV). Furthermore, HR 367 

was observed to significantly increase in pigs challenged with Actinobacillus 368 

pleuropneumoniae (APP), before these pigs showed clinical signs (Jorquera-Chavez et al., 369 

2020). 370 

Similarly to the observations on eye-temperature, the same “sick” pig (S2) showed a non-371 

significant difference (2.48 BPM), when comparing the HR remotely-measured of “sick” and 372 

“healthy” pigs of the same group the day before evident symptoms were observed (day -1). In 373 

the case of the day when symptoms were detected (day 0), five of the groups showed a 374 

significant difference between the “sick” pigs and “healthy” pigs, ranging between 4.4 and 21.2 375 
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BPM. Pig S3 was the only “sick” pig that showed no significant difference (2.2 BPM) on day 376 

0. 377 

Table 4. Summary of heart rate (HR) means in the morning, afternoon and the average 378 

morning-afternoon obtained two days before (-2), the day before (day -1) and the day when 379 

clinical signs were detected (day 0). Least significant difference (LSD) is shown at the 0.05 380 

level. 381 

Variable Day Period Group Mean Day average L.S.D. 

HR (BPM) 

-2 

Morning 
Sick 

78.60 
80.43 

3.7‡ 
Afternoon 82.26 

Morning 
Healthy 

77.44 
77.72 

Afternoon 77.99 

-1 

Morning 
Sick 

83.86 
83.80 

3.7†‡* 
Afternoon 83.73 

Morning 
Healthy 

78.12 
78.46 

Afternoon 78.8 

0 

Morning 
Sick 

86.29 
89.79 

3.7†‡* 
Afternoon 93.28 

Morning 
Healthy 

79.11 
79.01 

Afternoon 78.90 
† Difference between groups is larger than LSD in the respective morning. 382 
‡ Difference between groups is larger than LSD in the respective afternoon. 383 

* Difference between groups is larger than LSD in the respective day. 384 

 385 

A different trend was observed in the RR measures within all groups (Table 5). From the 386 

analysis performed across groups, considering the day and period of the day, RR was not 387 

observed to significantly differ between “sick” and “healthy” pigs the second last day before 388 

clinical symptoms were detected. However, the difference in RR between “sick” and “healthy” 389 

appeared to be significant the afternoon of the day before symptoms were detected in “sick” 390 

animals (day -1), when “sick” pigs had an average of RR 3.6 BPM higher than “healthy” pigs 391 

(LSD= 2.84). In addition, day by health interaction (p< 0.001) was found. These observations 392 

agree with a previous preliminary study (Jorquera-Chavez et al., 2020), which also observed 393 
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early changes of remotely-measured eye-temperature and HR in pigs infected with APP, while 394 

the remotely-measured RR of these pigs was observed to change at the same time that the 395 

clinical signs became evident to technicians. These results could indicate that the RR of pigs is 396 

affected during a more advanced stage of respiratory disease, which could be a result of the 397 

infection compromising the lungs. Although RR has been used as one of the signs to detect 398 

respiratory diseases, the results of the relationship between RR and the stage of these diseases 399 

varies between studies. For instance, Van Reeth et al. (2003) found increased RR in pigs 400 

affected by influenza, 24 hours after being challenged with H1N2 virus, while Kerr et al. (2003) 401 

did not find correlation between RR and calcitonin receptor (CTR) when using CTR as a sign 402 

of APP infection. 403 

 404 

Table 5. Summary of respiration rate (RR) means in the morning, afternoon and the average 405 

morning-afternoon obtained two days before (-2), the day before (day -1) and the day when 406 

clinical signs were detected (day 0). Least significant difference (LSD) is shown at the 0.05 407 

level. 408 

Variable Day Period Group Mean Day average L.S.D. 

RR (BPM) 

-2 

Morning 
Sick 

26.00 
26.37 

2.84 
Afternoon 26.74 

Morning 
Healthy 

25.62 
25.67 

Afternoon 25.71 

-1 

Morning 
Sick 

27.05 
28.17 

2.84‡ 
Afternoon 29.29 

Morning 
Healthy 

25.74 
25.73 

Afternoon 25.71 

0 

Morning 
Sick 

29.66 
30.63 

2.84†‡* 
Afternoon 31.59 

Morning 
Healthy 

25.83 
25.85 

Afternoon 25.87 
† Difference between groups is larger than LSD in the respective morning. 409 
‡ Difference between groups is larger than LSD in the respective afternoon. 410 

* Difference between groups is larger than LSD in the respective day. 411 
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 412 

When analysing the trend of RR within each group (Appendix Fig. A3), only three groups 413 

showed significantly higher RR (p< 0.05) in “sick” animals than in “healthy” animals the day 414 

before clinical signs were detected in “sick” pigs (day -1). The most severe case (S6) was the 415 

one that showed the largest difference that day (S1= 2.6; S4= 2.9; S6= 14.4). The day when the 416 

signs of illness were detected in the “sick” pigs (day 0), all groups showed an increase on the 417 

difference of RR between “sick” and “healthy” pigs, with the most severe case (S6) reaching 418 

22.6 BPM higher than the average of the “healthy” pigs. These differences can also be related 419 

to what was mentioned above, suggesting that evident changes of RR appear to occur in a more 420 

advanced stage of the respiratory disease. In addition, all these pigs were only showing mild 421 

effects of infection, with only S6 identified as sick and treated by stock people. 422 

Considering the results shown above and the results obtained in a previous pilot study 423 

(Jorquera-Chavez et al., 2020), these suggest that constant remote monitoring of physiological 424 

parameters could be a useful tool to detect signs of illness, before the routine monitoring 425 

performed on commercial farms are able to indicate the presence of ill pigs. Specifically, eye-426 

temperature and HR seem to increase in affected pigs two days before other symptoms are 427 

visible in these pigs. Respiration rate on the other hand, appears to increase hours before other 428 

clinical signs are more visible. It is important to consider that these remotely-obtained measures 429 

were observed one or two days before clinical signs were detected from the observations of 430 

continuous recordings. This research potentially shows that remotely-monitored physiological 431 

parameters could indicate signs of illness even more than two days before the physical 432 

symptoms are detected by stock people. The detection of these early changes could improve 433 

the management of respiratory diseases in pigs, increasing the success of the medical treatment, 434 

and decreasing the rate of severe cases and death. 435 
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In addition to these results, it was also observed that these physiological parameters seemed to 436 

be influenced by environmental temperature. It was observed that these parameters were 437 

generally higher and more variable in the pigs included in the 5th (group of S5) and 6th (groups 438 

of S6) groups. This could be related to the environmental temperature registered during the 439 

period when these groups were analysed. The period analysed for the 5th group presented 440 

maximum ambient temperatures of ≥ 35 °C and the days included in the analysis of the 6th 441 

group presented maximum ambient temperatures of ≥38 °C. Considering the influence that 442 

environmental conditions and individual characteristics have on the physiological parameters 443 

of pigs, these factors together with the comparison within the animal and across animals should 444 

be considered when studying the automatisation and implementation of this technology on 445 

farms for continuous monitoring and early detection of illness signs. Notwithstanding this 446 

variation in environmental conditions, early detection of respiratory disease was still possible 447 

with the use of the remote technologies used in this study. 448 

 449 

4. Conclusion 450 

Imagery and computer algorithms were evaluated to remotely measure physiological 451 

parameters in pigs (heart rate and respiration rate). Moreover, computer vision techniques 452 

appeared to be a useful tool to detect early physiological changes in pigs affected by respiratory 453 

diseases, before the symptoms can be observed by stock people, assisting the early detection 454 

and management of respiratory diseases in pigs. The changes in eye-temperature and heart rate 455 

remotely obtained showed clear differences between sick and healthy pigs during the period 456 

evaluated. However, significant changes in respiration rate occurred at a later stage of onset of 457 

the illness.  458 
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Based on the positive observations from this study, further research is suggested to investigate 459 

the development of algorithms and automatization of these techniques and the possible 460 

development of commercial monitoring systems. 461 
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Appendix A. Evaluation of trends within each group/period 480 

 481 

 482 

Fig. A1. Measurements of eye temperature (degrees Celsius) in “sick” and “healthy” animals 483 

before and after clinical symptoms were detected. Each graph represents one group with one 484 

sick pig (red continuous line and labelled as S) and six healthy pigs (discontinuous lines and 485 

labelled as H). “Day 0” represents the day when clinical symptoms were detected. The symbol 486 

* indicates the day when antibiotic was administered via water, and ** indicates when a dose 487 

of injectable antibiotic was administrated to the sick pig. 488 
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 489 

Fig. A2. Measurements of heart rate (beats per minute) in “sick” and “healthy” animals before 490 

and after clinical symptoms were detected. Each graph represents one group with one sick pig 491 

(red continuous line and labelled as S) and six healthy pigs (discontinuous lines and labelled 492 

as H). The symbol * indicates the day when antibiotic was administered via water, and ** 493 

indicates when a dose of injectable antibiotic was administrated to the sick pig. 494 

 495 
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 496 

 497 
 498 

Fig. A3. Measurements of respiration rate (breaths per minute) in “sick” and “healthy” animals 499 

before and after clinical symptoms were detected. Each graph represents one group with one 500 

sick pig (red continuous line and labelled as S) and six healthy pigs (discontinuous lines and 501 

labelled as H). The symbol * indicates the day when antibiotic was administered via water, and 502 

** indicates when a dose of injectable antibiotic was administrated to the sick pig. 503 

 504 
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