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Abstract 1 

This paper has been prepared in memory of Professor Scott Sloan. It first presents a brief review of the 2 

development of shakedown analysis methods for pavement and railway engineering problems. In particular, 3 

it describes a new lower-bound method using the concept of critical residual stress fields and an upper-4 

bound method using a nonlinear programming technique, which were developed by the authors, and then 5 

extended and applied to solve various shakedown problems in pavement and railway engineering. Moreover, 6 

this paper summarises and compares shakedown solutions for pavement and railway engineering problems, 7 

whilst highlighting the key factors that influence the shakedown limits. In addition, this paper proposes a 8 

simple, unified shakedown limit equation for pavements and railways under repeated moving surface loads. 9 

The equation includes three terms, which represent the resistances from cohesion, self-weight of the 10 

underlying soil, and self-weight of any superficial rigid layers, respectively, in a format analogous to 11 

Terzaghi’s bearing capacity equation. Numerical results indicate that the coefficient in the cohesion term 12 𝑁𝑐𝑠𝑑  depends on the soil friction angle; while the coefficient in the self-weight term 𝑁𝛾𝑠𝑑  is controlled by 13 

the soil friction angle and a dimensional factor 𝛾𝑎/𝑐. Values of 𝑁𝑐𝑠𝑑  and 𝑁𝛾𝑠𝑑 for a typical rolling point 14 

contact problem are also presented and interpreted, which explain the different contribution ratios from the 15 

soil self-weight to the shakedown limits of pavement and railway problems. 16 

 17 

Keywords: Shakedown; Pavement; Railway; Lower bound; Upper bound; Unified equation 18 

1 Introduction 19 

The concept of shakedown was initially proposed some 80 years ago (e.g. Bleich, 1932; Melan, 1938; 20 

Prager, 1948; Koiter, 1960). It states that when an elastic-plastic structure is subjected to a repeated or 21 

variable load and the load level is higher than yield but lower than a ‘shakedown limit’, the structure will 22 

gradually adapt itself to the cyclic load and respond purely elastically to the following load cycles, leading 23 

to no further exhibition of plastic strain. Otherwise, if the load level is higher than the shakedown limit, the 24 

structure will eventually fail due to alternative plasticity or excessive permanent deformation. Shakedown 25 
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phenomena of pavements and railways have been observed by researchers through road tests and field data 26 

analyses (e.g. Sharp and Booker, 1984; Radovsky and Murashina, 1996; Xiao et al., 2016). Many 27 

conventional cyclic triaxial tests (e.g. Lekarp and Dawson, 1998; Werkmeister et al., 2001) or cyclic hollow 28 

cylinder tests (e.g. Qian et al., 2016; Xiao et al., 2018; Wang et al., 2020a) have demonstrated the 29 

shakedown behaviours of soils, granular materials and asphalt mixtures. Moreover, by using wheel tracking 30 

tests, a series of validation experiments for shakedown theory (Juspi, 2007; Brown et al., 2008; Ravindra, 31 

2008; Ravindra and Small, 2008; Chazallon et al., 2009; Brown et al., 2012) has been carried out for single-32 

layered or multi-layered pavement systems with different types of soils and granular materials. Very 33 

recently, Liu et al. (2020) further validated the shakedown concept for bituminous pavement structures by 34 

conducting a series of wheel tracking tests on a layered bituminous pavement structure. 35 

A key task of applying shakedown concept to practical problems is to determine the shakedown limit. 36 

Compared with conventional step-by-step analysis where the full stress and strain history is required (e.g. 37 

Wang and Yu, 2013a; Liu et al., 2016; Liu et al., 2017), shakedown analysis using either static (Melan, 38 

1938) or kinematic (Koiter, 1960) shakedown theorem directly calculates the lower or upper bound of the 39 

shakedown limit thus attracts lots of attention. The application of the theoretical shakedown analysis in the 40 

design of steel rails was recognised more than 40 years ago (e.g. Doyle, 1980). Later, Sharp and Booker 41 

(1984) introduced the shakedown theory to pavement problems considering that wheels roll and slide on 42 

the surface of a cohesive-frictional material. Following that, a number of shakedown analysis methods for 43 

pavement and railway engineering problems were proposed (e.g. Ponter et al., 1985; Collins and Cliffe, 44 

1987; Raad et al., 1988; Collins and Boulbibane, 1998; Yu and Hossain, 1998; Shiau and Yu, 2000; Yu, 45 

2005; Boulbibane and Ponter, 2006; Li and Yu, 2006; Krabbenhøft et al., 2007; Nguyen et al., 2008; Zhao 46 

et al., 2008; Wang, 2011; Yu and Wang, 2012; Qian et al., 2017; Costa et al., 2018; Rahmani and Binesh, 47 

2018; Wang et al., 2018a; Wang et al., 2018b; Liu et al., 2020).  48 

One objective of this paper is to provide a review of the recent development of shakedown analysis methods 49 

for pavement and railway applications, with a brief description of establishing two recent shakedown 50 
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analysis methods. The other objective of the paper is to summarise the key influencing factors for 51 

shakedown limits of pavements and railways, and finally to propose a new, simple, unified equation for 52 

shakedown limits of soils under repeated moving surface loads. 53 

2 Shakedown theorems 54 

The classical static shakedown theorem of Melan (1938) states that an elastic-perfectly plastic structure will 55 

shakedown under repeated/cyclic loads if a time-independent self-equilibrated residual stress field can be 56 

found, that when combined with the load-induced elastic stress field, does not violate the yield condition 57 

anywhere in the structure. This can be expressed as: 58 𝑓(𝜆𝝈𝒊𝒋𝒆 + 𝝈𝒊𝒋𝒓 ) ≤ 0           Eq. 1 59 

where 𝝈𝒊𝒋𝒆  is the elastic stress field induced by a unit load 𝑝; 𝜆 is a dimensionless load multiplier; 𝝈𝒊𝒋𝒓  is the 60 

time-independent self-equilibrated residual stress field; and 𝑓 ≤ 0 is the yield criterion for the material. 61 

The classical kinematic shakedown theorem of Koiter (1960) states the structure will not shakedown under 62 

repeated or cyclic loads if any kinematically admissible plastic strain rate cycle �̇�𝒊𝒋𝒑∗(𝒕), body force 𝑿𝒊(𝒕) 63 

and surface load 𝒑𝒊(𝒕) within prescribed limits can be found for which: 64 ∫ (∫ 𝑿𝑖�̇�𝒊∗𝑑𝑉𝑉 + ∫ 𝒑𝑖�̇�𝒊∗𝑑𝑆𝑆𝑝 )𝑑𝑡𝑇0 > ∫ ∫ 𝝈𝒊𝒋∗ �̇�𝒊𝒋𝒑∗𝑑𝑉𝑑𝑡𝑉𝑇0       Eq. 2 65 

where 𝑆𝑝 is structure surface where external loads are specified; 𝑉 is structure volume; T is time period for one 66 

loading cycle; �̇�𝒊∗ and 𝝈𝒊𝒋∗  are the velocity and the state of stress on the yield surface which are associated 67 

with the kinematically admissible plastic strain rate field �̇�𝒊𝒋𝒑∗. Alternatively, the upper-bound shakedown 68 

theorem can be formulated as follows when omitting the body force: 69 𝜆𝑠𝑑 ∫ ∫ 𝒑𝟎𝒊�̇�𝒊∗𝑑𝑆𝑑𝑡𝑆𝑝𝑇0 ≤ ∫ ∫ 𝝈𝒊𝒋∗ �̇�𝒊𝒋𝒑∗𝑑𝑉𝑑𝑡𝑉𝑇0         Eq. 3 70 

where 𝑝0𝑖 is a unit load, 𝜆𝑠𝑑 is the shakedown load multiplier.  71 

It should be noted that the two classical shakedown theorems were proved based on the assumption that the 72 

materials satisfy Drucker’s stability conditions. Therefore, they are only valid for materials obeying an 73 

associated plastic flow rule. Nevertheless, it has been demonstrated by researchers (e.g. Maier, 1969; Pycko 74 



5 

 

and Maier, 1995; Boulbibane and Weichert, 1997) that the shakedown theorems can be extended to consider 75 

the materials following a non-associated flow rule if the plastic potential function 𝑔 = 0 is convex and 76 

contained by the yield surface. 77 

Considering a rapid loading process, the dynamic shakedown concept was first introduced by Ceradini 78 

(1969). Based on additional assumptions that plastic deformations are instantaneous and the yield surface 79 

is fixed, Ceradini (1980) presented the proofs of the lower-bound and upper-bound dynamic shakedown 80 

theorems for elastic-perfectly plastic bodies subjected to a rapid loading process. The dynamic shakedown 81 

theorems take forms similar to the classical ones but use a fictitious dynamic response.  82 

In general, shakedown analysis using the static or kinematic shakedown theorems obtains the shakedown 83 

limit through searching for a critical point or a critical failure mechanism. It leads to either a lower bound 84 

or an upper bound to the true shakedown limit, because the static shakedown theorem only satisfies internal 85 

equilibrium equations, yield criterion, and stress boundary conditions, while the kinematic shakedown 86 

theorem only satisfies compatibility, plastic flow rule and displacement boundary conditions.  87 

3 Shakedown analysis methods for pavements and railways 88 

3.1 Simplification of problems 89 

Shakedown of an elastic-plastic half space subjected to rolling and sliding contact is fundamental to the 90 

analyses of pavement and railway engineering problems. Two basic rolling and sliding contact problems 91 

are line and point contacts. The line contact problem assumes a simple situation in which the load is applied 92 

over a certain contact width by a long roller, whilst the point contact problem considers a surface contact 93 

loading limited to a circular, an elliptical, or a rectangular contact area. If the normal load is denoted as 𝑃, 94 

its tangential counterpart 𝑄 can be expressed as 𝜇𝑃, where 𝜇 is a frictional coefficient. It is usually assumed 95 

that the normal and shear stresses over the contact area are correlated by the frictional coefficient, and they 96 

distributed in a Hertz, Trapezoid or uniform shape. For instance, using the Hertz formulation, the 97 

distributions of normal and shear stresses are depicted in Figure 1, in which the x-axis is the travel direction. 98 
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The Hertz load distribution has a maximum compressive pressure at the center 𝑝0 = 2𝑃/𝜋𝑎 for the line 99 

contact problem, and 𝑝0 = 3𝑃/2𝜋𝑎𝑏 for the point contact problem. 100 

For railway problems and some pavement situations, the stresses due to neighbouring wheels overlap within 101 

some regions in the ground. Therefore, shakedown analysis needs to be conducted considering that several 102 

wheel loads move simultaneously on the surface (e.g. Collins et al., 1993a; Wang et al., 2018a). Furthermore, 103 

the analysis of railway problems needs to take the effect of superstructure components into account. This 104 

can be done by converting a set of neighbouring train wheel loads as well as the influence of the 105 

superstructure into a distributed pressure on the top of the substructure (e.g. Liu et al., 2018; Wang et al., 106 

2018a; Wang et al., 2020b), as shown in Figure 2. 107 

 108 

Figure 1: Rolling and sliding contact problems 109 

 110 

 111 

Figure 2: Conversion of train loads into a pressure 112 

(a) Line contact problem (b) Point contact problem 

(a) Train wheels loads and slab track structure (b) Converted pressure on substructure 
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3.2 Static shakedown analysis methods 113 

3.2.1 Recent development 114 

Over a number of years, shakedown analysis methods based on the static shakedown theorem were 115 

developed for the line contact problem (e.g. Sharp and Booker, 1984; Sharp, 1985; Raad et al., 1988; Raad 116 

et al., 1989a, 1989b; Raad and Weichert, 1995; Radovsky and Murashina, 1996; Yu and Hossain, 1998; 117 

Boulbibane et al., 2000; Shiau and Yu, 2000; Krabbenhøft et al., 2007; Nguyen, 2007; Nguyen et al., 2008; 118 

Zhao et al., 2008). Because of the two-dimensional nature of the line contact problem, the solutions can 119 

only be considered as approximate ones. In recent years, efforts have been devoted to develop shakedown 120 

analysis methods considering more realistic loading situations in pavement and railway engineering. Based 121 

on the consideration, the problem becomes three-dimensional, and therefore it is much more difficult to 122 

derive relevant shakedown solutions. Shiau (2001) extended the linear programming technique of Yu and 123 

Hossain (1998) to solve the three-dimensional pavement shakedown problem. Although some reasonable 124 

results were obtained, it was found that the size of the linear programming problem became prohibitively 125 

large when a finer mesh was applied in the three-dimensional case. Nguyen et al. (2008) utilised an interior-126 

point method to solve pavement shakedown problems considering a rounded Mohr-Coulomb or a von Mises 127 

yield criterion. Both two-dimensional and three-dimensional rolling and sliding contact problems were 128 

analysed, but the numerical results for the three-dimensional case cannot be yet considered reliable.  129 

To efficiently solve the three-dimensional problem, Yu (2005) obtained an analytical necessary condition 130 

for shakedown limits of a cohesive-frictional half-space under a moving point load. Wang (2011)  and Yu 131 

and Wang (2012) developed a rigorous lower-bound shakedown analysis method by deriving two critical 132 

residual stress fields, and thus reducing the problem to a simple mathematical optimisation problem. The 133 

analytical solutions of elastic stresses in a half-space under an elliptical Hertz load was used, so that the 134 

results can be used to benchmark numerical shakedown limits. The critical residual stress fields obtained in 135 

this method were also found in agreement with the numerical results obtained through a step-by-step finite 136 

element analysis and a mesh-free method for both line contact and point contact problems (Wang and Yu, 137 
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2013a; Liu et al., 2018; Rahmani and Binesh, 2018). Considering the cross-anisotropic behaviour of soils 138 

and pavement materials, Wang and Yu (2014) developed a shakedown analysis method to allow the 139 

variation of elastic and plastic material properties with direction. 140 

Based on the lower-bound shakedown analysis method of Yu and Wang (2012), a number of extensions 141 

and applications for pavement and railway problems were conducted. In the field of pavement engineering, 142 

the method was utilised to solve pavement design problems (Wang and Yu, 2013b) and to compare with 143 

the analytical design approach in the UK for flexible road pavements (Wang et al., 2016). Liu et al. (2016) 144 

extended the method to examine the influence of dilation angle on lower-bound shakedown limits of 145 

pavements. By introducing a numerical approach which calculates the traffic-induced dynamic elastic stress 146 

field, Qian et al. (2017) studied the influence of traffic speed on shakedown limits, and the work was further 147 

extended to consider the effects of cross-anisotropic materials (Qian et al., 2018) and frictional coefficient 148 

(Qian et al., 2020). Since the properties of asphalt mixtures are highly dependent on temperature, Liu et al. 149 

(2020) proposed a temperature-dependent shakedown approach to obtain shakedown limits of asphalt 150 

pavements. In the field of railway engineering, although the shakedown solutions of steel rails have been 151 

studied for many years (e.g. Doyle, 1980; Bower and Johnson, 1991; Kapoor and Williams, 1994; Dyson 152 

et al., 1999; Ringsberga et al., 2005; Hasan, 2019), it was not until very recently that the shakedown analysis 153 

method of Yu and Wang (2012) was extended to allow the calculation of shakedown solutions for railway 154 

structures. Considering a typical slab track for high-speed railways, Wang et al. (2018a) investigated the 155 

dynamic shakedown limits of slab track substructures and revealed the relation between the dynamic 156 

shakedown limits and critical speeds. Liu et al. (2018) focused on the influence of a depth-dependent 157 

stiffness modulus on shakedown limits. Costa et al. (2018) considered at-rest stresses in the ground and 158 

adopted a 2.5D approach to calculate dynamic elastic stresses; and therefore the influences of train geometry, 159 

track stiffness, and soil improvement were examined for a slab track system. There were also some efforts 160 

in applying the shakedown analysis method of Yu and Wang (2012) in determining the shakedown limits 161 

of ballasted railways (e.g. Zhuang et al., 2019); however their analyses did not consider the spaced sleepers 162 
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thus violated one basic assumption of the rolling and sliding contact problems that the residual stresses 163 

should be independent of the travel direction. 164 

3.2.2 Static shakedown analysis based on critical residual stress fields 165 

According to Yu and Wang (2012), for the three-dimensional rolling and sliding contact problems, 166 

symmetry and other considerations impose some constraints on the residual stresses: (1) the residual stresses 167 

must be independent of 𝑥; (2) 𝜎𝑧𝑧𝑟  and 𝜎𝑥𝑧𝑟  must be zero; (3) the residual stress itself must satisfy the yield 168 

condition, i.e., 𝑓(𝜆𝜎𝑖𝑗𝑟 ) ≤ 0. A detailed analysis of the possible residual stresses can be found in Yu and 169 

Wang (2012) and Yu (2005). The validity of the residual stresses has also been verified in the numerical 170 

studies of Shiau (2001) and Liu et al. (2017). Assuming that the material is described by the Mohr-Coulomb 171 

model and the critical planes are x-z planes, the static shakedown theorem (Eq. 1) can be rewritten as follows: 172 𝑓 = (𝜎𝑥𝑥𝑟 +M)2 + N ≤ 0          Eq. 4 173 

where 𝜎𝑥𝑥𝑟  is time-independent and self-equilibrated; М = 𝜆𝜎𝑥𝑥𝑒 − 𝜆𝜎𝑧𝑧𝑒 + 2 tan𝜙 (𝑐 − 𝜆𝜎𝑧𝑧𝑒 tan𝜙); N =174 4(1 + tan2 𝜙)[(𝜆𝜎𝑥𝑧𝑒 )2 − (𝑐 − 𝜆𝜎𝑧𝑧𝑒 tan𝜙)2] ; 𝑐  and 𝜙  are cohesion and friction angle of the material, 175 

respectively. 176 

Based on the conditions for residual stresses and the shakedown condition Eq. 4, Yu and Wang (2012) 177 

found that the actual residual stress field must lie within a region determined by two critical stress fields 178 𝜎𝑥𝑥−𝑙𝑟  (denoted as ‘maximum smaller root’) and 𝜎𝑥𝑥−𝑢𝑟  (denoted as ‘minimum larger root’): 179 𝜎𝑥𝑥−𝑙𝑟 = max𝑧=𝑗−∞≤𝑥≤∞(−М𝑖 − √−N𝑖)         Eq. 5 180 𝜎𝑥𝑥−𝑢𝑟 = min𝑧=𝑗−∞≤𝑥≤∞(−М𝑖 + √−N𝑖)        Eq. 6 181 

where i represents a point in the half-space; and 𝑗 represents a depth. When the applied load is at the 182 

shakedown limit, the actual residual stress at a depth 𝑧 = 𝑗 must be no smaller than 𝜎𝑥𝑥−𝑙𝑟  and no higher 183 

than 𝜎𝑥𝑥−𝑢𝑟 , and the critical point of the half-space is located at the depth where the two critical residual 184 

stresses just intersect. 185 
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By substituting Eq. 5 or Eq. 6 into Eq. 4, the shakedown problem can be expressed as the following 186 

mathematical formulation:  187 𝜆𝑠𝑑 = max(𝜆)                                                                s. b. {𝑓(𝜎𝑥𝑥𝑟  (𝜆𝜎𝑒), 𝜆𝜎𝑒) ≤ 0 for all points          𝜎𝑥𝑥𝑟  (𝜆𝜎𝑒) = 𝜎𝑥𝑥−𝑙𝑟  or 𝜎𝑥𝑥−𝑢𝑟                                  Eq. 7 188 

Since the elastic stress fields 𝜎𝑒  and the critical residual stress fields all depend on the load multiplier 𝜆, 189 

Eq. 7 can be easily solved by using the procedure suggested in Wang (2011) and Yu and Wang (2012). 190 

3.3 Kinematic shakedown analysis methods 191 

3.3.1 Recent development 192 

Based on Koiter’s kinematic shakedown theorem, Ponter et al. (1985) obtained shakedown limits of a 193 

cohesive half-space under a point contact loading. Two distinct failure modes were considered in the 194 

analysis: incremental collapse and alternating plasticity. Considering that the rate of plastic working per 195 

unit length on the slip line is the product of cohesion with the tangential velocity jump, Collins and Cliffe 196 

(1987) presented upper-bound shakedown solutions of a cohesive-frictional half-space under a moving two-197 

dimensional or three-dimensional surface load. This method was extended to two-layered pavements by 198 

using a different shape of the slip channel (Collins et al., 1993a; Collins et al., 1993b), and then it was 199 

improved by introducing rut failure mechanisms (Collins and Boulbibane, 1998, 2000; Boulbibane et al., 200 

2005).  201 

Recently, the linear matching method, originally proposed for limit and shakedown analyses of metal 202 

structures under static or cyclic load (e.g. Ponter and Carter, 1997; Ponter and Engelhardt, 2000; Chen and 203 

Ponter, 2005; Ponter et al., 2006), has been applied to the pavement shakedown problem (Boulbibane and 204 

Ponter, 2005, 2006). The basic idea of this method is that the stress and strain fields for the nonlinear 205 

material behaviours may be simulated by the solution of linear problems where linear moduli vary with 206 

time and space. Li and Yu (2006) proposed a nonlinear programming approach for kinematic shakedown 207 

analysis of cohesive-frictional materials. It was further extended to consider a general yield condition with 208 

a non-associated plastic flow rule (Li, 2009). The approach has been applied to solve pavement shakedown 209 
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problems with materials following an associated or a non-associated plastic flow rule. The approach of Li 210 

and Yu (2006) will be briefly explained in the following subsection. Apart from that, the work of Ponter et 211 

al. (1985) could also be very useful in terms of understanding the kinematic shakedown analysis.  212 

3.3.2 Kinematic shakedown analysis using a nonlinear programming approach 213 

By applying the principle of virtual work, the kinematic shakedown theorem Eq. 3 can be written as: 214 𝜆𝑠𝑑 ∫ ∫ 𝝈𝑖𝑗𝑒 �̇�𝑖𝑗𝑝∗𝑑𝑉𝑑𝑡𝑉𝑇0 ≤ ∫ ∫ 𝝈𝑖𝑗∗ �̇�𝑖𝑗𝑝∗𝑑𝑉𝑑𝑡𝑉𝑇0         Eq. 8 215 

in which 𝝈𝑖𝑗𝑒  is the linear elastic stress response to external actions. Eq. 8 can be re-expressed as the 216 

following problem using the mathematical programming theory (Li and Yu, 2006): 217 𝜆𝑠𝑑 = min𝜀𝑘𝑝,Δ𝑢∫ ∫ 𝝈𝑖𝑗∗ �̇�𝑖𝑗𝑝∗𝑑𝑉𝑑𝑡𝑉𝑇0                                         
s. b. {  

  ∫ ∫ 𝝈𝑖𝑗𝑒 �̇�𝑖𝑗𝑝∗𝑑𝑉𝑑𝑡𝑉𝑇0 = 1                                        Δ𝜀𝑖𝑗𝑝 = ∫ �̇�𝑖𝑗𝑝∗𝑑𝑡𝑇0 = 12 (Δ𝒖𝑖,𝑗 + Δ𝒖𝑗,𝑖)      in 𝑉   Δ𝑢𝑖 = ∫ �̇�𝑖𝑑𝑡𝑇0                                             in 𝑉  Δ𝑢𝑖 = 0                                                         on 𝑆𝑢
       Eq. 9 218 

in which Δ𝜀𝑖𝑗𝑝  and Δ𝑢𝑖 are cumulative plastic strain and displacement fields at the end of one loading cycle 219 

over one time cycle [0, 𝑇], respectively; and 𝑆𝑢 is displacement boundary.  220 

Many widely used yield criteria for cohesive-frictional materials can be expressed as: 221 𝐹(𝝈) = 𝝈T𝑷𝝈 + 𝝈T𝑸− 1 = 0         Eq. 10 222 

in which 𝝈 is the stress vector; 𝐹(𝝈) defines a yield function in terms of strength parameter; 𝑷 and 𝑸 are 223 

coefficient matrices and vector which are related to strength properties of the material.  224 

By using the general yield equation and a specific plastic flow rule, the plastic strain rate field can be 225 

obtained. For the case with an associated plastic flow rule, it can be written as: 226 �̇�𝑝 = 2�̇�𝑷𝝈 + �̇�𝑸           Eq. 11 227 

where �̇� = √(�̇�𝑝)T𝑷−1�̇�𝑝4+𝑸T𝑷−1𝑸 . 228 

Then the plastic dissipation power can be obtained as follows: 229 
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𝝈𝑖𝑗𝑒 �̇�𝑖𝑗𝑝∗ = 12�̇� (�̇�𝑝)T𝑷−1�̇�𝑝 − 12 (𝑸)T𝑷−1�̇�𝑝        Eq. 12 230 

Following the technique of König (1987), it is assumed that if a structure reaches a state of shakedown 231 

under any load vertices, it will shake down under the whole load domain. The admissible plastic strain 232 

cycles on the vertices 𝑷𝑘 (𝑘 = 1, 2, … , 𝑙) can generate plastic strain increment: 233 𝜺𝑘𝑝∗ = ∫ �̇�𝑝∗d𝑡𝜏𝑘            Eq. 13 234 

The cumulative plastic strain at the end of one loading cycle can be calculated from: 235 Δ𝜺𝑝∗ = ∑ 𝜺𝑘𝑝∗𝑙𝑘=1            Eq. 14 236 

By substituting Eq. 12 and Eq. 14 into Eq. 9, the shakedown analysis becomes an optimisation problem 237 

with several equality constrains (Eq. 15) which can be solved according to the technique in Li and Yu 238 

(2006).  239 𝜆𝑠𝑑 = min𝜀𝑘𝑝,Δ𝑢∑ ∫ ( 12�̇� (𝜺𝑘𝑝∗)T𝑷−1𝜺𝑘𝑝∗ − 12 (𝑸)T𝑷−1𝜺𝑘𝑝∗)𝑉𝑙𝑘=1 𝑑𝑉                        
s. b. {  

  ∑ ∫ (𝜎𝑘𝑒)T𝜀𝑘𝑝∗𝑉 𝑑𝑉𝑙𝑘=1 = 1                                   Δ𝜀𝑖𝑗𝑝 = ∑ 𝜺𝑘𝑝∗𝑙𝑘=1 = 12 (Δ𝒖𝑖,𝑗 + Δ𝒖𝑗,𝑖)      in 𝑉     Δ𝑢𝑖 = 0                                                         on 𝑆𝑢                                         
    Eq. 15 240 

4 Shakedown solutions for pavement problems 241 

4.1 Effects of cohesion, friction angle, and frictional coefficient 242 

Three-dimensional shakedown analysis of pavements usually assumes that the contact loading is limited 243 

within a circle of radius 𝑎. It was found the shakedown limit is always proportional to the material cohesion 244 𝑐  when omitting material self-weight. Hence, the shakedown solution is normally represented by a 245 

normalised shakedown limit 𝜆𝑠𝑑𝑝/𝑐. Figure 3 exhibits a comparison of existing lower bound shakedown 246 

solutions (Hills and Sackfield, 1984; Shiau, 2001; Yu, 2005; Yu and Wang, 2012) and upper bound 247 

shakedown solutions (Ponter et al., 1985; Collins and Cliffe, 1987; Collins and Boulbibane, 2000; 248 

Boulbibane and Ponter, 2005) for such a three-dimensional situation. For the case with cohesive materials, 249 

the upper-bound shakedown limits are usually higher than the lower-bound shakedown limits. The upper-250 
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bound solutions of Ponter et al. (1985) agree well with the lower-bound solutions for cases 𝜇 = 0 and 𝜇 ≥251 0.3, which implies true shakedown limits. The static shakedown limit always decreases with increasing 252 

frictional coefficient, whereas the kinematic shakedown limit barely changes between 𝜇 = 0 and 𝜇 = 0.2. 253 

As for cohesive-frictional materials, it is clear that the static and kinematic shakedown limits are raised by 254 

increasing friction angle. The lower-bound shakedown solutions for Mohr-Coulomb materials are close, 255 

and they are slightly higher than Boulbibane and Ponter (2005)’s kinematic solutions, because an 256 

incompressible non-associated flow and a Drucker-Prager material was used instead. Figure 4 demonstrates 257 

and compares the interactive effect of friction angle and frictional coefficient on the normalised lower-258 

bound shakedown limits for both line contact and point contact problems (Wang, 2011). When the frictional 259 

coefficient is relatively small, the critical point is located at a depth below the pavement surface; otherwise, 260 

failure initiates at the surface. 261 

 262 

Figure 3: Comparison of shakedown limits for a point contact problem 263 

(b) Cohesive-frictional material, 𝜇 = 0 (a) Cohesive material 
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 264 

Figure 4: Comparison of static shakedown limits for line and point contact problems  265 

4.2 Effect of elongated contact area 266 

For the cases with an elliptical contact area, if the area of the contact loading does not change, a reduction 267 

of the aspect ratio 𝑏/𝑎 (refers to Figure 1b) leads to a rise of the normalised shakedown limit; meanwhile, 268 

the critical point tends to move towards the surface (Yu and Wang, 2012). 269 

4.3 Effect of stiffness ratio 270 

In flexible pavements, upper layers normally have higher values of stiffness modulus than lower layers. If 271 

a quasi-static situation is considered, the normalised shakedown limit is affected by the stiffness ratios rather 272 

than the absolute values of the stiffness modulus. Moreover, there always exists an optimum stiffness ratio 273 

that provides the maximum resistance (i.e. highest shakedown limit), which represents the movement of the 274 

critical point from one layer to another (Sharp and Booker, 1984; Shiau, 2001; Wang and Yu, 2013b). 275 

4.4 Effect of layer thickness 276 

Increasing the thickness of an upper layer usually raises shakedown limit; however, when the thickness 277 

exceeds a certain value, the shakedown limit barely changes with the layer thickness or the stiffness ratio. 278 

This is because the failure is totally controlled by the strength properties of the upper layer (Shiau and Yu, 279 

2000; Boulbibane et al., 2005; Wang and Yu, 2013b); and the corresponding layer thickness can be 280 

considered as the depth of influence of the contact loading. 281 

(b) Point contact problem (a) Line contact problem 
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4.5 Effect of anisotropy 282 

For cases with cross-anisotropic materials, the elastic parameters which mainly affect shakedown limits are 283 

stiffness modulus ratio 𝐸𝑣/𝐸ℎ and shear modulus ratio 𝐺𝑣ℎ/𝐺ℎ (the subscripts 𝑣, ℎ represent vertical and 284 

horizontal directions, respectively). When the material surface is critical, the shakedown limit mainly 285 

depends on the shear modulus ratio; otherwise, it is dominated by the stiffness modulus ratio (Wang and 286 

Yu, 2014). 287 

For the plastic part, it is normally assumed that cohesion of the material changes with the direction. With 288 

rising cohesion ratio 𝑐𝑣/𝑐ℎ, the normalised shakedown limit 𝜆𝑃/𝑐ℎ increases until a maximum value is 289 

reached, which is controlled by the subsurface failure mode. For any cases with 𝑐𝑣/𝑐ℎ > 1, Wang and Yu 290 

(2014) found that a peak shakedown limit exists at a frictional coefficient 𝜇 > 0. This is different from 291 

isotropic solutions which are always largest at 𝜇 = 0 (i.e. normal loading only). 292 

4.6 Effect of plastic flow rule 293 

For cohesive-frictional materials, a dilation angle 𝜓 (0 ≤  𝜓 <  ) is often used to describe the plastic 294 

potential. Both upper-bound (Li and Yu, 2006) and lower-bound (Liu et al., 2016) solutions suggested that 295 

the pavement shakedown limits are reduced due to the decrease of the dilation angle.  296 

4.7 Effect of temperature 297 

At a higher temperature, stiffness moduli and cohesions of asphalt mixtures are lower; consequently, the 298 

shakedown limit of each pavement layer is reduced, especially for the asphaltic layer (Liu et al., 2020). 299 

The shakedown approach is most applicable for asphalt mixtures in which the aggregate skeleton takes 300 

most of the stresses.  301 

5 Shakedown solutions for railway problems 302 

Shakedown analysis of railway problems is more complex than pavement problems since it requires a 303 

careful consideration and analysis of the superstructure. Take a typical Rheda 2000 single track system as 304 

an example (Figure 2), its superstructure includes rails, pads, fastening systems, slab, and concrete base; 305 

while its substructure contains an anti-frozen layer, a prepared subgrade, and subsoil. In railway problems, 306 
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the sleepers are spaced at a certain interval, so that the residual stresses should be periodic along the travel 307 

direction, especially in the region close to the sleepers. Despite of that, for typical slab tracks, the stresses 308 

at or below the surface of the substructure has become independent of the locations of the sleepers due to 309 

high rigidity of the slab and the concrete base. Based on this fact, shakedown analysis was performed on 310 

slab track substructures (Liu et al., 2018; Wang et al., 2018a; Liu and Wang, 2019). It was considered that 311 

the superstructure components act together as a single infinite Euler-Bernoulli beam, while the supporting 312 

substructure behaves as a Winkler’s foundation, so that the axle loads and the superstructure can be 313 

converted into a moving pressure directly acting on the top of the substructure, as shown in Figure 2. 314 

Alternatively, shakedown analysis of slab tracks can be carried out by directly modelling a track-ground 315 

system (Costa et al., 2018). In this section, several additional factors that greatly affect the shakedown limits 316 

of railways will be discussed.  317 

5.1 Effect of at-rest stress 318 

In railway problems, the load-influenced depth is much greater than that in pavements. For instance, an 319 

influencing depth of 7m was obtained in Tang et al. (2015) for a typical railway structure. Therefore, the 320 

effect of at-rest stress cannot be neglected in the shakedown analysis of railways. It was noted by Costa et 321 

al. (2018) that the shakedown limit could be underestimated if the at-rest stresses were not taken into 322 

account. Despite of that, it is still unclear of the contribution proportion of the self-weight on the shakedown 323 

limit. 324 

5.2 Effect of depth-dependent stiffness 325 

One typical feature of the clayey subsoil is that its stiffness increases with depth. Liu et al. (2018) found an 326 

increment of stiffness could have two effects on the shakedown limit. First, the pressure distribution on the 327 

substructure becomes relatively uneven, leading to higher stresses close to the surface thus a smaller 328 

shakedown limit of the surface layer. Second, the layer stiffness ratios are changed, causing more stresses 329 

transferred to the subsoil thus a smaller shakedown limit of the subsoil. 330 
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5.3 Effect of train speed 331 

Train speed is critical in the design of high-speed railways. Wang et al. (2018a) revealed the dynamic 332 

shakedown limit of a slab track substructure depends on a velocity factor 𝛼 = 𝑉/𝑉𝑐𝑟 (𝑉 is train velocity; 333 𝑉𝑐𝑟  is the critical velocity) rather than the absolute value of train velocity. An attenuation factor 𝜂 was 334 

introduced to relate the dynamic shakedown limit 𝜆𝑠𝑑𝑑 𝑃 with the static shakedown limit 𝜆𝑠𝑑𝑠 𝑃: 335 𝜆𝑠𝑑𝑑 𝑃 = 𝜂𝜆𝑠𝑑𝑠 𝑃            Eq. 16 336 

With increasing velocity factor, the change of the shakedown limit from the static solution also depends on 337 

the friction angle of subsoil 𝜙3 (Figure 5a); however, it was barely affected by the layers above the subsoil 338 

(Wang et al., 2021). Therefore, a fitting equation is proposed: 339 

𝜂 = {1                                                               for 𝛼 ≤ 0.1        (1 − 𝜂𝑐𝑟) × √1 − (𝛼−0.10.9 )𝑛𝑛 + 𝜂𝑐𝑟    for 0.1 < 𝛼 ≤ 1      Eq. 17 340 

where 𝑛 is a coefficient depending on the friction angle of subsoil, the value of which can be obtained from 341 

Figure 5b; 𝜂𝑐𝑟 is the attenuation factor at the critical velocity, the value of which can be taken as 0 in most 342 

design situations (exception occurs when the stiffness of subsoil is extremely low compared to the stiffness 343 

of the upper layers). 344 

  345 

Figure 5: Influences of velocity factor and friction angle of subsoil on attenuation factor 346 

(b) (a) 
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6 A unified shakedown limit equation for rolling and sliding problems 347 

As reviewed in the previous two sections, many studies have been devoted to obtain shakedown limits for 348 

pavements and railways, and to analyse the influences of various factors. Many of the studies were dedicated 349 

to very specific cases and there have been no general equations that would consider various contributing 350 

factors. It should be noted that although the shakedown solutions vary significantly for different problems, 351 

they share some common trends and key factors. In this section, a simple, unified equation for the 352 

shakedown limits of cohesive-frictional materials under repeated moving surface loads is proposed, which 353 

is applicable to both pavement and railway problems. This equation aims to bring together the effects of 354 

several basic and key factors. 355 

6.1 A unified shakedown limit equation 356 

Fundamentally, the shakedown limit is the bearing capacity of the material under the action of a repeated 357 

moving surface load. A natural choice of the format of the unified equation would be the one that is similar 358 

to the classical Terzaghi’s bearing capacity equation (Eq. 18). 359 𝑞𝑢𝑙𝑡 = 𝑁𝑐𝑐 + 𝑁𝑞𝑞0 + 𝑁𝛾𝛾𝑎          Eq. 18 360 

where 𝑁𝑐, 𝑁𝑞, and 𝑁𝛾 give the resistances due to the material cohesion 𝑐, the overburden stress 𝑞0, and the 361 

self-weight of the material, respectively; 𝛾 is the unit weight of the soil; and 𝑎 is a half width of the contact 362 

area considering a strip footing. This equation is basic, concise and powerful, each term of which has a clear 363 

physical meaning. For pavements and railways under moving surface loads, the shakedown limit of the 364 

rolling and sliding contact problem (or called ‘cyclic capacity’), can be expressed in an analogous format: 365 𝑞𝑢𝑙𝑡𝑠𝑑 = 𝑁𝑐𝑠𝑑𝑐 + 𝑁𝑞𝑠𝑑𝑞0 + 𝑁𝛾𝑠𝑑𝛾𝑎         Eq. 19 366 

where 𝑁𝑐𝑠𝑑  and 𝑁𝛾𝑠𝑑  stand for the resistances from the cohesion and the self-weight of the underlying 367 

material, respectively; 𝑁𝑞𝑠𝑑 represents  the resistance from overburden stress due to the self-weight of the 368 

structural components above the cohesive-frictional materials. Notice that the overburden term only applies 369 

if there exists one or more layers of rigid materials on the top of the cohesive-frictional materials, such as 370 
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slabs and concrete base on the top of the substructure in a slab track, or a concrete layer above a granular 371 

layer in a pavement structure. 372 

Similar to Terzaghi’s bearing capacity equation, by including a set of correction coefficients in the 373 

expression, Eq. 19 can also be extended to consider the effects of other factors, such as the shape of the 374 

contact area, the distribution of the pressure, the horizontal component of the load, anisotropic soil and so 375 

on. Consequently, it can be readily used to estimate the shakedown limit (or cyclic capacity) of various 376 

pavements and railways under traffic loads. 377 

6.2 𝑁𝑐𝑠𝑑  and 𝑁𝛾𝑠𝑑 for a rolling point contact problem 378 

For one basic rolling point contact problem in which a homogenous and isotropic half-space is subjected to 379 

a moving Hertz contact loading limited within a circle of radius 𝑎, the values of the coefficients 𝑁𝑐𝑠𝑑 and 380 𝑁𝛾𝑠𝑑  are presented in Figure 6 as examples. Those coefficients were calculated based on the lower-bound 381 

shakedown analysis method of Yu and Wang (2012). 𝑁𝑐𝑠𝑑 is a function of the material friction angle 𝜙. It 382 

is obtained by applying zero self-weight in the calculation of the shakedown solutions. 𝑁𝛾𝑠𝑑  is a function of 383 

the friction angle 𝜙  and a dimensionless factor 𝛾𝑎/𝑐 . It is obtained by deducting the contribution of 384 

cohesion from the obtained shakedown limit, as follows:  385 𝑁𝛾𝑠𝑑 = (𝑞𝑢𝑙𝑡𝑠𝑑 − 𝑁𝑐𝑠𝑑𝑐)/𝛾𝑎          Eq. 20 386 

As can be seen, 𝑁𝛾𝑠𝑑  is only one fifth of 𝑁𝑐𝑠𝑑  at its maximum. Since typical asphalt mixtures have high 387 

values of cohesion, say 200~1000kPa (Liu et al, 2020), the contribution of the self-weight term will be very 388 

small compared to the cohesion term. This explains why the shakedown limits of asphalt pavements are 389 

barely affected by the self-weight. 390 
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(a) 𝑁𝑐𝑠𝑑  (b) 𝑁𝛾𝑠𝑑  

Figure 6: Shakedown limit  coefficients for a rolling point contact problem 

When 𝑐 is equal to zero, no resistance can be provided by the self-weight of the material (i.e., 𝑁𝛾𝑠𝑑 = 0 391 

when 𝛾𝑎/𝑐 = infinite), and the first term of Eq. 19 is also zero, so that the shakedown limit is zero for this 392 

problem. This means, theoretically speaking, purely frictional soils will always fail if it is directly under a 393 

repeated moving load. 394 

It can also be deduced from Eq. 19 and Figure 6 that, for a certain soil, the size of the contact area only 395 

affects the resistance from the self-weight of the soil. The influence of the enlarged contact area on the 396 

shakedown capacity is competitively affected by increasing 𝑎 and decreasing 𝑁𝛾𝑠𝑑 . When 𝑎 is very large, 397 

its effect on 𝑁𝛾𝑠𝑑  becomes very small; and therefore the shakedown limit tends to increase proportionally 398 

with 𝑎. This also explains that the slab track problems have much larger shakedown limits compared to the 399 

pavement problems. Apart from that, the overburden stress due to self-weight of superstructures in slab 400 

tracks also contribute to the high shakedown limit. 401 

It should be noted that, the theoretical shakedown limit will not be affected by the lateral earth pressure 402 

coefficient 𝑘. Despite of that, the two critical residual stress fields (Eq. 5 and Eq. 6) at the shakedown limit 403 

are changed by 𝑘, as shown in Figure 7. As explained in Yu and Wang (2012) and Wang and Yu (2013a), 404 

when the applied load is at the shakedown limit, the actual residual stress field must lie within the region 405 

bracketed by the two critical residual stress fields (i.e. 𝜎𝑥𝑥−𝑙𝑟 ≤ 𝜎𝑥𝑥𝑟 ≤ 𝜎𝑥𝑥−𝑢𝑟 ); and the critical point is 406 

located at the depth where the two fields just meet. It can be seen from Figure 7, the critical depth is not 407 
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changed by the lateral earth pressure coefficient 𝑘, but the residual stress at the critical depth (i.e. critical 408 

residual stress) varies. A relatively small 𝑘 value gives rise to a smaller (i.e. more compressive) critical 409 

residual stress and therefore yields an identical shakedown solution. This indicates that soils always tend to 410 

deform in a way that facilitate structural shakedown. 411 

 412 

(a) 𝑘 = 0.5 (b) 𝑘 = 1 (c) 𝑘 = 2 

Figure 7: Distributions of critical residual stresses at shakedown limit 𝑞𝑢𝑙𝑡𝑠𝑑 = 25.4kPa 
 413 

7 Concluding remarks 414 

In this paper, a review of the recent development of the shakedown analysis methods for pavement and 415 

railway applications was presented, including a brief recall of one static shakedown analysis based on 416 

critical residual stress fields and one kinematical shakedown analysis using a nonlinear programming 417 

approach. Comparison of the shakedown limits from different methods for a rolling and sliding point 418 

contact problem showed generally good agreements. It was found that the shakedown limits of pavements 419 

are mainly affected by the form of the contact loading, material properties, layer thicknesses, and 420 

temperature. For railway problems, the influences of at-rest stress, subsoil stiffness variation, and velocity 421 

factor could become significant. 422 

A novel contribution of the paper is the introduction of a simple, unified equation for shakedown limit (or 423 

cyclic capacity) of soils under repeated moving surface loads. This equation can be applied in a similar 424 

manner to Terzaghi’s bearing capacity equation, to provide different shakedown capacities for various 425 
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pavement or railway problems. Different from Terzaghi’s equation, the coefficient 𝑁𝛾𝑠𝑑 in the self-weight 426 

term depends on not only the soil friction angle but also the dimensionless factor 𝛾𝑎/𝑐, and it is much 427 

smaller than the coefficient 𝑁𝑐𝑠𝑑  in the cohesion term. The influence of a rising contact area on the 428 

shakedown limit is competitively controlled by the increase of 𝑎 and the decrease of 𝑁𝛾𝑠𝑑 . The lateral earth 429 

pressure coefficient 𝑘 does not influence the shakedown limit and the critical depth, but it changes the 430 

critical residual stress fields. Finally, this equation can be extended to consider other factors by 431 

incorporating correction coefficients, so that the shakedown or cyclic capacities for different pavement and 432 

railway problems can be determined.  433 

It should be noted that the existing shakedown analyses were usually conducted by assuming that material 434 

strength parameters do not change with time or the number of loading cycles. Based on this assumption, 435 

the influence of various factors could be thoroughly investigated, that contributes to the selection of design 436 

alternatives. In reality, shakedown phenomena observed in pavements or railways should be attributed to 437 

two mechanisms: one is the structural shakedown due to the build-up of residual stresses in the structure 438 

without any change of its inner structure, which could be interpreted as the pure increase of contact forces 439 

among soil particles; the other is the change of the soil inner structure due to cyclic loads or time, which 440 

may advantage (e.g., densification of sand) or disadvantage (e.g., degradation of clay) the soil strength and 441 

thus increase or decrease the shakedown limit. This paper focused on the structural shakedown due to the 442 

first mechanism. The influence of the second mechanism needs to be further explored for different types of 443 

soils. 444 
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