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Diagnostic yield of rare skeletal dysplasia 
conditions in the radiogenomics era
Ataf H. Sabir1,2* , Elizabeth Morley3, Jameela Sheikh2, Alistair D. Calder4, Ana Beleza-Meireles5, 

Moira S. Cheung6, Alessandra Cocca6, Mattias Jansson7, Suzanne Lillis7, Yogen Patel8, Shu Yau7, 

Christine M. Hall9,10, Amaka C. Offiah11 and Melita Irving1,12 

Abstract 

Background: Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a hetero-

geneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments 

in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important 

than ever to molecularly confirm SD conditions. Data on ‘rates-of-molecular yields’ in SD conditions, through exome 

sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (n = 54) and South Korea 

(n = 185) respectively.

Methods: We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 

paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort 

included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and 

expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics 

pipeline, allowed for both gene-targeted and gene-agnostic approaches.

Results: Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (n = 8/15) of patients; 

46.7% (n = 7/15) having a definite molecular diagnosis and 6.7% (n = 1/15) having a likely molecular diagnosis. We 

discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known 

diagnoses pre-WES (n = 10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was 

unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome 

sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest 

returns.

Conclusions: Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic 

tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated 

clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. 

WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring 

individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural 

history/mechanistic details, and likely increased therapies and clinical trials.

Keywords: Mendelian, Molecular genetic test, Monogenic, Next-generation sequencing, Skeletal dysplasia, Exome 

sequencing, Genome sequencing, Yield
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Background

Rare diseases by definition affect less than 1 in 2,000 

(in Europe) or 1 in 1,500 (in the USA). Approximately 

80% of the 7300 rare diseases have a known genetic 

cause, and whole-exome sequencing (WES) is com-

monly the final diagnostic step in such cases with diag-

nostic yields averaging around 31% (24–68%) [1–3].

The broad range in WES diagnostic yields (see 

Table  1) reflects varying cohorts and clinical indica-

tions for testing (i.e., diagnostic rates are higher in 

selected cohorts with conspicuous phenotypes). Yield 

is highly influenced by recruitment type (e.g., single 

proband versus trio), bioinformatic pipelines, study 

year, consanguinity, case complexity and degree of 

prior genetic evaluation. Yields tend to increase with 

study year (due to increasing novel genes, conditions, 

and technological advances) and in cohorts with a 

high degree of consanguinity [2]. Conversely yields are 

lower in cohorts with highly complex cases necessitat-

ing challenging interpretation, e.g. cases where two or 

three independent genetic diagnoses lead to an aggre-

gate phenotype. Yield is also markedly affected by the 

extent of prior genetic and metabolic evaluation; thus, 

WES usage earlier in the diagnostic assessment can 

lead to higher yields.

Skeletal dysplasia cohorts

The majority of rare diseases (50–75%) affect children 

[10]. In paediatric unsolved rare disease cohorts, the 

diagnostic yield from exome sequencing is around 40% 

[11]. An important subset of rare paediatric disease is 

skeletal dysplasia (SD). SD conditions are rare disor-

ders of the skeleton, encompassing a genetically het-

erogeneous group of over 400 distinct disorders. They 

represent approximately 5% of all congenital anomalies 

and are a significant contributory cause of children 

with severe short stature [12].

Yields in SD

Data on WES yields in SD cohorts are limited. In a large 

study of over 3000 rare diseases WES cases in a single US 

centre, Retterer et al., (2015) performed a subgroup anal-

ysis of 54 SD cases reporting a diagnostic yield of 39% 

(n = 54) [13]. Recruitment was predominantly trio based 

(> 75% were trios, 7% were duos) though the patients 

were at different points of their diagnostic evaluation. 

The average patient age was 11 − / + 13 years.

Bae et al. (2015) studied a large cohort of 185 patients 

with SD across multiple centres in South Korea, who had 

panel-based targeted exome sequencing (TES) (255 gene 

panel); 25 had a prior confirmed clinical and molecular 

diagnosis. Thus, TES was used to reconfirm molecu-

lar findings, 64 had an unknown clinical diagnosis, and 

96 patients had an assured clinical diagnosis [14]. A 

molecular diagnosis was ‘confirmed’ or ‘highly patho-

genic’ in 20% (n = 13/64) of patients with an unknown 

clinical diagnosis and 71% (n = 71/96) of patients with an 

assured clinical diagnosis. In this report, we explore the 

utility of WES in a cohort solely composed of SD presen-

tations and consider the diagnostic yield in sub-cohorts, 

i.e., those with an unknown diagnosis and those with an 

assured diagnosis (either single gene or heterogeneous). 

Although the number of patients in our study is small 

(n = 15), to the best of our knowledge, there are no previ-

ous reports of a UK/European cohort of patients with SD 

reported.

Methods

Subjects and clinical diagnosis

All patients were study participants at the Guy’s and St 

Thomas’ Hospital clinical site. Our cohort spans the 

period; September 2014–2018. All patients within our 

cohort were paediatric (5 months to 12 years, mean age 

5.5 years).

15 patients with presumed SD conditions based on 

clinical and radiographic findings, were selected from 

the specialist SD multidisciplinary clinic. The majority 

Table 1 Diagnostic yield from NGS strategies in different rare disease cohorts in key publications

WES whole-exome sequencing; WGS whole-genome sequencing

Published year Journal Strategy Sequenced Diagnostic yield (%) Author

2013 NEJM WES 250 24.8 Yang et al. [4]

2014 AJHG WES 264 55.3 Beaulieu et al. [5]

2015 Nat Genet WGS* 156 21.2 Taylor et al. [6]

2017 JAMA Pediatr WES 44 52.3 Tan et al. [7]

2017 JAMA Pediatr WES 278 36.7 Meng et al. [8]

2017 JAMA Pediatr Critical trio WES 63 50.8 Meng et al. [8]

2018 NPJ Genome Med WGS* 42 42.9 Farnaes et al. [9]

2019 Sci Rep WGS* 10 62.5 Liu et al. [3]
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of participants were referred to the service from external 

facilities. Informed consent was obtained for all patients, 

and thereafter genomic DNA was extracted from the 

proband and where possible their parents. Many partici-

pants were at different stages of their evaluation.

Patients were recruited as trios (proband and both par-

ents) unless otherwise stated.

The 15 patients were divided into three categories 

based on the certainty of clinical diagnosis and the sta-

tus of the prospective genotype. Patients with an assured 

clinical diagnosis of an SD, where one or only a few geno-

types are known to be responsible (e.g., achondroplasia) 

were excluded as they are not appropriate for WES unless 

single gene testing was not readily available. Patients 

were then assigned one of three categories.

• Known condition–known gene (Category K–K)

• Unknown condition–unknown gene (Category 

U–U)

• Known condition/group of conditions–the possibil-

ity of multiple genes (Category K–U)

Exome sequencing and variant prioritisation

WES capture was performed using Agilent SureSelectXT 

Human All Exon V5 baited with clinically relevant genes 

followed by sequencing on an Illumina HiSeq 2500 

(though three of the later cases were sequenced on an 

Illumina NextSEQ 550). Raw sequence data were aligned 

using Novoalign, and variants called with Samtools. Cov-

erage of coding exons (+ / − 5 base pairs) was to a mini-

mum depth of × 20.

Variant analysis

Qiagen Ingenuity Variant Analysis was used to aid the 

assessment of variant pathogenicity after applying a vir-

tual panel of 222 SD genes (see Appendix 1) in combi-

nation with multidisciplinary clinical interpretation. 

Qiagen analysis uses (CGI 54 Genomes, SIFT, Exome 

Variant Server (EVS), Allele Frequency Community, JAS-

PAR, Ingenuity Knowledge Base, Vista Enhancer, BSIFT, 

TCGA, PolyPhen-2, 1000 Genome Frequency, Clinvar, 

COSMIC, ExAC, HGMD, PhyloP, DbSNP, TargetScan), 

and Alamut for splice site analysis (SpliceSiteFinder-like, 

MaxEntScan, NNSplice, GeneSplicer).

Sequencing data were analysed in three stages. In stage 

one, clinicians proposed primary genes or small gene-

panels for analysis through the WES platform that were 

likely to harbour the causative variant. This reduced the 

volume and cost of variants to analyse. If no significant 

variants were identified, then stage two involved apply-

ing and interpreting the 222 SD virtual gene-panel (see 

Appendix 1). If no appropriate variant was identified in 

stage two, then stage three involved a human pheno-

type ontology (HPO) driven whole-exome wide-search. 

HPO terms were derived by clinical geneticist expert 

review along with medical record evaluation and blinded 

radiographic review by three independent SD expert 

radiologists (CH/AO/AC). The phenotypic terms and dif-

ferential diagnosis provided were critical for analysis.

Molecular diagnosis using determined variants

Molecular diagnosis was made by correlating clinical and 

radiographic findings with candidate sequence variants 

through WES. The status of the molecular diagnosis was 

determined as either known or unknown.

Results

Our cohort of 15 patients comprised: five males and ten 

females, with ages ranging from 5  months to 12  years 

with an average age of 5.5 years old. Significant variants 

were identified in 53.3% (n = 8/15) of patients; 46.7% 

(n = 7/15) having a definite molecular diagnosis and 6.7% 

(n = 1/15) having a likely molecular diagnosis. One case 

(patient 15) after negative WES testing was concluded to 

have acquired SD aetiology. Thus, 60% (n = 9/15) cases 

had a confirmed or likely confirmed diagnosis (yield: 

60%).

Of unknown clinical diagnosis (n = 5/15), WES led to 

molecular confirmation (likely or highly likely) in 20% 

(n = 1/5).

Discussion

SD diagnoses are challenging for several reasons. Firstly, 

similar phenotypes are heterogeneous; one gene can 

cause several conditions. Secondly, the aetiology of mul-

tiple SD conditions is unknown or their phenotype not 

well established. Thirdly, the experience of SD conditions 

by individual clinicians is limited, and lastly, the charac-

teristic features of many SD conditions only manifest at 

certain periods. For example, stippled epiphyses (char-

acteristic of chondrodysplasia punctata) are only pre-

sent in the neonatal or infantile period; thus, diagnoses 

are difficult without timely investigation. Similarly, many 

characteristic features disappear after skeletal maturity or 

only present when young. Multidisciplinary approaches, 

involving geneticists, radiologists, orthopaedic, growth 

specialists and therapists (occupational, physiotherapy, 

psychological), are often necessary for diagnosis and 

management of SD conditions.

Using a single-gene testing strategy is often unhelpful 

for the reasons stated, and increasingly WES or WGS 

options are deployed. In some countries specific panels 

are used, in place of or prior to WES/WGS, due to lower 

costs, accessibility and relatively large numbers of genes 

specific to the phenotype. Infact many WES or WGS 
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approaches begin with panel-based analysis before more 

agnostic or wider analysis. Little is reported regarding the 

diagnostic yield of WES in SD conditions, as often such 

cases are pooled in general rare disease cohorts. Where 

rates and analysis have been reported, little is discussed 

around the prior categorisation of cases (e.g., whether the 

diagnosis was known).

Despite these challenges, yields for SD conditions are 

relatively high compared to other rare disease catego-

ries. In fact, for fetal anomalies, the highest yields (~ 80%) 

were obtained in the SD category in the UK fetal exome 

PAGE (prenatal assessment of genomes and exomes) 

study [15]. However, the yield is less spectacular postna-

tally. Retterer et al. report a yield of 39% in SD patients 

(n = 54) using WES in a combined paediatric and adult 

cohort [13]. Bae et  al., reported a likely or confirmed 

molecular diagnosis in 52.5% (n = 84/160) through TES, 

though the patient ages are not reported [14].

To diagnose SD conditions, radiographic imaging in 

early childhood is key; thus, our cohort of only paedi-

atric patients consisted of suitably appropriate clinical-

radiographic data for further genetic investigation. None 

of the patients had molecular confirmation of their con-

dition before WES testing. Upon WES testing, a three-

stage approach to variant analysis (as outlined in the 

methods) was undertaken. This allowed molecular sci-

entists to focus their search, identifying pathogenic vari-

ants efficiently and saved time spent analysing less likely 

variants.

Significant variants leading to a likely or confirmed 

diagnosis were identified in 53.3% (n = 8/15) of patients; 

46.7% (n = 7/15) having a definite molecular diagnosis 

and 6.7% (n = 1/15) having a likely molecular diagnosis. 

In comparison, Bae et al. reported a likely or confirmed 

molecular diagnosis in 52.5% (n = 84/160) of similar 

patients (excluding those patients who had molecular 

confirmation prior to WES testing) [14]. This means that 

our yield was comparable to Bae et al., and was margin-

ally higher. If we include patient 15 as a confirmed diag-

nosis, who after negative WES testing was concluded to 

have an acquired SD aetiology, then our yield reached 

60% (n = 9/15).

The possible reasons for a slightly higher yield as com-

pared to Bae et  al. includes increased gene discovery 

linked to SD conditions since Bae et  al. was published 

(2016), improved bioinformatic pipelines, technological 

advances in next-generation sequencing machinery (e.g. 

improved coverage and read depth) and triple radiologi-

cal review within our analysis (all three reviewers being 

expert contributors to the International Skeletal Dys-

plasia Society) [14]. We note that radiological input was 

key with patients 2 and 4. For patient 2, the radiology 

review led to a change in the pre-test working diagnosis 

from spondyloepiphyseal dysplasia congenita (SEDC) to 

campomelic dysplasia (CD), enabling a better genotype–

phenotype match, thus securing the diagnosis. Likewise, 

the radiological diagnosis with patient 4 identified the 

correct spectrum of disorders so that when a COL11A2 

(collagen type XI alpha-2 chain) variant was found, the 

appropriate final diagnosis was more easily identified.

Of patients with a known diagnosis pre-WES (n = 10), 

WES led to a confirmed molecular diagnosis in 7/10 

cases (rising to 8/10 if we include patient 8 as another 

confirmed diagnosis, though of an acquired cause). This 

highlights the significant return when there is a known 

diagnosis pre-test.

Of patients with unknown clinical diagnoses (n = 5/15), 

WES led to molecular confirmation (likely or highly 

likely) in 20% (n = 1/5) of cases which is the same detec-

tion rate as Bae et al. [14] This was expected considering 

low pre-test diagnostic SD hypotheses.

WES yields for non-SD conditions (25–51%, see 

Table  1) are generally lower than for SD disorders (this 

study; up to 60% and Bae et al. 52.5%) [14]. This is likely 

due to the rich combination of radiology and clinical fea-

tures, and synergism between multiple experts, enhanc-

ing phenotypic-driven bioinformatics analysis.

We further discuss selected patients to extrapolate 

key learning points and have grouped the patients into 

themes.

Theme 1: known clinical diagnosis with clear single‑gene 

cause, but testing unavailable

Patient 1 had a clinical diagnosis of spondyloepiphyseal 

dysplasia tarda (SEDT; OMIM #313,400). SEDT is caused 

by heterozygous TRAPPC2 (tracking protein particle 

complex subunit 2) variants. Several males across mul-

tiple generations had a similar diagnosis but no known 

genetic testing. At the time of diagnosis in patient 1 

(2014), TRAPPC2 testing was not readily available in 

the UK (except on a research basis) [16]. Thus, WES 

was performed, with primary analysis directed towards 

TRAPPC2. A pathogenic TRAPPC2 variant was iden-

tified (see Table  2). With many laboratories moving to 

WES and WGS, the availability of many single-gene tests 

is decreasing; thus, WES approaches with targeted analy-

sis are becoming ubiquitous. It is therefore crucial that 

clinicians make a pre-test diagnosis to enable targeted 

analysis and prevent the generation of unwanted and 

unrelated variants.

Theme 2: known clinical diagnosis (heterogeneous 

condition), multiple potential genetic causes

Patient 4 had macrocephaly, a flat facial profile, nasal 

bridge depression, small nose, micrognathia, a small 

bell-shaped thorax and short long-bones with widened 
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Table 2 Summary of patients with categorisation, features, and pre- and post-testing diagnosis

Patient Sex Age Category Clinical presentation Variants Inheritance Studies Revised diagnosis

1 M 11y K–K Spondyloepiphyseal dysplasia tarda
X- Linked

Hemizygous deletion of TRAPPC2 
exon 6

Maternally inherited Spondyloepiphyseal dysplasia tarda 
(X-Linked)†

2 F 10y K–K Spondyloepiphyseal dysplasia con-
genita

Heterozygous SOX9 c.508C > T, 
p.(Pro170Ser) variant detected

De-novo variant not present in parents Surviving campomelic dysplasia (CD)†

3 F 5 m K–K Syndromal proportional extreme short 
stature, Chiari malformation type I, 
growth hormone deficiency, hydro-
cephalus. Suspected Laron syndrome

No pathogenic variants were detected Not applicable SD of unknown aetiology‡

4 F 0-1y K–U Mild fibrochondrogenesis type 2. Post 
radiological review, changed to 
severe otospondylomegaepiphyseal 
dysplasia

Heterozygous COL11A2
c.2542C > T p.(Gln848Ter) variant 

detected (mat)
Heterozygous COL11A2 c.3151-2delA 

variant detected (pat))

AR—one variant inherited from each 
parent—trans

Severe otospondylomegaepiphyseal 
dysplasia†

5 F 6y K–U Multiple epiphyseal dysplasia with non-
specific myopathy, or metaphyseal 
dysplasia

Heterozygous MATN3 c.400G > A 
p.(Glu134Lys)

Variant not present in mother. Father 
not tested

Multiple epiphyseal dysplasia†

6 F 8y K–U Intrauterine growth restriction (IUGR), 
failure to thrive, developmental delay, 
microcephaly, dysmorphisms, short 
stature. Type of microcephalic osteo-
dysplastic primordial dwarfism

Heterozygous PCNT c.5812C > T 
p.(Gln1928Ter) variant detected

Heterozygous PCNT c.9273 + 1G > C 
variant detected

AR—one variant inherited from each 
parent—trans

Microcephalic osteodysplastic primordial 
dwarfism type II†

7 M 3y K–U Metaphyseal chondromatosis with 
D2-hydroxyglutaric aciduria

Heterozygous IDH1 c.395G > A 
p.(Arg132His) variant detected

De novo—variant not present in 
parents

Metaphyseal chondromatosis with 
D2-hydroxyglutaric aciduria†

8 F 2y K–U Chondrodysplasia punctata. Query 
genetic or teratogen

No pathogenic variants were detected Not applicable Possible acquired aetiology§

9 F 11y K–U AR osteopetrosis (infantile onset) Heterozygous
CLCN7 c.1468delC p.(Leu490fs) variant 

detected (pat)
Heterozygous
CLCN7 c.1853C > A p.(Ala618Asp) vari-

ant detected (mat), VUS

AR—one variant inherited from each 
parent—trans

AR osteopetrosis type 4 (infantile onset) 
†

10 M 12y K–U Acromesomelic dysplasia, Maroteaux 
type, or spondylarperipheral

No pathogenic variants were detected Not applicable SD of unknown aetiology‡

11 F 3y K–U Odontochondrodysplasia No pathogenic variants were detected Not applicable Odontochondrodysplasia¶

12 M 1y U–U Disproportionate short stature, 
conductive hearing loss, percutane-
ous endoscopic gastrostomy fed, 
dysmorphisms

No pathogenic variants were detected Not applicable SD of unknown aetiology‡
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† Confirmed molecular diagnosis

‡ Unknown diagnosis

§ Possible acquired diagnosis

¶ Confirmed clinical diagnosis but nil molecular findings

^Possible molecular diagnosis

K–K known condition–known condition; K–U known condition–unknown condition; U–U unknown condition–unknown condition; SD skeletal dysplasia; AR autosomal recessive; TRAPPC2 tracking protein particle 

complex, subunit 2; SOX6 sex determining region Y-box 6); COL11A2 collagen type XI alpha-2 chain; MATN3 matrilin-3; PCNT pericentrin; IDH1 isocitrate dehydrogenase 1; CLCN7 chloride voltage-gated channel 7; VUS 

variant of unknown significance; EXT2 exostosin glycosyltransferase 2; EDS Ehlers–Danlos syndrome

Table 2 (continued)

Patient Sex Age Category Clinical presentation Variants Inheritance Studies Revised diagnosis

13 F 2y U–U SD; congenital heart disease, 
hemimegaloencephaly, bilateral iris 
colobomata, hearing loss

Heterozygous EXT2 c.237G > A 
p.(Trp79Ter) variant detected (mat)

Heterozygous EXT2 c.1404 + 2 T > C 
variant detected (pat)

AR—one variant inherited from each 
parent—trans

Autosomal recessive exostosin glycosyl-
transferase 2 syndrome^

14 M 7y U–U Query EDS (classic type/collagen-
opathy), or Mandibular acrodysplasia 
type A

No pathogenic variants were detected Not applicable SD of unknown aetiology‡

15 F 6y U–U Unknown SD, rule out bone marrow 
transplant-related short stature

No pathogenic variants were detected Not applicable Bone marrow transplant-related short 
stature§
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metaphyses. The original diagnosis was ‘mild’ fibrochon-

drogenesis type 2 (FBCG2; OMIM #614524), which is 

caused by COL11A2 variants and can be lethal. The dif-

ferential included fibrochondrogenesis type 1 (OMIM 

#228520) caused by COL11A1 as well as Stickler syn-

drome (OMIM #108300) hence multiple genes could 

be potentially causative; thus, WES was an appropriate 

strategy. The radiological review noted vertebral coronal 

and sagittal clefts and with increasing age (see Fig.  1); 

enlarged epiphyses and clinically hearing loss became 

manifest. This led to an alteration of the diagnosis to 

otospondylomegaepiphyseal dysplasia (OSMED; OMIM 

#215150), an allelic disorder to FBCG2. WES confirmed 

compound heterozygous COL11A2 variants which cause 

a spectrum of disorders from mild deafness to OSMED to 

potentially lethal FBCG2. This case illustrated radiologi-

cal (e.g. mega-epiphyses) and clinical clues (hearing loss) 

that may only become apparent with time. It also high-

lights the need for clinicians to be careful of using ‘old’ 

diagnostics labels as milder forms of previously ‘lethal’ 

conditions or what we considered ‘extremely’ severe phe-

notypes are emerging. In such instances, umbrella terms 

like COL11A2-spectrum disorder as a pre-molecular 

diagnosis may be more apt rather than FBCG2.

Patient 5, a six-year-old male of normal stature who 

presented with leg pain, genu valgum, pes planus, mus-

cle weakness and decreased hip mobility. His clinical 

picture and radiology suggested possible multiple epi-

physeal dysplasia (MED; OMIM #132400) with non-

specific myopathy. Creatinine kinase was normal, and 

electromyography suggested myopathic disorder, muscle 

biopsy showed mild type 2 fibre atrophy and array Com-

parative Genomic Hybridisation (aCGH) was normal. 

MED is characterised by multiple long and or short bone 

epiphyseal abnormalities and has autosomal dominant 

(ADMED; OMIM #132400) and autosomal recessive 

(ARMED; OMIM #226900) forms [17, 18]. ADMED can 

be due to; COMP (cartilage oligomeric matrix protein), 

COL9A1-COL9A3 (collagen type IX alpha 1–3 chain) 

or MATN3 (matrilin 3) and presents in childhood with 

joint pain, exercise-induced fatigue, restricted mobil-

ity, short stature, and early-onset osteoarthritis [18]. 

ARMED is caused by SLC26A2 (solute carrier family 26, 

member A2) formerly known as DTDST (diastrophic 

dysplasia sulfate transporter) and presents with joint pain 

and often mild short stature. SLC6A2 is responsible for 

three allelic skeletal dysplasias; (in increasing severity) 

diastrophic dysplasia, atelosteogenesis 2 and achondro-

genesis type 1B [17]. Further key ARMED differentials 

include; mild mucolipidosis III (OMIM #252605) and 

mucopolysaccharidosis VI (OMIM #253000), both reces-

sive storage disorders discriminated from ARMED by 

coarse dysmorphic facies, intellectual disability, visceral 

involvement, marked spondylar disease and shorter stat-

ure [1].

Radiology showed delayed epiphyseal (long-bone) ossi-

fication and small and irregular epiphyses (especially in 

the knees and hips) (see Fig. 2). Due to MED heteroge-

neity, WES was an appropriate strategy for molecular 

diagnosis and identified a pathogenic MATN3 variant 

confirming MED Type 5 (OMIM #607078).

Patient 7 presented aged 3 years with an undefined SD, 

multiple falls, complex congenital heart disease (CCHD), 

relative macrocephaly and mild developmental delay. 

Skeletal survey at 10 months highlighted irregular meta-

physes. He had leg-length discrepancy, right leg bowing, 

mild joint hypermobility and hypotonia. Further radiol-

ogy (Fig. 3a, b) revealed worsening metaphyseal dyspla-

sia (expansion, cup-shaped irregularity) with radiolucent 

non-ossified cartilage affecting major joints. At 6.5 years, 

hand radiology showed severe widespread bilateral multi-

ple enchondromas (see Fig. 3c), that were also present in 

the lower limbs (see Fig. 3a). The diagnosis was felt to be 

an enchondromatosis-like condition and upon radiologi-

cal review; metaphyseal chondromatosis with D-2-hy-

droxyglutaric aciduria (MC-D2HGA; OMIM #614875) 

was suspected. Though MC-D2HGA was highly sus-

pected, other genetic disorders with very similar pheno-

types remained thus WES was an appropriate strategy.

Enchondromatosis (EC) is a rare heterogeneous con-

dition with multiple enchondromas (benign hyaline 

cartilage forming tumours in the metaphysis) [19]. The 

commonest two subtypes are Ollier disease (OMIM 

#166000) and then Maffucci syndrome (OMIM #614569) 

[19]. MC-D2HGA is another rarer subtype with only 11 

reported cases (four of which are due to somatic mosai-

cism of IDH1 (isocitrate dehydrogenase 1), the remainder 

lacking molecular confirmation) (Fig. 4) [20].

WES testing identified a de novo heterozygous IDH1 

c.395G > A p.(Arg132His) germline variant (approxi-

mately indicative allele frequency of 50/50, wild type: a 

variant on Sanger). Urinary organic acid testing showed 

marked isolated increase in 2-hydroxyglutarate, con-

firming MC-D2HGA (this result came after WES was 

initiated but prior to the WEST results). MC-D2HGA 

is associated with macrocephaly, developmental delay, 

hypotonia, significant metaphyseal dysplasia, enchon-

dromatosis, dysmorphia and CCHD. This is the first 

reported MC-D2HGA case caused by germline IDH1 

changes (with read depth over the IDH1 variant position 

of >  × 250 depth) though the author is aware of one unre-

ported MC-D2HGA case caused by germline changes 

(Zankl A. [Presentation] 6th Nordic Workshop on Skel-

etal Dysplasia, Karolinska Institute, Sweden. 5th March 

2020.) Had a WES approach not been used, it would have 

been difficult to reach this diagnosis.
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Patient 9 presented with osteopetrosis, a heteroge-

neous condition, classically divided into; fatal infan-

tile malignant form (OMIM #259700/611490/259720), 

Albers-Schonberg disease (OMIM #166600/259700) 

and a milder adult form. She presented with facial 

nerve palsy, and subsequent radiography noted Rickett-

sial-like bony ends (see Fig. 5). Foraminal impingement 

led to hearing loss and visual problems and a working 

diagnosis of infantile-onset osteopetrosis was estab-

lished, suitable for WES. The proband had compound 

heterozygous variants in CLCN7 (chloride voltage-

gated channel 7); a pathogenic variant inherited from 

her unaffected father and a VUS (variant of unknown 

significance) from her unaffected mother, though 

her maternal grandmother was affected (late-onset 

osteopetrosis) and had the same VUS. It later transpired 

that the mother actually had mild radiographic and 

clinical features demonstrating segregation and striking 

intrafamilial variable expression of osteopetrosis type 4 

(OMIM #611490). If PP4 (protein phosphate-4) or PP1 

(protein phosphate-1) panels were applied, the VUS 

would be upgraded to likely pathogenic. The paternal 

variant alone did not manifestly cause disease in the 

father but was felt to negatively modify the severity of 

the condition in the presence of the maternal variant.

Theme 3: known diagnosis, no known gene

In 2015, Patient 11, aged 3,presented with severe short 

stature, delayed motor milestones, a high-pitched voice, 

dysmorphism,  ligamentous laxity,  instability of the cer-

vical spine, severe scoliosis (see Fig. 6a, b), discoloured/

weak dentition (see Fig. 6c), and no fractures. The work-

ing diagnosis  after radiological review was  a rare form 

of  ‘spondylometaphyseal dysplasia with dentinogenesis 

imperfecta, odontochondrodysplasia (OMIM #184260). 

At the time, this condition had no known gene cause. 

Thus, an agnostic approach via WES was appropriate for 

new gene discovery. No pathogenic variants were found. 

Some years later, a causative gene was discovered for the 

condition, TRIP11(thyroid receptor-interacting protein 

11) though despite re-analysis, a molecular cause was not 

confirmed in patient 11. Other genetic causes of odonto-

chondrodysplasia are still sought.

Theme 4: unknown SD diagnosis

Patient 13 presented with SD (short stature, macroceph-

aly, and scoliosis) with non-skeletal syndromal features 

(congenital heart disease and hearing loss). CHD7 (chro-

modomain helicase DNA binding protein 7) gene testing 

Fig. 1 (patient 4, OSMED). a and b Age day 3; sagittal spinal clefts, coronal spinal clefts. c and d age 6 years; mega-epiphyses of the femoral head, 

wide metaphyses, C-shaped left convexity of the spine, marked anterior wedging of T11, T12 and L1

Fig. 2 (patient 5, MED). a Age 7 years; bilateral femoral head 

epiphyseal dysplasia, medial aspects fragmented. b Age 11 years; 

genu valgum and underdeveloped distal medial femoral epiphyses
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for CHARGE syndrome (OMIM #214800) was negative. 

WES identified two likely pathogenic variants in EXT2 

(exostosin glycosyltransferase 2) found in trans with clin-

ical findings overlapping for AREXT2 syndrome (autoso-

mal recessive exostosis-2 gene syndrome). AREXT2 is an 

ultra-rare recessive disorder with an unclear and expand-

ing phenotype as only four families have been reported 

[21]. First described in 2015, it was termed Seizures, 

Scoliosis and Macrocephaly syndrome (SSM; OMIM 

#616682). Later authors suggested the ‘AREXT2’ label to 

recognise the lack of uniformity of scoliosis or seizures. 

It is unclear whether patient 13 has AREXT2 thus, func-

tional work is required. In this unknown syndromal case, 

WES has ruled out many potential diagnoses and the 

Fig. 3 (patient 7, metaphyseal chondrodysplasia—D2-HGA type). a Age 7 years; left leg is longer than right, marked left-sided genu valgum. 

Multiple expansile lucent metaphyseal lesions involving bilateral femora and tibia. b Age 2.5 years; expansion and irregularities of vertebral bodies. c 

Age 7 years; extensive enchondromatosis of both hands and wrists with associated soft tissue swelling

Fig. 4 (patient 8, acquired SD). Aged 2 months; a sacral stippling, small, round/ovoid vertebral bodies with coronal clefts in the thoracic spine. b 

Sacral stippling. c short first metacarpals. d stippled epiphyses distal to the tibia and delayed ossification of the tarsal bones
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WES-based agnostic approach allowed for further inves-

tigation of an emerging ultra-rare condition.

Theme 5: WES to exclude a genetic diagnosis and support 

an acquired cause

Chondrodysplasia punctata (CDP) is a rare SD charac-

terised by punctiform calcification of cartilage and is 

acquired or genetic in origin [22]. Genetic forms (OMIM 

#302950/118650) are heterogeneous. Acquired forms can 

be due to maternal malabsorption of vitamin K, maternal 

warfarin or some anticonvulsant [23]. Patient 8, a 2-year-

old female, presented with faltering growth and antenatal 

exposure to lamotrigine and topiramate. Antenatal scans 

demonstrated short long-bones. Post-natal radiology 

(see Fig. 4a–d) showed sacral stippling with delayed tar-

sal ossification, consistent with CDP [24]. Since several 

genes cause CDP, WES is an appropriate strategy to rea-

sonably exclude underlying genetic causes. Thus, nega-

tive WES increases antenatal anticonvulsant exposure 

as the likely cause. Although there is no reported asso-

ciation of lamotrigine and topiramate, causing stippling, 

other Hydantoin anticonvulsants (e.g. phenytoin) have 

been reported to do so [23]. This case highlights the need 

for early radiography, as stippling is often only seen in the 

first year of life and rarely after age three [25].

Patient 15 was born with normal birth and growth 

parameters until age 11  months when an unexplained 

prolonged fever led to a diagnosis of haemophagocytic 

Fig. 5 (patient 9, infantile osteopetrosis). a and b Aged 1 year; thickened cortex skull, bone-in-bone appearance of vertebrae, anterior concavity. c 

Age 8 years; sclerotic pelvic bones/femora

Fig. 6 (patient 11, odontochondrodysplasia). a, b Aged 5.5 years; severe s-shaped scoliosis, marked platyspondyly, segmentation abnormality at 

T4/5, spondylolisthesis, slender ribs posteriorely with mild anterior rib flaring, proximal femoral metaphyseal dysplasia. c 3 years dentine dysplasia
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lymphohistiocytosis (OMIM #603553). Biallelic PRF1 

(Perforin-1) pathogenic variants (compound heterozy-

gote) were confirmed. At 18 months, matched unrelated 

cord blood HSCT (homologous stem cell transplanta-

tion) was performed. Subsequent progressive growth 

failure developed, associated with radiographic spondy-

loepimetaphyseal chondrodysplasia (progressive changes 

as shown in Fig.  7a–f, note radiographs prior to HSCT 

were not take as skeletal dysplasia was not suspected 

then), functional asplenia and sensorineural hearing loss. 

Development of skeletal changes throughout childhood 

including fixed flexion hip deformity, marked pes planus, 

marked genu valgum and pectus carinatum. Extensive 

endocrine investigations returned no cause. WES (and 

subsequent WGS) was negative for a skeletal cause. An 

international group of SD experts noted the similarity of 

this case and several others, concluding a potentially new 

disorder manifesting with growth failure and a chondro-

dysplasia phenocopy post early HSCT for non-oncologi-

cal disorders [26]. This case highlights the utility of WES 

to reduce the likelihood of a genetic cause significantly 

and increase the confidence of an acquired cause [26].

Further discussion

As many previous studies have discussed, a broad 

approach to genetic testing through WES or WGS allows 

for the identification of conditions that may not have 

been suspected clinically and thus the expansion of pre-

viously known phenotypes.

In our cohort of 15 patients, the use of WES has led to 

three novel findings. Firstly, Patient 7 is the first reported 

case of MC-D2HGA due to a germline variant. Secondly, 

patient 13, is potentially the fifth reported family with 

AREXT2 syndrome providing further expansion of the 

phenotype. Lastly, patient 15, is one of seven patients 

who have collectively provided evidence for a new dis-

ease, ‘chondrodysplasia phenocopy post early HSCT for 

non-oncological disorders’ and has been submitted for 

publication [26].

Although WES remains the current ‘go-to’ diagnostic 

test in many rare disease scenarios, we increasingly see 

a shift to WGS, especially for the acutely ill child. Even 

then, a large body of undiagnosed patients remain. When 

WES returns negative or inconclusive results, for many, 

the diagnostic odyssey is abandoned or halted. Yet it 

is clear that re-analysis of WES data can often result in 

diagnosis in 10–15% of these cases [2].

Additional testing such as long read sequencing (LRS), 

copy number variants (CNV) in non-coding regions, 

non-coding variants (NCV), repeat expansion (RE), 

methylation testing (MT) and other structural changes 

will need to be explored to increase diagnostic yield. 

Burdick et al. explored the proportion of diagnoses from 

additional testing in 54 patients with clinical diagnoses, 

enrolled in their Undiagnosed Disease Network [2]. Of 

the 54 participants, the molecular diagnosis was obtained 

in 36 (67%) through WES, and in 15 (28%) through addi-

tional testing. Of these, 7/15 (47%) had an NCV, 6/15 

(40%) a CNV, and 2/15 (13%) had a RE or a DNA meth-

ylation disorder. A yield figure could not be given since 

there were many other patients within the programme, 

who were at different stages of assessment. Nevertheless, 

the report highlights the benefit of testing beyond WES 

and the approaches that can be considered.

This combined with the advance of radiomics (the sys-

tematic use of artificial intelligence to provide diagnostic 

processing and analysis of ever sophisticated imaging 

data) will usher in an increased yield. The careful com-

bination of the physician (endocrinologist, orthopaedic 

surgeon), radiologist and geneticist working together will 

be crucial.

The difficulty with large scale sequencings, such as 

WES or WGS is the generation of large numbers of 

variants of unknown significance (VUS), especially as 

genetic testing, is mainstreamed. Likewise, bioinformatic 

Fig. 7 (patient 15, post HSCT related SD). a–c Aged 5 years; broad ribs, platyspondyly, proximal femoral epiphyseal dysplasia/metaphyseal 

irregularity. d–f Age 8 years; progressive changes; broadening of ribs, worsening vertebral end-plate irregularities, diffuse platyspondyly, increased 

density of carpal bones (excluding the hamate and capitate),increase phalangeal epiphyseal density, dense distal ulnar with v-shaped chondroid 

type calcification extending distally
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pipelines can present de-novo variants with strong com-

putational evidence suggestive of particular conditions, 

that are not easy to dismiss. The present challenge is, 

therefore, that of ‘variant interpretation’. Further familial 

segregation is not always possible.

Traditionally, one way to assess a VUS is to perform 

functional studies (e.g. fresh blood samples to undertake 

RNA studies to see if the DNA change has a functional 

impact on RNA production and therefore on the given 

protein). This method is challenging as it requires fresh 

blood samples (as RNA degrades quickly), a difficulty, 

especially in the paediatric population and blood samples 

are not always the appropriate sample to test a particu-

lar variant as the gene of interest may not particularly be 

expressed.

Additionally, RNA studies are not always possible in the 

NHS diagnostic lab, and clinicians often had to partner 

with university academics or other institutions for func-

tional work (often by providing fresh blood samples, or 

skin samples or saliva). The problems with this are mani-

fold; time-intensive and dependent on knowing suitable 

partners. Furthermore, obtaining the required sample 

can be difficult; we have already discussed the difficulty 

with blood samples. Skin samples require a skin biopsy 

which is a relatively invasive procedure. Saliva samples 

are often difficult to work with, of poor quality/limited in 

what can be assessed. Lastly, with more and more func-

tional study requests to academics, the boundaries of 

responsibility for what are essentially research analyses 

are blurred, thus increasing reluctance from academia to 

perform such work (culpability issue). Suitable new ‘quick 

and easy’ tests need developing for variant analysis, and 

hair pluck analysis may be one such avenue in the SD 

domain, due to beneficial expression profiles of SD genes.

Conclusion

Although the genetic causes of > 450 forms of skeletal 

disorders have been rapidly uncovered, distinct SD con-

ditions of unknown genetic aetiology remain [27]. The 

best strategy for identifying these may be the unbiased 

approach of WES or WGS, especially in children and 

patients with severe or multi-systemic diseases. It can 

be particularly beneficial to detect de novo pathogenic 

variants using a trio design. In sporadic cases, analysis of 

trios may reveal de-novo pathogenic variants. In famil-

ial cases, a combination of WES and either WGS or SNP 

typing could yield linkage information for prioritisation 

of rare variants [28]. If no variants are identified through 

WES, then further testing is needed, though the cost-

effectiveness of such studies needs determination [2].

Our results highlight the cost-effective use of WES-

targeted bioinformatic analysis as a diagnostic tool for 

SD, particularly for patients with presumed SD, where 

detailed phenotyping is essential. The thorough clinical 

evaluative approach and planning between clinical, radi-

ological, and molecular teams is essential for improved 

service provision.

As we move towards WGS trio sequencing, experi-

ence and this study shows that careful categorisation of 

patients of those with known pre-test diagnosis will yield 

a higher return of molecular confirmation (8/10 in this 

study) as opposed to unknown diagnosis pre-test (1/5 in 

this study) thus highlighting the importance of carefully 

selecting the most suitable cases for highest WGS yield. 

With the evolution of this pilot study, the SD panel was 

extended to 498 genes and anecdotally several more pre-

test unknown SD cases were molecularly resolved, thus it 

is felt WES/WGS will play a more significant role in cases 

with no prior test diagnosis.

The clinical yield of WES will increase over time, allow-

ing providers to arrive at a diagnosis efficiently. This 

information will help avoid needless diagnostic proce-

dures/costly additional tests and individualised patient 

care, allowing for informative clinical decisions and reas-

surance to patients and families [13]. More diagnoses 

will, in turn, lead to more information on natural history, 

improved mechanistic details, and hopefully increased 

therapies and clinical trials.

Appendix 1: The skeletal dysplasia gene panel 

v1 (222 genes, ‘Pan 272’) in accordance with UK 

Genetic Testing Network

ACAN, ACP5, ACVR1, ADAMTSL2, AGPS, ALPL, 

ALX1, ALX3, ALX4, ANKH, ANO5, ANTXR2, ARH-

GAP31, ARSE, ATP6V0A2, B3GALT6, B4GALT7, 

BMP1, BMP2, BMPR1B, CA2, CANT1, CASR, 

CC2D2A, CCDC8, CDC6, CDH3, CDKN1C, CDT1, 

CEP290, CHST14, CHST3, CHSY1, CLCN5, CLCN7, 

COL10A1, COL11A1, COL11A2, COL1A1, COL1A2, 

COL2A1, COL9A1, COL9A2, COL9A3, COMP, 

CREB3L1, CRTAP, CTSK, CUL7, DDR2, DHCR24, 

DLL3, DLX3, DMP1, DYM, DYNC2H1, EBP, EFNB1, 

EFTUD2, EIF2AK3, ENPP1, ESCO2, EVC, EVC2, 

EXT1, EXT2, FAM20C, FBLN1, FBN1, FBXW4, 

FERMT3, FGF10, FGF23, FGF9, FGFR1, FGFR2, 

FGFR3, FKBP10, FLNA, FLNB, FMN1, FOXC1, 

GALNT3, GDF5, GLI3, GNAS, GORAB, GPC6, GPX4, 

GREM1, HDAC4, HOXA11, HOXD13, HPGD, HSPG2, 

ICK, IFITM5, IFT122, IFT140, IFT172, IFT43, IFT80, 

IFT88, IHH, IKBKG, IL1RN, INPPL1, KAT6B, KIF22, 

KIF7, LBR, LEMD3, LEPRE1, LFNG, LIFR, LMBR1, 

LMNA, LMX1B, LRP4, LRP5, MAFB, MATN3, MESP2, 

MGP, MKS1, MMP13, MMP2, MMP9, MSX2, MYCN, 

NEK1, NIPBL, NKX3-2, NLRP3, NOG, NOTCH2, 

NPR2, NSDHL, OBSL1, OFD1, ORC1, ORC4, ORC6, 
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OSTM1, PAPSS2, PCNT, PEX7, PHEX, PIGV, PITX1, 

PLEKHM1, PLOD2, POLR1C, POR, PPIB, PRKAR1A, 

PTDSS1, PTH1R, PTHLH, PTPN11, PYCR1, RAB23, 

RASGRP2, RECQL4, ROR2, RPGRIP1L, RUNX2, 

SALL1, SALL4, SBDS, SERPINF1, SERPINH1, SH3BP2, 

SH3PXD2B, SHH, SHOX, SLC25A12, SLC26A2, 

SLC34A3, SLC35D1, SLC39A13, SMARCAL1, SOST, 

SOX9, SP7, SULF1, TBCE, TBX15, TBX3, TBX4, TBX5, 

TBXAS1, TCIRG1, TCOF1, TCTN3, TGFB1, THPO, 

TMEM216, TMEM38B, TMEM67, TNFRSF11A, 

TNFRSF11B, TNFSF11, TP63, TRAPPC2, TREM2, 

TRIP11, TRPS1, TRPV4, TTC21B, TWIST1, TWIST2, 

TYROBP, WDR19, WDR34, WDR35, WDR60, WISP3, 

WNT3, WNT5A, WNT7A, ZMPSTE24.

Abbreviations

aCGH: Array comparative genomic hybridisation; ACH: Achondroplasia; AMD: 

Acromesomelic dysplasia; AR: Autosomal recessive; AREXT2: Autosomal 

recessive exostosin glycosyltransferase 2; CCHD: Complex congenital heart 

disease; CD: Campomelic dysplasia; CDP: Chondrodysplasia punctata; CHD7: 

Chromodomain helicase DNA binding protein 7; CLCN7: Chloride voltage-

gated channel 7; COL11A2: Collagen type XI alpha-2 chain; COL2A1: Collagen 

type II alpha-1 chain; COL9A1-COL9A3: Collagen type IX alpha 1–3 chain; 

COMP: Cartilage oligomeric matrix protein; DD: Developmental delay; EC: 

Enchondromatosis; EDS: Ehlers–Danlos syndrome; EVS: Exome variant server; 

EXT2: Exostosin glycosyltransferase 2; FBCG2: Fibrochondrogenesis type 2; 

GH: Growth hormone; HPO: Human phenotype ontology; HSCT: Homologous 

stem cell transplantation; IDH1: Isocitrate dehydrogenase 1; IUGR : Intrauterine 

growth restriction; MATN3: Matrilin-3; MC-D2HGA: Metaphyseal chondroma-

tosis with D-2-hydroxyglutaric aciduria; MED: Multiple epiphyseal dysplasia; 

MPOD: Microcephalic osteodysplastic primordial dwarfism; OSMED: Otospon-

dylomegaepiphyseal dysplasia; PAGE: Prenatal assessment of genomes and 

exomes; PEG: Percutaneous endoscopic gastrostomy; PCNT: Pericentrin; PRF1: 

Perforin-1; PP1: Protein phosphate-1; PP4: Protein phosphate-4; SD: Skeletal 

dysplasia; SEDC: Spondyloepiphyseal dysplasia congenita; SEDT: Spondy-

loepiphyseal dysplasia tarda; SOX-9: SRY (sex determining region Y)-Box 9; 

SSM: Seizures, scoliosis and macrocephaly syndrome; TES: Targeted exome 

sequencing; TRAPPC2: Tracking protein particle complex, subunit 2; TRIP11: 

Thyroid receptor-interacting protein 11; VUS: Variant of unknown significance; 

WES: Whole-exome sequencing; WGS: Whole-genome sequencing; 100kGP: 

100,000 Genomes project.

Acknowledgements

With thanks to patients and families.

Authors’ contributions

Manuscript prepared, conceptualised and researched by AS, JS and EM helped 

prepare the manuscript, AC/AO/CH reviewed radiological imaging, MC/AC/

MI/ABM provided clinical care and phenotyping, MJ/MY/YP/SL provided 

laboratory support/variant analysis, MI devised the project, obtained grant 

funding and supervised the manuscript. All authors read and approved the 

final manuscript.

Funding

Grant support of £15,000 in 2013 from the British Skeletal Dysplasia Group 

Project for whole-exome sequencing of 15 patients.

Availability of data and materials

The datasets generated during and/or analysed during the current study are 

not publicly available due to maintaining patient confidentiality but are avail-

able from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Ethics committee review for our cohort was obtained. Approval number 08/

H0810/14—National Bromley Research Ethics Committee at Guy’s and St. 

Thomas’s Hospitals NHS Foundation Trust. Clinical/personal patient data was 

obtained as part of clinical care. Informed consent (written) to participate was 

obtained from the parents/legal guardians of all participants in the study. [This 

is a clinical paper not a research study hence an IRB was not involved].

Consent for publication

Patient privacy and confidentiality have been protected. All patients were 

study participants at the Guy’s and St Thomas’ Hospital clinical site. Authors 

have full written consent to publish the information from the patient(s) or 

their parent(s)/legal guardian(s) prior to submission.

Competing interests

None.

Author details
1 Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, 

London, UK. 2 College of Medical and Dental Sciences, University of Birming-

ham, Birmingham, UK. 3 The Royal Wolverhampton NHS Trust, Wolverhampton, 

UK. 4 Radiology Department, Great Ormond Street Hospital for Children, NHS 

Foundation Trust, London, UK. 5 Clinical Genetics Department, University Hos-

pitals Bristol and Weston, Bristol, UK. 6 Department of Paediatric Endocrinology, 

Evelina London Children’s Hospital, London, UK. 7 Viapath LLP, Guy’s Hospital, 

5th Floor Tower Wing, London SE1 9RT, UK. 8 Neurogenetics, Rare and Inherited 

Disease Laboratory, North Thames GLH, Barclay House, 37 Queen Square, 

London WC1N 3BH, UK. 9 Great Ormond Street Hospital for Children, London, 

UK. 10 Emeritus Professor of Paediatric Radiology, Institute of Child Health, 

University of London, London, UK. 11 Academic Unit of Child Health, University 

of Sheffield, Sheffield, UK. 12 Division of Genetics and Molecular Medicine, 

King’s College London School of Medicine, London, UK. 

Received: 2 December 2020   Accepted: 28 May 2021

References

 1. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 

OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an Online 

catalog of human genes and genetic disorders. Nucleic Acids Res. 

2015;43(D1):D789–98.

 2. Burdick KJ, Cogan JD, Rives LC, Robertson AK, Koziura ME, Brokamp E, 

et al. Limitations of exome sequencing in detecting rare and undiag-

nosed diseases. Am J Med Genet Part A. 2020;182(6):1400–6. https:// doi. 

org/ 10. 1002/ ajmg.a. 61558.

 3. Liu HY, Zhou L, Zheng MY, Huang J, Wan S, Zhu A, et al. Diagnostic and 

clinical utility of whole genome sequencing in a cohort of undiagnosed 

Chinese families with rare diseases. Sci Rep 2019;9(1).

 4. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical 

whole-exome sequencing for the diagnosis of mendelian disorders. N 

Engl J Med. 2013;369(16):1502–11.

 5. Beaulieu CL, Majewski J, Schwartzentruber J, Samuels ME, Fernan-

dez BA, Bernier FP, et al. FORGE Canada consortium: outcomes of a 

2-year national rare-disease gene-discovery project. Am J Hum Genet. 

2014;94(6):809–17.

 6. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, et al. Fac-

tors influencing success of clinical genome sequencing across a broad 

spectrum of disorders. Nat Genet. 2015;47(7):717–26.

 7. Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diag-

nostic impact and cost-effectiveness of whole-exome sequencing for 

ambulant children with suspected monogenic conditions. JAMA Pediatr. 

2017;171(9):855–62.

 8. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. Use 

of exome sequencing for infants in intensive care units ascertainment of 

severe single-gene disorders and effect on medical management. JAMA 

Pediatr 2017;171(12).

https://doi.org/10.1002/ajmg.a.61558
https://doi.org/10.1002/ajmg.a.61558


Page 14 of 14Sabir et al. BMC Med Genomics          (2021) 14:148 

•

 

fast, convenient online submission

 
•

  

thorough peer review by experienced researchers in your field

• 

 

rapid publication on acceptance

• 

 

support for research data, including large and complex data types

•

  

gold Open Access which fosters wider collaboration and increased citations 

 

maximum visibility for your research: over 100M website views per year •

  
At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research   ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 9. Farnaes L, Hildreth A, Sweeney NM, Clark MM, Chowdhury S, Nahas S, 

et al. Rapid whole-genome sequencing decreases infant morbidity and 

cost of hospitalization. npj Genomic Med 2018;3(1).

 10. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare 

disease in children. Nat Rev Genet. 2018;19(5):253–68.

 11. Wright CF, McRae JF, Clayton S, Gallone G, Aitken S, FitzGerald TW, et al. 

Making new genetic diagnoses with old data: iterative reanalysis and 

reporting from genome-wide data in 1,133 families with developmental 

disorders. Genet Med. 2018;20(10):1216–23.

 12. Zanelli S. Skeletal dysplasia. eMedicine J. 2018.

 13. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical 

application of whole-exome sequencing across clinical indications. Genet 

Med. 2016;18(7):696–704.

 14. Bae JS, Kim NKD, Lee C, Kim SC, Lee HR, Song HR, et al. Comprehensive 

genetic exploration of skeletal dysplasia using targeted exome sequenc-

ing. Genet Med. 2016;18(6):563–9.

 15. Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-

Jones E, et al. Prenatal exome sequencing analysis in fetal structural 

anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 

2019;393(10173):747–57.

 16. UK Genetic Testing Network. National Genomic Test Directory: testing 

criteria for rare and inherited disease. 2019.

 17. Bonafé L, Mittaz-Crettol L, Ballhausen D, Superti-Furga A. Multiple 

epiphyseal dysplasia, recessive. GeneReviews®. University of Washington, 

Seattle; 1993.

 18. Briggs MD, Wright MJ, Mortier GR. Multiple epiphyseal dysplasia, autoso-

mal dominant. GeneReviews®. University of Washington, Seattle; 1993.

 19. Pansuriya TC, Kroon HM, Bovée JVMG. Enchondromatosis: insights on the 

different subtypes. Int J Clin Exp Pathol. 2010;3(6):557–69.

 20. Srinivasan A, Zhou Y, Scordino T, Prabhu S, Wierenga A, Simon G, et al. 

IDH1 mutated acute myeloid leukemia in a child with metaphyseal chon-

dromatosis with D-2-hydroxyglutaric aciduria. Pediatr Hematol Oncol. 

2020;37(5):431–7.

 21. Gupta A, Ewing SA, Renaud DL, Hasadsri L, Raymond KM, Klee EW, et al. 

Developmental delay, coarse facial features, and epilepsy in a patient 

with EXT2 gene variants. Clin Case Rep. 2019;7(4):632–7.

 22. Irving MD, Chitty LS, Mansour S, Hall CM. Chondrodysplasia punc-

tata: a clinical diagnostic and radiological review. Clin Dysmorphol. 

2008;17(4):229–41.

 23. Wessels MW, Den Hollander NJ, De Krijger RR, Nikkels PGJ, Brandenburg 

H, Hennekam R, et al. Fetus with an unusual form of nonrhizomelic 

chondrodysplasia punctata: case report and review. Am J Med Genet. 

2003;120A(1):97–104.

 24. Castriota-Scanderbeg A, Dallapiccola B. Abnormal skeletal phenotypes: 

from simple signs to complex diagnoses. Abnormal skeletal phenotypes: 

from simple signs to complex diagnoses. Springer Berlin Heidelberg; 

2005;1–962 p.

 25. Firth H V., Hurst JA. Clinical genetics and genomics (Oxford Desk Refer-

ence). Oxford University Press; 2017.

 26. Botto L, Meeths M, Campos-Xavier B, Bergamaschi R, Mazzanti L, Scarano 

E, et al. Chondrodysplasia and growth failure in children following early 

hematopoietic stem cell transplantation for non-oncologic disorders. Am 

J Med Genet A. 2021;185(2):517–27.

 27. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. 

Nosology and classification of genetic skeletal disorders: 2019 revision. 

Am J Med Genet Part A. 2019;179(12):2393–419.

 28. Geister KA, Camper SA. Advances in skeletal dysplasia genetics. Annu Rev 

Genom Hum Genet. 2015;16:199–227.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.


	Diagnostic yield of rare skeletal dysplasia conditions in the radiogenomics era
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Skeletal dysplasia cohorts
	Yields in SD

	Methods
	Subjects and clinical diagnosis
	Exome sequencing and variant prioritisation
	Variant analysis
	Molecular diagnosis using determined variants

	Results
	Discussion
	Theme 1: known clinical diagnosis with clear single-gene cause, but testing unavailable
	Theme 2: known clinical diagnosis (heterogeneous condition), multiple potential genetic causes
	Theme 3: known diagnosis, no known gene
	Theme 4: unknown SD diagnosis
	Theme 5: WES to exclude a genetic diagnosis and support an acquired cause
	Further discussion

	Conclusion
	Acknowledgements
	References


