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Abstract 

The impact of Ni insertion on structural, optical, and magnetic properties of 

Ba0.8La0.2Fe12-xNixO19 hexaferrites (Ni substituted La-BaM hexaferrites) is investigated. The 

samples were prepared using the conventional co-precipitation method and sintered at 1000 
oC for 4 hours to assist the crystallization process. The analysis of the structure of the samples 

was carried out using X-ray diffraction (XRD) spectrometer. The M-type hexagonal structure 

of all the samples was confirmed from the XRD spectra. The lattice parameters ‘a’ and ‘c’ are 

found in the range 5.8925 ± 0.001 - 5.8952 ± 0.001 nm and 23.2123 ± 0.001 - 23.2219 ± 

0.001 nm, respectively. The M-type hexagonal nature of the prepared samples is also 

indicated by the presence of corresponding FT-IR bands and Raman modes in the FT-IR and 

Raman spectra, respectively. The EDX results confirmed the successful synthesis of the 

samples according to the required stoichiometric ratio. UV-vis spectrometer was used to 

record the absorption spectra of the prepared samples in the wavelength range 200 – 1100 nm. 

The optical energy band gap of the samples were found in the range 1.21 – 3.39 eV. The M-H 

loops of the samples were measured at room temperature in the applied magnetic field range 

0 – 60 KOe. A high saturation magnetization of 99.92 emu/g was recorded in the sample with 

x = 0 and with microwave operating frequency 22.2 GHz. This high value of saturation 

magnetization is due to the substitution of La3+ ions at spin-up (12k, 2a, and 2b) sites. The Ni 

substitution is proved to be a potential candidate to tune the optical and magnetic parameters 

of M-type hexaferrites. Therefore, the prepared samples are suggested for applications in 

magneto-optic applications. 

Keywords: M-type hexaferrite; Nanostructured materials; magnetic properties; optical 

properties 
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1. Introduction 

In recent years, hexagonal magnetic nanoparticles have attracted great scientific interest 

due to their potential for various technological applications like permanent magnets, 

microwave absorbers, high-density magnetic media, magneto-optic recording media, stealth 

technology [1-4]. Hexagonal ferrites are divided into five sub-categories based on their 

crystal structure and chemical formula: M-type (AFe12O19), W-type (AFe16O27), X-type 

(AFe28O46), Y-type (AFe12O22), Z-type (AFe24O41), where A is the divalent cation like Ba2+, 

Sr2+, Pb2+, Ca2+ [5-7]. Among these, M-type hexaferrite has gained more attention due to its 

distinguished properties like very high magnetic anisotropy, higher coercivity, higher 

corrosion resistance, high thermal and chemical stability [8-11]. Barium M-type (BaM) 

hexaferrite are ferrimagnetic materials with the chemical formula BaFe12O19 and space group 

P63/mmc. They consist of tetrahedral (4f1), octahedral (12k, 4f2, and 2a) and hexahedral (2b) 

sites. Fe3+ ions at 4f1 and 4f2 sites (eight ions per unit cell) exhibit spin-down character and 

Fe3+ ions at 12k, 2a, and 2b sites (sixteen ions in a unit cell) exhibit spin-up character [12-13]. 

The substitution of various magnetic and non-magnetic ions at these sites can modify the 

structural, magnetic, and other properties of BaM ferrites. Various examples of substitution at 

different sites of hexaferrite structure are divalent ions (A2+) substitution [14, 15], trivalent 

ions (A3+) substitution [16, 17], and tetravalent ions (A4+) substitution [14, 18]. To achieve the 

best properties of hexaferrite, it is very important to optimize the quantity and type of the 

substituent cations. Various reports have been published on modifying the microstructure, 

electrical, dielectric, optical, and magnetic properties of BaM hexaferrite by replacing Fe3+ 

and Ba3+ cations with divalent and trivalent cations. Recently, Cernea et al. [9] reported on 

the magnetic properties of Ni2+ substituted BaFe12O19 hexaferrite. They observed a 

decreasing trend in the coercivity, retentivity, and maximum energy product with an increase 

in Ni2+.  Iqbal et al. [19] studied the effect of Pr-Ni substitution in the crystal lattice of BaSr 

hexaferrite. They reported an increase in the electrical resistivity of prepared samples with an 

increase in Ni content.  Behera et al. [20] also investigated the effect of Ni2+ incorporation in 

the lattice matrix of BaFe12O19 synthesized by the sol-gel method. They have found the 

reduction in saturation magnetization from 68.16 emu/g to 58.99 emu/g with increasing Ni2+ 

content (x) from 0 to 0.5, while an increase in ferrimagnetic transition temperature (TC) was 

observed. Guner et al. [21] reported the synthesis of Bi and La-doped BaM hexaferrite by 

sol-gel auto combustion method. They studied the dependence of the magnetic properties of 

BaFe12O19 on the concentration of various dopants like La, Bi, and Y. They reported the 

saturation magnetization and coercivity of the prepared samples in the range 53.69 – 67.42 A
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emu/g and 3.812 × 105 – 2.177 × 105 A/m, respectively. Some other attempts also have been 

reported to modify the structure, electrical, optical, and magnetic properties of BaM with 

doping of Ni2+, La3+, and co-doping of these cations [19, 22-25]. However, a detailed study is 

still needed to explore the impact of Ni2+ doping on the structural, optical, and magnetic 

properties of La-BaM hexaferrites. The high coercivity, moderate saturation magnetization, 

and low cost are all advantages of these materials. The objective of this work is to provide a 

detailed study on the impact of Ni2+ substitution in La-BaM hexaferrites. A series of samples 

having the chemical formula Ba0.8La0.2Fe12-xNixO19 (Ni-doped BL) hexaferrites has been 

prepared via the co-precipitation route. The co-precipitation method was chosen due to its 

simplicity, low cost, normal temperature, less time required, and homogeneity of prepared 

nanoparticles [26, 27]. The prepared samples were investigated using different techniques 

including X-ray diffraction (XRD), Energy Dispersive X-rays (EDX) spectroscopy, Fourier 

Transform Infrared (FTIR) spectroscopy, Raman Spectroscopy, UV-vis spectroscopy, and 

Vibrating Sample Magnetometry (VSM).                        

2. Experimental details 

2.1 Synthesis  

In this study, Ba0.8La0.2Fe12-xNixO19 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrites were 

prepared by the co-precipitation method. The starting materials BaCl2.2H2O, Ni (NO3)2.6H2O, 

Fe (NO3)3 .9H2O, and La (NO3)3.6H2O were purchased from Aldrich and used as received. 

The required amount of these chemicals was used to prepare a homogeneous solution into 

deionized water according to the required stoichiometric ratios. The solution was stirred 

magnetically at the hotplate at temperature 70 oC till the formation of precipitates occurred. 

The pH of the solution was maintained during the precipitation process at 11 by adding 

NaOH dropwise. The samples were placed in the water bath for 12 hours at 90 oC to complete 

the digestion process. The precipitates were laid down at the bottom of the beakers. These 

precipitates were collected and cleaned with DI water and ethanol to get rid of the impurities. 

The drying of washed precipitates was done by placing them in the oven for 15 hours at 110 
oC. The dried precipitates were ground using mortar and pestle to obtain fine powder samples. 

The samples were sintered at 1000 oC in the muffle furnace for 4 hours to assist the 

crystallization process. The cooling was done at a very slow rate (≈ 1.4 oC) to avoid the 

development of pores.  

2.2 Characterization used 
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The phase and microstructure analysis of the sintered samples was carried out using X-ray 

diffractometer (D8 Advance, Bruker), with Cukα as X-ray source. The diffraction patterns 

were recorded in the 2θ range of 20-60 degrees. The FT-IR spectrometer (spectrum 2, Perkin 

Elmer) was used to obtain the infrared spectra. An Energy Dispersive X-ray spectrometer was 

used to determine the elemental composition of prepared samples. Raman spectra were 

recorded in the wavenumber range 150 – 800 cm-1 using a Raman spectrometer. The optical 

energy band gap values were determined using a UV-Vis spectrometer (double beam, 

Lambda 25, Perkin Elmer). The magnetic character of the sintered samples was studied by 

recording M-H loops at room temperature using a vibrating sample magnetometer 

(Lakeshore-7407).  

3. Results and Discussion 

3.1 Phase analysis 

XRD spectra of synthesized Ni-doped La-BaM hexaferrites as shown in Fig. 1 were 

recorded at 300 K. The comparison of XRD patterns revealed that all the labeled peaks are 

well-matched with JCPDS data (card #00-051-1879) BaM hexaferrites and no extra peak was 

observed. It confirms the formation of a single-phase magneto-plumbite structure having 

space group P63/mmc with very high accuracy and without any defect or impurity phase. The 

various crystal structure parameters including lattice constants (a & c) [28], crystallite size, 

unit cell volume [8], X-ray density [26], and dislocation density [29, 30] are calculated 

utilizing the indexed XRD patterns and the calculated parameters are presented in Table 1. 

From Fig. 2, it can be observed that the lattice constants “a” increased with increased Ni2+ 

ions content, and “c” also increased with the addition of doping except x = 0.3. It also found 

from Figure 2 that the unit cell volume (V) enhanced with the substitution of dopant ions. 

This increase is attributed to the difference in ionic radii of Ni2+ (0.69 Å) and Fe3+ (0.64 Å) 

[20]. The average crystallite size of the prepared nanoparticles was found in the range 25.2 ± 

0.1 – 28.5 ± 0.1 nm and showed a decreasing trend with an increase in Ni2+ ions 

concentration. The calculated X-ray density of the samples was found to lie in the range 

5.144 – 5.310 g/cm3. The dislocation density of a material is inversely proportional to the 

square of the crystallite size and provides information about the strength of the materials [29, 

30]. The calculated values of dislocation density of the prepared nanoparticles revealed that 

the sample with x = 0.1 has the minimum value of dislocation density.  

3.2 Elemental Composition analysis 

The elemental composition of the synthesized samples were analyzed quantitatively 

using Energy dispersive X-rays (EDX) spectroscopy and the results are presented in Table 2. 
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The observed composition of all the elements well matched the expected stoichiometric 

composition. The results confirmed that La3+ and Ni2+ cations substituted in Ba and Fe 

cations in the appropriate ratios. 

3.3 Functional group analysis 

The FTIR spectra of the prepared powder were recorded in the range 4000 - 400 cm−1 

and are presented in Fig. 3. The absorption bands around 430 cm-1 and 580 cm-1 are the two 

featured bands of M-type hexaferrites which were observed in all the samples with minor 

variations in the position and relative intensities. The band observed around 430 cm-1 relates 

to the octahedral Fe-O bond while the band around 580 cm-1 is due to stretching vibrations of 

the tetrahedral Ba-O bond [31, 32]. The presence of these bonds confirmed the formation of 

the BaM hexagonal structure. The doublet peak at 2361 cm-1 is from ambient CO2 gas. 

3.3 Raman analysis 

Raman spectra of the hexaferrite samples are given in Fig. 4. According to group 

theory, 42 active Raman modes ΓRaman = 11A1g + 14E1g + 17E2g arise due to vibrations of 64 

atoms at various sites in the unit cell [33]. In our samples, active Raman modes are observed 

around 284.71, 335.22, 410.28, 457.21, 522.13, 613.52, and 684.87 cm-1 which confirms the 

formation of the BaM phase. The peaks present around 684.87 cm-1 are due to the A1g 

vibration of Fe-O bonds at the octahedral 4f1 site and bipyramidal 2b site. Furthermore, the 

peaks and 457.21 cm-1 also due to the A1g vibration of Fe-O bonds at the octahedral 2a. The 

peaks around 613.52 cm-1 and 410.28 cm-1 are attributed to the A1g vibration of Fe-O bonds at 

the octahedral 4f2 and 12k sites respectively. The Raman modes observed around 522.13 cm-1 

and 284.71 cm-1 attributed to E1g vibration. Moreover, the peaks at 335.22 cm-1 are assigned 

to the E2g vibrations. The small variations found in the peak positions are attributed to the 

substitution of Ni2+ ions in BaM lattice [31, 34-36]. 

3.4 UV-vis analysis 

The absorption spectra and optical energy bandgap are related as given in Tauc’s 

relation α	(ℎݒ) = ݒℎ)	ܣ	 − ௚)௡ܧ  [37-39], where “A” and “α” represent a constant and 

absorption coefficient, respectively. While “n” exhibits the values of 1/2 for direct and 2 for 

indirect transitions. The Tauc’s plots of the prepared samples are presented in Fig. 5. The 

obtained values of optical energy bandgaps lie in the range of 1.21 - 3.39 eV and are plotted 

as a function of Ni2+ ions content as shown in Fig. 6. It can be seen from Fig. 6 that optical 

bandgap is drastically decreased with the incorporation of a small amount of Ni2+ up to x = 

0.2, however, a further increase in Ni2+ concentration does not have a significant effect on the 
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bandgap values [26, 31, 40-44]. The results suggest that the synthesized samples are potential 

candidates for various optoelectronic applications.  

3.4 Magnetic Hysteresis loop analysis 

The magnetic hysteresis (M-H) loops of synthesized nano hexaferrite samples are 

recorded at 300 K and are depicted in Fig. 7. The M-H loops of all the samples show the hard 

magnetic nature. Different magnetic parameters including saturation magnetization (Ms), 

magnetic retentivity (Mr), coercivity (Hc), and squareness ratio (Mr/Ms) are measured from 

M-H loops and are given in Table 3. The maximum value of saturation magnetization is 

observed as 99.92 emu/g for the sample with x = 0 and it reduced to 40.8 emu/g for the 

sample with x = 0.5. According to previous research, Fe3+ ions exhibit various magnetic 

moments at different sites. As a result, the preferred sites of magnetic Ni2+ ions determine the 

material's overall magnetization. The Ni2+ has magnetic nature, but a low magnetic moment 

as compared to Fe3+. It has been reported earlier that Ni2+ ions prefer to substitute Fe3+ ions at 

4f2 and 12k for low concentration and 12k sites for higher concentration.  The substitution of 

Ni2+ (2μB) ions at the Fe3+ (5μB) ions sites is responsible for the decrease in saturation 

magnetization with an increase in Ni2+ concentration [15, 20, 31, 45]. The saturation 

magnetization values which are achieved in this study for Ni2+ free samples are compared 

with the reported values in the literature [4, 9, 20, 45-47] and are found to be significantly 

higher. The higher values of saturation magnetization achieved are attributed to the vacancy-

free samples and occupation of paramagnetic La3+ cations at spin up (12k, 2a, and 2b sites) 

[48, 49]. The magnetic retentivity Mr, coercivity Hc, and squareness ratio (Mr/Ms) also 

decreased with an increase in Ni2+ content and the graphical representation of Ni2+ contents 

versus saturation magnetization (Ms) and magnetic retentivity (Mr) as shown in Fig. 8. The 

magneto-crystalline anisotropy is known to be responsible for the variation in magnetic 

retentivity, coercivity, and squareness ratio values in ferrite materials [20]. The microwave 

frequency (߱௠) determined using relation ߱௠ =  where γ is a gyromagnetic fraction ,ߛ௦ܯଶߨ8

with the significance of 2.8 MHz/Oe, and Ms saturation magnetization [50]. The applied field 

versus microwaves operating frequency (߱௠) of as-prepared hexaferrites samples is plotted 

in Fig. 9. It can be found from Fig. 9 that the range of microwaves operating frequency (߱௠) 

is 8.80 – 22.2 GHz, indicating that as-prepared hexaferrites are applicable in longitudinal 

recording media, data storage magnetic devices, and microwave absorbance purposes. 

Conclusions 
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BaM nano ferrites with the general formula Ba0.8La0.2Fe12-xNixO19 (0 ≤ x ≤ 0.5) were 

synthesized by the co-precipitation route. The prepared powders were densified using 

conventional sintering processing at 1000 oC for 4 h. The phase confirmation and structural 

analysis were carried out using XRD and the average crystallite size of the samples was 

found in the range 25.2 ± 0.1 – 28.5 ± 0.1 nm. The optical properties of the prepared samples 

were investigated using UV-vis spectroscopy and it was found that the optical energy 

bandgap lies in the range 1.21 -3.39 eV. A high value of saturation magnetization Ms (99.92 

emu/g) was achieved for the sample with x = 0, which makes La-BaM hexaferrites suitable 

for operating in the significantly higher frequency range up to 22.2 GHz. The magnetic 

parameters (Ms, Mr, Hc, and Mr/Ms) of the prepared samples show a decreasing trend with an 

increase in Ni content. The optical and magnetic properties of Ni2+ substituted BaM 

hexaferrites suggest that these samples are potential candidates for magnetic storage, 

microwave frequency absorption devices, and magneto-optic devices.      
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Fig. 1 XRD patterns of synthesized Ba0.8La0.2Fe12-xNixO19 hexaferrite powders. 
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Fig. 2 Plot of Lattice parameters (a & c) and unit cell volume (V) as a function of Ni2+ 

content in the synthesized hexaferrite samples. 
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Fig. 3 FTIR spectra of as-synthesized hexaferrite samples. 
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Fig. 4 Raman spectra of Ni2+ substituted Ba-La hexaferrite samples. 

 

  

A
cc

ep
te

d 
M

an
us

cr
ip

t



13 
 

3.3 3.4 3.5
0
5

10
15
20
25
30
35
40
45

1.2 1.4 1.6 1.8 2.0
0

1

2

3

4

5

1.310 1.311 1.312 1.313
0.0

0.5

1.0

1.5

2.0

1.2 1.4 1.6 1.8 2.0 2.2
0

1

2

3

4

5

6

7

8

1.82 1.83 1.84 1.85
0

1

2

3

4

1.2 1.4 1.6 1.8 2.0
0

2

4

6

8

10

12

14

16

 

 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.0

Eg = 3.389 eV

 
 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.4

Eg = 1.2760 eV

 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.5

Eg = 1.311 eV

 

 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.2

Eg = 1.2130 eV

 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.1

Eg = 1.847 eV

 

(
h
)

2
 (

e
V

/c
m

)2

hv (eV)

x = 0.3

Eg = 1.2342 eV

 

Fig. 5 Plot of (αhυ)2 versus photon energy (hυ) for prepared hexaferrite nanoparticles. 
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Fig. 6 Plot of energy bandgap as a function of Ni2+ ions content 
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Fig. 7 M-H loops for Ni2+ doped Ba-La hexaferrites. 
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Fig. 8 Plot of saturation magnetization and remanent magnetization of synthesized samples as 
a function of Ni content 

0.0 20.0k 40.0k 60.0k

0.0

5.0x10
9

1.0x10
10

1.5x10
10

2.0x10
10

2.5x10
10


m
 (

H
z
)

 H (Oe)
 

Fig. 9 Applied field versus microwaves operating frequency 
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Table 1. Concentrations of Ni2+ and calculated structural parameters of Ba0.8La0.2Fe12-

xNixO19 hexaferrites. 
Parameters x = 0.0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 

Lattice parameter a 

(Å) ± 0.001 
5.8925 5.8934 5.8937 5.8943 5.8951 5.8952 

Lattice parameter c 
(Å) ± 0.001 

23.2123 23.2189 23.2201 23.2191 23.2219 23.2218 

Unit cell Volume V 
(Å3) ± 0.006 

697.96 698.37 698.48 698.59 698.87 698.89 

Crystallite size D 

(nm) ±0.1 
27.9 28.5 27.8 26.6 26.2 25.2 

X-ray density DX 
(g/cm3) 

5.310 5.299 5.304 5.144 5.229 5.219 

Dislocation Density 
ρ (1011 cm-2)  

1.280 1.227 1.291 1.413 1.460 1.579 

 

Table 2. Elemental Composition of Ba0.8La0.2Fe12-xNixO19 M-type 
hexaferrites obtained from EDX  

Samples 
Elemental composition (%) 

Ba  La Ni Fe O 

Ba0.8La0.2Fe12O19 2.52 0.64 0.00 37.29 59.55 
Ba0.8La0.2Fe11.9Ni0.1O19 2.51 0.65 0.31 36.92 59.61 
Ba0.8La0.2Fe11.8Ni0.2O19 2.60 0.61 0.63 37.16 59.00 
Ba0.8La0.2Fe11.7Ni0.3O19 2.56 0.63 0.94 36.22 59.65 
Ba0.8La0.2Fe11.6Ni0.4O19 2.49 0.64 1.27 35.72 59.88 
Ba0.8La0.2Fe11.5Ni0.5O19 2.69 0.64 1.54 35.69 59.44 
      

 

Table 3. Magnetic parameters of as-prepared hexaferrites  

Samples 
Ms Mr Hc 

Mr/Ms 
ωm 

(GHz) (emu/g) (emu/g) (Oe) 
Ba0.8La0.2Fe12O19 99.92 40.3 5132.9 0.40332 22.2 
Ba0.8La0.2Fe11.9Ni0.1O19 86.2 34.8 5037.7 0.40371 19.2 
Ba0.8La0.2Fe11.8Ni0.2O19 77.1 24.4 3336.3 0.31647 17.1 
Ba0.8La0.2Fe11.7Ni0.3O19 70.3 27.2 3217.2 0.38691 15.7 
Ba0.8La0.2Fe11.6Ni0.4O19 56.5 13.7 1154.9 0.24248 12.6 
Ba0.8La0.2Fe11.5Ni0.5O19 40.8 18.6 2034.8 0.45588 8.80 
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