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ABSTRACT

EEG signal de-noising is the preprocessing part of brain-computer

interface (BCI), which provides a relatively pure source for con-

trolling external devices with EEG signals. In this paper, a new

combination of threshold and threshold function based on wavelet

threshold (WT) de-nosing method with undetermined coefficients

is proposed. Using fruit fly optimization algorithm (FOA), these

coefficients are determined by the combined fitness function of

signal-to-noise ratio (SNR), mean square error (MSE) and smooth

factor (S), and the noise in the signal is adaptively removed. Experi-

mental results show that under different noise addition conditions,

the wavelet threshold and threshold function determined by FOA

are better than the combination of fixed threshold and traditional

hard and soft thresholds, and other improved methods. The experi-

ment is carried out using MATLAB simulation software. According

to the wavelet basis function and the number of decomposition

levels, two experimental conditions are designed to generate sim-

ulated EEG signals and add noise respectively, and then obtain

reconstructed signals. The highest SNR of our method can reaches

18.0297 dB. In Condition 1, the overall average SNR of our method

is increased by 27.98%, 38.29%, 31.96% 18.36% and 6.29%, respec-

tively, compared with the above comparison methods. In Condition

2, the overall average SNR of our method is 23.67%, 31.13%, 35.33%,

12.53% and 7.45% respectively higher than the above same meth-

ods. In addition, FOA can help reconstruct a smoother signal. In

Condition 1, the lowest S of our method drops to 0.1735, and the

overall average S is 7.86% and 5.80% lower than particle swarm

optimization algorithm (PSO) and artificial fish swarm algorithm

(AFSA) respectively. The method proposed in this paper can better

preprocess the EEG signal, so as to achieve a more accurate BCI.

∗*Li Ma is the corresponding author.

CCS CONCEPTS

· Theory of computation; · Design and analysis of algo-

rithms; · Mathematical optimization;

KEYWORDS

Brain-computer interface (BCI), Preprocessing, Threshold and 
threshold function, Fruit fly optimization algorithm (FOA)
 

1 INTRODUCTION

Brain-computer interface (BCI) is a new active therapy to help the 
stroke patients, which builds a bridge between machine and human 
physical needs through their brain signal [1]. A complete BCI sys-
tem is composed of four important parts: signal acquisition, signal 
processing, equipment control and feedback. Since EEG signal is a 
very weak and unstable random signal, which is easy to be disturbed 
by noise [2], and the collected scalp potential changes are gener-
ated by a large amount of neuron activity, a series of subsequent 
processing of the collected EEG signal is required. Signal process-
ing is further divided into three parts: preprocessing [3], feature 
extraction and classification [4]. The main task of preprocessing 
is to identify and filter the noises of the original EEG signals to 
obtain relatively pure EEG signals. The noises of EEG signal mainly 
come from the interference of environment and physiological signal 
[5, 6]. The presence of these interference can affect the classification 
results, thus affecting the correct control of external devices.

In recent years, researchers have proposed a variety of EEG 
signal de-noising algorithms, mainly based on the following four 
categories: one is the mean artifact regression analysis method. 
Assuming that there is a certain conduction coefficient among scalp 
electrodes and electrical electrodes, the correlation between them is 
used to estimate the conduction coefficient and eye electrical signals 
are subtracted from the scalp, so the relatively pure EEG signal can 
be obtained finally [7]; The second is the blind source separation 
algorithm, which is to separate mixed signals when the charac-
teristics of source signals and transmission system are unknown
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[8].The third is the wavelet transform method. Through wavelet

decomposition of the mixed signal, the noise component is removed

and then reconstructed [9]. The last method is the empirical mode

decomposition method. The signal is decomposed according to the

time scale of the data, and there is no need to set the basis func-

tion in advance. The first method is effective for removing some

non-physiological noises, but requires a good reference channel.

The second requires an appropriate noise identification method,

and the number of acquisition channels must be greater than the

number of signal sources. The third has multi-resolution character-

istics, which is a good de-noising method for non-stationary signals.

In practical application, it is necessary to select the appropriate

wavelet base and decomposition layers [10, 11]. The last is com-

pletely data-driven and suitable for non-stationary and nonlinear

random signals. However, it is sensitive to noise and easy to cause

modal aliasing [12].

At present, many scholars have proposed some methods to im-

prove the traditional wavelet threshold (WT) de-noising method

[13] for the noisy ECG and EEG signals. In 2017, Yu et al. pro-

posed a method to remove the environmental noise and power

frequency noise in EEG signals based on the nonlinear continuous

attenuation of wavelet coefficient. Their experiment results proved

that signal-to-noise ratio (SNR) and mean square error (MSE) were

superior to the traditional WT de-noising method [14]. In 2019,

Xu et al. extracted EEG signal features by means of wavelet trans-

form and fuzzy entropy algorithm, and further used fisher linear

discriminator to classify the filtered signals, thus improving the clas-

sification accuracy of motor image EEG signals [15]. In 2020, Wang

et al. proposed an improved WT de-noising algorithm, adaptive

adjusting threshold and threshold function, which can effectively

suppress ECG noise [16]. Although the above method improves the

de-noising effect to a certain extent, the selection of undetermined

coefficients and de-noising components in these methods mainly

relies on experience, which requires a lot of time.

For the improvement of the waveform distortion and the oscil-

lation caused by the traditional WT de-nosing methods and their

de-noising efficiency, a new threshold and threshold function con-

taining undetermined coefficients are proposed based on the WT

method. SNR, MSE and smooth factor (S) are taken as the combined

fitness function, meanwhile the undetermined coefficients in the

threshold and threshold function are determined by fruit fly opti-

mization algorithm (FOA), so as to remove the noise components

of EEG signals and obtain the best de-noising effect. The paper’s

structure is as follows. Sect. 1 and Sect. 2 present the introduction

and the experimental principle and design respectively. The experi-

mental result and discussion are reported in Sect. 3. Sect. 4 is the

conclusion.

2 EXPERIMENTAL PRINCIPLE AND DESIGN

Suppose the EEG signal with noise f (t) is shown as formula (1),

f (t) = s (t) + д (t) (1)

where s(t) denotes the standard EEG signal and д(t) represents
the Gaussian white noise whose mean value is 0, variance is δ2,

obeying a normal distribution of N (0,δ2).

The experiment is based on the WT de-noising method whose

principle is to threshold the high-frequency noise signal and recon-

struct it. The main steps including:

1. In the łwavelet decompositionž step, select the appropriate

wavelet basis function and decomposition layer number for

treating the processed noisy EEG signals.

2. In the łthreshold processingž step, select the appropriate

threshold and threshold function to quantify the high fre-

quency part of the wavelet coefficients obtained in Step1.

3. In the łwavelet reconstructionž step, recombine the pro-

cessed wavelet coefficients to form the reconstructed signal.

2.1 Traditional Wavelet Threshold De-Noising
Method

In WT de-noising method, the appropriate threshold and threshold

function play an important role. If the value of threshold is too

small, the noise removal is incomplete; on the contrary, there is a

lot of loss of useful signals. In general, a fixed threshold λ is selected

as shown in formula (2).

λ = σ
√
2ln (N ) (2)

Where σ denotes the standard deviation of the global noise, and N

is the number of sampling points.

Comparing the decomposed wavelet coefficients with the thresh-

old, they can be transformed according to the threshold function.

There are two main traditional WT function, namely hard threshold

function (as shown in formula (3) and figure 1(a)) and soft threshold

function (as shown in formula (4) and figure 1(b)).

ω̂ =

{
ω, |ω | ≥ λ

0, |ω | < λ
(3)

ω̂ =

{
sдn (ω) (|ω | − λ) , |ω | ≥ λ

0, |ω | < λ
(4)

Where, ω and ω̂ denote the original wavelet coefficient and the

processed wavelet coefficient respectively, sдn(·) denotes the sym-

bolic function. It can be seen from the formulas and graphs that

the wavelet coefficients processed by the hard threshold function

are discrete at |λ |, where is prone to appear the Pseudo-Gibbs arti-

facts [17]. Soft threshold function avoids the above problem, but

the constant error that it creates will leads to fuzzy distortion of

reconstructed signal.

2.2 Improved Wavelet Threshold De-Noising
Method

Since the general threshold is a specific value, the wavelet decom-

position coefficients of each layer are processed the same, which

will affect the de-noising effect. Therefore, a new combination of

threshold and threshold function is proposed in this paper to solve

the above problem. Our proposed threshold and threshold function

both contain undetermined coefficients, which can be adaptively

adjusted according to the actual signals and noises to get the best de-

noising effect. Their definitions are respectively shown in formula

(5) and formula (6).

λ = σp
√
2 lnN /p × ln (j + α) (5)
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Figure 1: Threshold function de-noising image. (a) Hard threshold function;(b) Soft threshold function.

Where σp denotes the noise standard deviation of the wavelet coef-

ficient in the p-th decomposition layer, N is the sampling points,

j denotes the total decomposition layers, and α denotes the reg-

ulatory factor. The new threshold changes dynamically with the

number of decomposed layers and the specific located layers, while

is adjusted by the regulator factor. The deeper the layer is, the

smaller the threshold is. The actual phenomenon accords with the

law of proportional distribution of signal and noise in different

decomposition layers after wavelet decomposition.

ω̂ =

{
sдn (w)

(
|w | − λe−

h |w |
λ

)
, |ω | ≥ λ

0, |ω | < λ
(6)

From formula (6), h is the regulatory factor: when h → 0, the

threshold function is equivalent to the soft threshold function;

When h → ∞, the threshold function is equivalent to the hard

threshold function; When h ∈ (0,∞), the threshold function has the

characteristics of both hard threshold function and soft threshold

function.

2.3 Evaluation Indicators

Three assessment indicators are selected to evaluate the de-noising

effect of our method, namely SNR (as shown in formula (7)), MSE

(as shown in formula (8)) and S (as shown in formula (9)).

SNR = 10lg

∑N
i=1 s

2 (i)
∑N
i=1 (s (i) − s̄ (i))2

(7)

MSE =

√√√
1

N

N∑

i=1

(s (i) − s̄ (i))2 (8)

S =

∑N−1
i=1 (s̄ (i + 1) − s̄ (i))2

∑N−1
i=1 (s (i + 1) − s (i))2

(9)

Where i denotes the i-th samples, N denotes the total number of

samples, s(i) denotes the source EEG signal, and s̄(i) denotes the
reconstructed EEG signal. The larger the SNR, the smaller the pro-

portion of noise in the reconstructed signal, and the better the de-

noising effect. MSE represents the difference between the standard

EEG signal and the reconstructed EEG signal, and a smaller MSE

means less distortion. S represents the smoothness of the recon-

structed signal, and the smaller value means the better smoothness.

2.4 Optimization Algorithm Determining the
Undetermined Coefficient

In this paper, FOA is used to determine the undetermined coefficient

contained in our threshold and threshold function.

We propose a fitness function that jointly considers SNR, MSE

and S to evaluate the de-noising effect. The expression is as follows,

f itness (SNR, RMSE, S) =W1×SNR+W2×RMSE+W3×S (10)

whereW1,W2 andW3 respectively represent the weight of SNR,

MSE and S. There is
3∑

i=1
Wi = 1, 0 ≤Wi ≤ 1.

FOA is a group optimization algorithm, whose basic idea comes

from fruit flies foraging behavior [18]. Due to the superiority of its

sense of smell and vision, fruit flies first search for food sources

through their sense of smell, and then use vision to accurately find

where the food is and where their companions gather. The basic

steps are as follows:

1. Set Parameter: including the maximum number of iterations,

target accuracy, population number, search radius of the

algorithm and the initial positions of the fruit fly population.

(Xaxis,Yaxis) = (initX , initY ) (11)

(Xaxis,Yaxis) represents the coordinates of the fruit fly population,
(initX , initY ) represents the initial coordinates set.

1. Individual flies use their sense of smell to search for food.
{
Xi = Xaxis + RV

Yi = Yaxis + RV
(12)

(Xi ,Yi ) represents the coordinates of an fruit fly individual, where

RV represents a random value. The whole represents the direction

and distance in which the individual flies forage for food

1. Calculate the distance Li between the ith fruit fly and the

food source and other flies populations, the taste concentra-

tion determination values Si , and the flavor concentration

of the ith Smelli .





Li =
√
X 2
i + Y

2
i

Si = 1/Li
Smelli = f itness (Si )

(13)

2. Look for individual flies with the best concentration of flavor

bestSmell .

[bestSmell ,bestIndex] =max (Smell) (14)
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Table 1: De-noising evaluation in different basic functions

Basic Function Decomposition Level SNR MSE S

sym4 2 8.5464 0.0232 0.2155

sym4 3 9.3879 0.0211 0.1840

sym4 4 8.6736 0.0229 0.0358

db4 2 8.8158 0.0225 0.2237

db4 3 8.7806 0.0226 0.1392

db4 4 8.8336 0.0225 0.0401

db5 2 8.7365 0.0227 0.2117

db5 3 8.8935 0.0223 0.1489

db5 4 8.7394 0.0227 0.0491

db6 2 8.9097 0.0223 0.2348

db6 3 8.5728 0.0231 0.1360

db6 4 8.6530 0.0229 0.2026

coif3 2 8.7236 0.0227 0.2134

coif3 3 9.2573 0.0214 0.1495

coif3 4 8.9163 0.0222 0.0422

Where bestIndex represents the individual with the optimal con-

centration.

1. Flies use vision flying to the best individual flies.




Smellbest = bestSmell

Xaxis = X (bestIndex)
Yaxis = Y (bestIndex)

(15)

2. Determine whether the maximum number of cycles or tar-

get accuracy is achieved. If not, Step3∼Step6 are cycled. If
achieved, return the optimal individual in the fruit fly popu-

lation.

3 EXPERIMENTAL RESULTS AND
DISCUSSIONS

According to the characteristics of real EEG waveform, we generate

original standard EEG signal with sampling rate Fs = 250 Hz, time

interval T = 0 : 1
Fs

: 4, and frequency range from 2 Hz to 30 Hz.

The added noise signal is Gaussian white noise with Sn decibel

(dB).

3.1 Establishment of Wavelet Basis Function
and Decomposition Layer Number

Under the condition that Gaussian white noise is Sn = 3 dB, the

fixed threshold and soft threshold function are applied, we choose

the wavelet basis function and the number of decomposition layers.

The experimental results are shown in Table 1

Five common wavelet basis functions are selected, and we set

three different decomposition layers in our experiment. Our main

intention is tomaximize noise elimination, sowe paymore attention

on SNR. Through observation about the above tables, we can find

that when the number of decomposition layers is set as 3 and the

wavelet basis functions are selected as ‘sym4’ and ‘coif3’, SNR in

both situations reaches over 9 dB. However, this value in other

cases is lower than 9 dB. We set up two experimental conditions

for subsequent tests. The first condition is that the wavelet basis

functions is ‘sym4’ and the number of decomposition layers is 3,

and the other condition is that the wavelet basis functions is ‘coif3’

and the number of decomposition layers is 3.

3.2 Comparison in Different Threshold Values
and Threshold Functions

Using FOA, we can get the undetermined coefficients in our thresh-

old and threshold function. We compare the improved method pro-

posed in this work with the combination of the fixed threshold and

soft threshold function or hard threshold function, and improved

threshold or threshold function in other literatures [14, 15, 19]. For

reaching the maximum SNR, the population size is set as 20, the

number of iterations is set as 200, andW1 = 1, W2 = 0, W3 = 0

of the fitness function in FOA. The experimental results are as fol-

lows. Figure 2 (a) shows the optimization process of FOA and the

flight path of the fruit fly population, and figure 2 (b) shows the

original signal, the added noise signal and the reconstructed signal

respectively.

In different wavelet basis functions, SNR increases with the in-

crease of added noise on the whole. Under the different experimen-

tal setup, our proposed de-noising method has the highest SNR

and the lowest MSE in all cases. In the case that the wavelet basis

function is ‘coif3’ and the decomposition layer is 3, SNR of the pro-

posedmethod can reach 18.0297 dB, which is 31.58%, 43.53%, 20.04%,

16.23% and 12.90% higher than the traditional hard threshold func-

tion method, soft threshold function method and reference methods

respectively. In the same case, MSE of the proposed method can

falls to 0.0078, which is 39.06%, 46.58%, 29.09%, 25.00% and 21.21%

lower than the above comparative methods respectively. It can be

observed that with different basis functions and decomposition

layers, the improvement effect of the reference method is unstable,

and the smoothness of the reconstructed signal is greatly reduced,

whose S is almost 1.00. It obviously that our method not only im-

proves the indictors of SNR and reduces the MSE, but also keeps

the smoothness of the reconstructed signal, making it between

the traditional hard threshold function method and soft threshold

function method.
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Table 2: In Condition 1, de-noising evaluation to remove different noise situations

Added Noise (dB) Method SNR (dB) MSE S

3 Fixed Threshold, Hard Threshold Function 11.4126 0.0167 0.2092

3 Fixed Threshold, Soft Threshold Function 10.9796 0.0175 0.1403

3 Improvement Method 1 8.8042 0.0225 0.9887

3 Improvement Method 2 12.2395 0.0152 0.1660

3 Improvement Method 3 12.9181 0.0140 0.2728

3 Our Method 13.5619 0.0130 0.1771

6 Fixed Threshold, Hard Threshold Function 12.5118 0.0147 0.3435

6 Fixed Threshold, Soft Threshold Function 11.4463 0.0166 0.2589

6 Improvement Method 1 11.9957 0.0156 0.9895

6 Improvement Method 2 13.1598 0.0136 0.2656

6 Improvement Method 3 15.7067 0.0102 0.3669

6 Our Method 15.9345 0.0100 0.3135

9 Fixed Threshold, Hard Threshold Function 13.0121 0.0139 0.4981

9 Fixed Threshold, Soft Threshold Function 11.7582 0.0160 0.4168

9 Improvement Method 1 15.0235 0.0110 0.9918

9 Improvement Method 2 14.5417 0.0116 0.4272

9 Improvement Method 3 15.8524 0.0100 0.8347

9 Our Method 17.7763 0.0080 0.5415

Table 3: In Condition 2, de-noising evaluation to remove different noise situations

Added Noise (dB) Method SNR (dB) MSE S

3 Fixed Threshold, Hard Threshold Function 12.3122 0.0150 0.1795

3 Fixed Threshold, Soft Threshold Function 11.9541 0.0157 0.1326

3 Improvement Method 1 8.8075 0.0225 0.9878

3 Improvement Method 2 13.2641 0.0135 0.1792

3 Improvement Method 3 13.3795 0.0133 0.2529

3 Our Method 14.2233 0.0121 0.1735

6 Fixed Threshold, Hard Threshold Function 13.1826 0.0136 0.3347

6 Fixed Threshold, Soft Threshold Function 12.4494 0.0148 0.2482

6 Improvement Method 1 11.9921 0.0156 0.9902

6 Improvement Method 2 14.2997 0.0120 0.2731

6 Improvement Method 3 15.7617 0.0101 0.3783

6 Our Method 16.2203 0.0096 0.3177

9 Fixed Threshold, Hard Threshold Function 13.702 0.0128 0.4892

9 Fixed Threshold, Soft Threshold Function 12.5616 0.0146 0.3965

9 Improvement Method 1 15.0197 0.0110 0.9925

9 Improvement Method 2 15.5122 0.0104 0.4320

9 Improvement Method 3 15.9697 0.0099 0.8137

9 Our Method 18.0297 0.0078 0.5271

Taking condition 2 and adding 3 dB noise as an example, SNR of

our method is 14.2233 dB, which is higher than the traditional hard

threshold function method, soft threshold and reference methods

15.52%, 18.98%, 61.49%, 7.23% and 6.31% respectively. The MSE is

0.0121, which is lower than the above comparative methods 19.33%,

22.93%, 46.22%, 10.37% and 9.02% respectively. The smoothness is

0.1734, which improved 3.34%, 82.44%, 3.18% and 31.40% respectively

compared with the traditional hard threshold function method and

the reference methods. It indicates the improvement difference

between the improvement method 3 in SNR and MSE is only less

than 10%, but S is very different. In summary, our method has the

best overall performance.

3.3 Comparison in Different Optimization
Algorithms

The threshold and threshold function defined in this work are opti-

mized in Condition by particle swarm optimization algorithm (PSO)

[20] and artificial fish swarm algorithm (AFSA) [21] to compare

with our selected FOA. The comparison results are respectively

shown in Table 4
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Figure 2: The experimental results of adding S_n=3 dB noise in Condition 1. (a) FOA optimization process; (b) Comparison of

EEG signals in different states.

Table 4: De-noising evaluation to remove different noise situations

Added Noise (dB) Method SNR (dB) MSE S

3 PSO 13.2874 0.0135 0.2313

3 AFSA 13.5869 0.0130 0.1970

3 FOA 13.5619 0.0130 0.1771

6 PSO 15.9775 0.0099 0.3442

6 AFSA 15.9647 0.0099 0.3427

6 FOA 15.9345 0.0100 0.3135

9 PSO 17.8349 0.0080 0.5415

9 AFSA 17.8051 0.0080 0.5529

9 FOA 17.7763 0.0080 0.5386

The above tables respectively represent the de-nosing evaluation

in different optimization algorithms under different added noises

in Condition 1. By observing the results of different optimization

methods, it can be seen that their SNR and MSE are similar, but FOA

has the lowest value of S, which indicates FOA method can help to

get smoother reconstructed EEG signals. When adding noise is 3 dB,

the reconstructed signal of FOA optimization has 30.60% and 11.24%

better smoothness than PSO and AFSA respectively; When adding

noise is 6 dB, the result is 9.79% and 9.31% respectively; When

adding noise is 9 dB, the result is 0.54% and 2.66% respectively.

4 CONCLUSION

In this paper, based onWTde-noising algorithm, a new combination

of threshold and threshold function is proposed as the preprocessing

step of BCI to remove the noise components in EEG signals. The

new threshold and threshold function both contain undetermined

coefficients, which are determined by FOA with SNR, MSE and

S as the combined fitness function, finally removing the noise in

EEG signals. The experimental results show our method has better

de-noising effect than the fixed threshold in combination with

the basic hard threshold function or soft threshold function, and

other improved WT de-noising methods, and FOA optimization

can help to get a smoother reconstructed signal. Our method can

obtain the purer EEG signal, which can help to better apply to BCI.

Furthermore, the improved de-noising method can also be extended

to other kinds of signals.
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