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Emergent Inference of Hidden Markov Models in

Spiking Neural Networks through Winner-Take-All
Zhaofei Yu, Shangqi Guo, Fei Deng, Qi Yan, KeKe Huang, Jian K. Liu, Feng Chen, Member, IEEE

Abstract—Hidden Markov Models (HMMs) underpin the solu-
tion to many problems in computational neuroscience. However,
it is still unclear how to implement inference of HMMs with a
network of neurons in the brain. The existing methods suffer
from the problem of being non-spiking and inaccurate. Here
we build a precise equivalence between the inference equation of
HMMs with time-invariant hidden variables and the dynamics of
spiking winner-take-all (WTA) neural networks. We show that
the membrane potential of each spiking neuron in the WTA
circuit encodes the logarithm of the posterior probability of the
hidden variable in each state, and the firing rate of each neuron is
proportional to the posterior probability of the HMMs. We prove
that the time course of neural firing rate can implement posterior
inference of HMMs. Theoretical analysis and experimental results
show that the proposed WTA circuit can get accurate inference
results of HMMs.

Index Terms—Hidden Markov models, Winner-take-all cir-
cuits, spiking neural network, posterior inference, neural im-
plementation

I. INTRODUCTION

H IDDEN Markov models (HMMs) are a kind of dy-

namic probabilistic graphical model [1], which have

been widely used in computational neuroscience [2], [3], [4],

[5], [6], computational biology [7], [8], statistical physics

[9], [10] and machine learning [11], [12], [13], [14]. In

computational neuroscience, HMMs are used to detect hidden

regularities with sequential sensory inputs. In particular, they

have been proved extremely useful in modeling inference and

decision making in the cognitive process of the human brain
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when the state of the hidden variable is time–invariant [15].

Despite its accurate and powerful computing performance with

experimental data, it remains an open question how a network

of spiking neurons can implement probabilistic inference of

HMMs at the neural circuit level. This problem is of great

importance to brain science and artificial intelligence. On the

one hand, it can build the bridge between the process of

inference and decision making of the human brain at high

level and the dynamics of spiking neural networks at low level.

One the other hand, one can build the machine that is able to

perform inference and make decision like the human brain

with these mechanisms.

Various schemes of neural networks have been proposed

over the last 15 years to tackle the problem above. Rao [3] built

the relationship between the dynamic equation of recurrent

neural networks and the inference equation of HMMs, and

suggested that the dynamic process of a recurrent neural net-

work is a process of probabilistic inference. However, since the

two equations are not exactly equivalent, a sum-of-logs is used

to approximate a log-sum, which leads to inaccurate inference

results. Beck and Pouget [16] took a further step and built a

precise relationship between the inference equation of HMMs

and the dynamic equation of a first-order quadratic nonlinear

recurrent network. Both methods only focus on non-spiking

neural networks while the spike in neuron is the key for

computation [17], [18], [19]. Recently some researchers have

considered biophysically plausible spike-based networks. For

example, Deneve [20] demonstrated that each leaky integrate-

and-fire neuron can compute the probability of one hidden

variable of HMMs, but it was limited to a binary variable. In

summary, most of the previous studies suffer from the problem

of being non-spiking, and the existing spiking neural network

cannot obtain accurate solution.

In this paper, by focusing on HMMs with time-invariant

hidden variables, we found that there is a precise equivalence

between their inference equations and the dynamical equations

of spiking neurons when the underlying circuit is organized

by a winner-take-all (WTA) fashion. Typically, there are two

coupled operations during each update of the inference process

of HMMs, namely evidence accumulation and normalization,

in which the result of normalization in each step serves

as the past evidence for the next step. However, we found

a WTA spiking neural network with self-connections can

naturally decouple these two operations while keeping the

precise inference of HMMs. We proved that the inference

result of the HMM remains unchanged if the normalization

of posterior probabilities is carried out only at the last step

instead of each step during evidence accumulation. Based
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Fig. 1. The scheme of a general hidden Markov model. xi are hidden variables
and yi are observation variables (i = 1, 2, ..., t). Here we consider a special
case of HMM with time-invariant hidden variables, i.e., x1 = x2 = ... = xt.

on this theory, we can decompose the corresponding neural

circuits into two parts: one for updating the posterior with

new evidence, and the other for computing the normalization

of the distribution.

Furthermore, we showed that the membrane potential of

each spiking neuron in the WTA circuit encodes the logarithm

of posterior probability of the hidden variable in each state,

and the neural firing rate is proportional to the posterior

probability of HMM. In addition, we proved that the time

course of neural firing rate can implement posterior inference

of HMMs. Experimental results with simulation demonstrate

that the proposed WTA network can get accurate inference

results of HMMs.

The rest of the paper is organized as follows. Section II

derives the inference equation of HMMs. In section III we

introduce WTA neural network with self-connections and show

how it can implement inference of HMMs. We show the

experimental results in section IV and conclude in section V.

II. INFERENCE OF HIDDEN MARKOV MODELS

HMMs are a kind of directed graphical model [21], [22]

composed of a hidden variable sequence X = {x1, x2, ..., xt}
and an observation variable sequence Y = {y1, y2, ..., yt} [21]

(shown in Fig. 1). The hidden variable sequence X is a first-

order Markov chain, and each observation variable yt is only

governed by the corresponding hidden variable xt through

conditional probability p(yt|xt). Thus, the joint distribution of

a HMM in Fig. 1 can be written as a product of conditional

distributions:

p(x1, x2, ..., xt, y1, y2, ..., yt)

= p(x1)
[

∏t

n=2 p(xn|xn−1)
]

∏t

n=1 p(yn|xn).
(1)

In this paper, we consider the HMMs with time-invariant

hidden variables, that is, x1 = x2 = ... = xt. This means

the values for the hidden variables will be the same no matter

what time they are observed. This model is important to many

inference and decision making problems [23], [24], [25] since

in many cases we have the prior knowledge where the state of

the environment doesn’t change or changes very slowly with

respect to time [15].

The inference problem is to infer the most probable state

of the hidden variable at time t with the observations from 1
to t, that is,

argmaxxt
p(xt | y1, y2, ..., yt)

= argmaxxt

∑

x1,x2,...,xt−1
p(x1, x2, ..., xt | y1, y2, ..., yt).

(2)

Equation (2) can be calculated by computing the posterior

distribution p(xt | y1, y2, ..., yt) and then choosing the state of

xt with maximum probability. In order to implement inference

of HMMs with spiking neural networks, a direct idea is to

rewrite equation (2) into a dynamic equation and then build the

relationship between this equation and the dynamic equation

of spiking neural networks. In fact, we can use a difference

equation to implement inference of equation (2), and we have

the following theorem:

Theorem 1: Supposing that F (x0 = xi) = ln p(x1 = xi)1,

and

F (xt = xi) = ln p(yt|xt = xi) + F (xt−1 = xi)− ln Zt

(3)

holds for t ≥ 1, with F (xt) denoting a function of xt,

xt = xi denoting that random variable xt is in state xi,

and Zt being the normalizing constant of exp(F (xt)) to keep
∑

i exp(F (xt = xi)) = 1, that is, Zt =
∑

i p(yt|xt =
xi) exp(F (xt−1 = xi)), then we conclude that for t ≥ 1:

F (xt) = ln p(xt|y1, y2, ..., yt), (4)

and

argmax
xt

eF (xt) = argmax
xt

p(xt | y1, y2, ..., yt). (5)

The proof of Theorem 1 (with all other theorems) is provided

in Supplemental Materials. Theorem 1 shows that we can

use a difference equation to compute the posterior distri-

bution ln p(xt|y1, y2, ..., yt). To be specific, supposing that

F (x0 = xi) = ln p(x1 = xi), it follows from equation (3)

that ln p(x1|y1) can be computed as F (x1). Likewise, then

we can compute ln p(x2|y1, y2) with equation (3), and so on.

Note that there exist two operations in equation (3): evidence

accumulation as

F (xt = xi) = ln p(yt|xt = xi) + F (xt−1 = xi), (6)

and normalization as

F (xt = xi) = F (xt = xi)− lnZt. (7)

The result of normalization in each step serves as the past

evidence for the next step. This means the computations of

evidence accumulation and normalization are coupled to each

other. This coupling is a challenge for graphical models as well

as computational neuroscience, since it is difficult to design

a spiking neural circuit to implement accurate inference of

HMMs with the coupled equations.

Here we show in the following theorem that the operations

of evidence accumulation and normalization can be decoupled.

The distribution eF (xt), namely, p(xt|y1, y2, ..., yt) is left

unchanged if the operation of normalization is carried out at

the last step instead of each step.

Theorem 2. Supposing that G(x0 = xi) = F (x0 = xi) =
ln p(x1 = xi) and

G(xt) = ln p(yt|xt) +G(xt−1) (8)

holds for t ≥ 1, then we conclude that the normalization of

eG(xt) equals the distribution p(xt|y1, y2, ..., yt), that is,

eG(xt) ∝ p(xt|y1, y2, ..., yt), (t ≥ 1). (9)

1Note that the hidden variable sequence of the HMM is X =
{x1, x2, ..., xt} while the variable sequence of the function F (.) is
x0, x1, x2, ..., xt. Here x0 can be seen as an auxiliary variable.
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Combing equation (9) and equation (4), one can find that

the normalization of eG(xt) is the same as the normalization

of eF (xt). Now we can conclude that even if the operation

of normalization is carried out at the last step instead of

each step, the distribution of eF (xt) is unchanged. Thus, we

can use the difference equation (8) and the initial condition

G(x0 = xi) = ln p(x1 = xi) to implement posterior

inference, and we have 1
Zt
eG(xt) = p(xt | y1, y2, ..., yt), where

the normalization constant becomes Zt =
∑

xt
eG(xt). The

benefit of this theorem is that we can decouple the operation

of evidence accumulation and normalization, specifically, the

result of normalization in current step doesn’t need to be

the input of the next step. Thus, when we design the cor-

responding spiking neural network to implement inference of

HMMs, we can separate the neural network into two parts:

one for updating the posterior with new evidence, that is,

G(xt) = ln p(yt|xt) +G(xt−1), and the other for computing

the normalization of the posterior distribution eG(xt). The

problem now is whether there exists a plausible spiking neural

circuit that can implement these computations of HMMs.

III. EMERGENT INFERENCE IN SPIKING NEURAL NETWORK

THROUGH WINNER-TAKE-ALL

In this section, we show that a spiking neural network of

WTA circuit with self-connections can naturally implement

inference of HMMs. The membrane potential of spiking

neurons in WTA circuits with self-connections can accumulate

evidence, namely, update the posterior with new evidence. The

competitive mechanism of WTA circuits can normalize the

firing rate of each neuron.

We first introduce spiking neural networks and WTA cir-

cuits, and then derive the dynamic equations of a spiking

neural network of WTA circuit with self-connections. At

last we demonstrate that inference of HMMs can be easily

implemented by this spiking neural network.

A. Spiking neural network

Spiking neural networks are thought as the third gener-

ation of artificial neural network models, which is closer

to biological neurons in the brain [26]. In a spiking neural

network, each neuron can receive current from other neurons

and the membrane potential of which will change. When

the membrane potential exceeds a threshold value, an output

signal, which is called a spike (or an action potential), will

be generated and be delivered to other neurons. Together with

neuronal and synaptic state, spike timing is also considered in

spiking neural networks model.

Here we consider a network of K spiking neurons

z1, . . . , zK and denote the output spike train of neuron zk
by zk(t) defined as a sum of Dirac delta pulses positioned

at the spike times t
(1)
k , t

(2)
k , . . . , i.e., zk(t) =

∑

f δ(t − t
(f)
k ),

where f = 1, 2, .... It means zk(t) = 1 if neuron zk spikes at

time t = t
(f)
k and zk(t) = 0 otherwise. Neurons z1, . . . , zK are

modeled by a standard stochastic variant of the spike response

model [27], which is a generalization of leaky integrate-and-

Fig. 2. A scheme of a WTA spiking neuronal circuit with self-connections.
There are K output excitatory neurons (blue) and one inhibitory neuron
(pick). The temporal sequences of observation variables of HMM are fed by
efferent neurons (green). In the end, the hidden state variable of HMM will
be represented by one of output neurons due to the competition mechanism
of WTA when evidence is cumulated over time.

fire neuron. In this model, the membrane potential of a neuron

zk at time t is given by:

uk(t) =
∑

f

η(t− t
(f)
k )+

∫

∞

0

κ(s)Ik(t− s)ds+ urest
k , (10)

where Ik(t) denotes the time-dependent current of neuron k at

time t, and urest
k is the rest potential of neuron zk. η(t− t

(f)
k )

is the kernel that describes the reset of the membrane potential

of neuron zk after the spike at t
(f)
k . κ(s) represents the voltage

response to a short current pulse. In this paper, we use standard

exponential kernels η(t− t
(f)
k ) and κ(s):

η(t− t
(f)
k ) = −η0 exp

(

−
t− t

(f)
k

τ

)

, (11)

κ(s) = ε0 exp
(

−
s

τ

)

, (12)

with the reset potential η0 = 5 mV, the membrane time

constant τ = 20 ms, and the voltage response amplitude as

ε0 = 5 mV. The parameters set here are similar to that of

[28]. Here we consider the escape noise model of spiking

neurons, which replaces the strict firing threshold by a noisy

threshold [27]. This means that a neuron can fire stochastically.

To be specific, the instantaneous firing rate (firing intensity) of

neuron zk is supposed to be stochastic, which is often modeled

by an exponential function [29]:

ρk(t) = ρ exp(uk(t)− θ), (13)

with θ representing the firing threshold and ρ scales the firing

rate of the neuron. It has been shown by experiments that

this model is in good agreement with real neurons [30]. One

can find that the instantaneous firing rate (firing intensity)

increases as the distance between membrane potential and

firing threshold decreases.

B. Winner-take-all circuit

WTA circuit has been suggested as a ubiquitous motif of

cortical microcircuits [31], which is widely used to implement

normalization [32], visual attention [33] and classification

[34]. We consider a WTA circuit of K output spiking neurons
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(blue triangles) z1, . . . , zK and an inhibitory neuron (pink

circle) as in Fig. 2. The output spiking neurons z1, . . . , zK
mutually inhibit each other through the inhibitory neuron.

Thus, all the neurons in the output layer are in competition

against each other so that they cannot fire simultaneously.

In this paper, we consider the WTA model used in [2], [35],

where all neurons are allowed to fire with non-zero probability.

Considering all the neurons in WTA circuit are subject to the

same lateral inhibition 2 [2], the instantaneous firing rate (firing

intensity) of neuron zk in WTA circuit at time t is determined

by [2]:

ρk(t) =
ρ

Q(t)
exp(uk(t)− θ), (14)

where ρ scales the firing rate of neurons. Q(t) represents the

lateral inhibition between the neurons in the WTA circuit,

which is defined as:

Q(t) =
∑

k

exp(uk(t)− θ). (15)

Substituting equation (15) into (14) obtains:

ρk(t) =
ρ

∑

k exp(uk(t)− θ)
exp(uk(t)− θ) (16)

= ρ
exp(uk(t))

∑

k exp(uk(t))
.

This WTA circuit works like a soft-max function. At each

time, all neurons can fire with non-zero probability, but the

neuron with the highest membrane potential has the highest

firing probability.

C. Implement inference with spiking neural network

In this subsection we demonstrate that the dynamics of

spiking neural network of WTA circuits with self-connections

can naturally implement inference of HMMs. We show how

the spiking neurons in WTA circuits with self-connections

can update the posterior probabilities with new evidence in

Theorem 3 and how the competitive mechanism of WTA

circuit can normalize the posterior distribution in Theorem 4.

In the WTA circuit with self-connections in Fig. 2, the time-

dependent current to the network includes two parts: external

afferent current Iextk (t) to the network and internal current

Iintk (t) =
∑

f δ(t − t
(f)
k ) from itself by the self-connections.

Thus, equation (10) can be rewritten as:

uk(t) = urest
k +

∑

f

η(t− t
(f)
k )

+

∫

∞

0

κ(s)
(

Iextk (t− s) + Iintk (t− s)
)

ds.

= urest
k +

∑

f

η(t− t
(f)
k )

+

∫

∞

0

κ(s)



Iextk (t− s) +
∑

f

δ(t− s− t
(f)
k )



 ds.

(17)

2lateral inhibition is the capacity of an excited neuron to reduce the activity
of its neighborhood neurons.

Then, equation (17) can be reduced to:

uk(t) = urest
k +

∑

f

η(t− t
(f)
k )

+

∫

∞

0

κ(s)



Iextk (t− s) +
∑

f

δ(t− s− t
(f)
k )



 ds

(18)

= urest
k +

∫

∞

0

η(s)
∑

f

δ(t− s− t
(f)
k )ds

+

∫

∞

0

κ(s)



Iextk (t− s) +
∑

f

δ(t− s− t
(f)
k )



 ds

=

∫

∞

0

κ(s)Iextk (t− s)ds+ urest
k

=

∫ t

−∞

κ(t− s)Iextk (s)ds+ urest
k

The second equality holds as
∑

f η(t − t
f
k) =

∫

∞

0
η(s)

∑

f δ(t − s − t
(f)
k )ds. The third equality holds

due to the definition η(s) = −κ(s) in Section III-A. Note that

an ideal model of spiking neurons is assumed here where the

internal currents from self-connections do not lag behind the

spike response. We show in the following theorem that the

membrane potential of spiking neurons in WTA circuit with

self-connections can accumulate afferent current. In other

words, if the afferent current encode some variable, then the

membrane potential of spiking neurons can compute the sums

of a sequence.

Theorem 3. Considering the spiking neural network shown

in Fig. 2, the rest potential urest
k ≤ 0, and the external

current Iextk (t) =
∑

j

I
j

k

ε0τ
Θ(t − Tj) (j = 1, 2, 3...), where I

j
k

represents the jth constant current to neuron zk and I
j
k ≤ 0,

Tj represents the arriving time of jth current I
j
k, Θ(·) denotes

the Heaviside step function, i.e. Θ(x) = 1 for x ≥ 0 and 0
otherwise. The voltage response amplitude ε0 and membrane

time constant τ are defined similar to equation (12). Then for

arbitrary m ≥ 1, if Tm+1−Tm ≥ 3τ holds, we conclude that:

∣

∣

∣

∣

∣

∣

uk(Tm+1)−
(

urest
k +

∑m

j=1 I
j
k

)

urest
k +

∑m

j=1 I
j
k

∣

∣

∣

∣

∣

∣

< 0.05 (19)

holds for all k, and:

lim
Tm+1−Tm→+∞

uk(Tm+1) = urest
k +

m
∑

j=1

I
j
k. (20)

Theorem 3 shows that if the time interval Tm+1−Tm is large

enough, uk(Tm+1) can approximate the sums of a sequence,

that is, uk(Tm+1) = urest
k +

∑m

j=1 I
j
k. In fact, if Tm+1−Tm ≥

3τ holds for m = 0, 1, 2, ..., this result can also be rewritten

as:

uk(T0) = urest
k (21)

uk(Tm+1) = uk(Tm) + Imk (m = 0, 1, 2, ...).
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One can find that equation (21) is similar to inference equation

(8). Thus if WTA circuit receive appropriate external current,

the spiking neurons in WTA circuit with self-connections can

accumulate evidence. The problem now is to determine the ap-

propriate input current and demonstrate that this spiking neural

network can also implement normalization of the distribution.

We have the following theorem.

Theorem 4. Consider the spiking neural network shown

in Fig. 2, the rest potential urest
k ≤ 0, and the external

current Iextk (t) =
∑

j

I
j

k

ε0τ
Θ(t − Tj) (j = 1, 2, 3...), where

I
j
k = ln p(yj |xj = xk), Tj represents the arriving time of

jth current I
j
k, Θ(·) denotes the Heaviside step function, i.e.

Θ(x) = 1 for x ≥ 0 and 0 otherwise. Then for arbitrary

t ≥ 1, if urest
k = ln p(x1 = xk), Tt+1 − Tt ≥ 3τ holds, we

can conclude that:

uk(Tt+1) = bt ln p(xt = xk| y1, y2, ..., yt), (22)

with bt denoting a constant (bt 6= 0), and

ρk(Tt+1) = ρ p(xt = xk|y1, y2, ..., yt). (23)

Corollary 1. Consider the spiking neural network shown

in Fig. 2, the rest potential urest
k ≤ 0, and the external

current Iextk (t) =
∑

j

I
j

k

ε0τ
Θ(t − Tj) (j = 1, 2, 3...), where

I
j
k = ln p(yj |xj = xk), Tj represents the arriving time of

jth current I
j
k, Θ(·) denotes the Heaviside step function, i.e.

Θ(x) = 1 for x ≥ 0 and 0 otherwise. T is defined as the

minimum time interval, namely T = mint {Tt+1 − Tt}. Then

for all t ≥ 1, if urest
k = ln p(x1 = xk), T ≥ 3τ holds, we can

conclude that:

uk(Tt+1) = bt ln p(xt = xk| y1, y2, ..., yt), (24)

with bt denoting a constant (bt 6= 0), and

ρk(Tt+1) = ρ p(xt = xk|y1, y2, ..., yt). (25)

It is easy to prove with theorem 4.

Theorem 4 and Corollary 1 build the relationship between

the dynamics of WTA circuit and the inference equations of

HMMs. When the new observation yt of the HMM comes,

an external current of Ik = 1
ε0τ

ln p(yt|xt = xk) is added to

the input current of neuron zk in WTA circuit at time Tt. The

membrane potential of each spiking neuron in WTA circuit

encodes the logarithm of posterior probability of the hidden

variable being in each state (see equation (22)), and the firing

rate of each neuron is proportional to the posterior probability

of hidden variable in each state (see equation (23)). Moreover,

the time course of neural firing rate can implement posterior

inference of HMMs. One can read out the inference result

by counting spikes from each neuron within a behaviorally

relevant time window of a few hundred milliseconds, which

is similar to the experimental results of monkey cortex [36],

[37].

It is worthwhile to note that for arbitrary t, equation (22)

and (23) hold only on the condition that Tt+1 − Tt is large

enough, which has nothing to do with T1, T2, .., Tt. Thus, if we

want to conduct inference of HMM at time t, i.e. to calculate

p(xt|y1, y2, ..., yt), we only need to start from Tt, then wait

some time to make Tt+1−Tt ≥ 3τ and read out the inference

result.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to

validate the proposed spiking neural network. Firstly, we gen-

erate data to compare the performance of our spiking neural

network with that of belief propagation (optimal solution).

Then we move on to demonstrate the convergence of our

method by extending the time interval between two evidences.

The robustness and applicability of the method to different

settings of parameters are provided in Supplemental Materials.

At last we scale up the spiking neural network to solve a

biologically more realistic task.

A. Testing on the accuracy of our method

We use the data generated from a five-state HMM. The

initial distribution p(x1) is created by randomly generating

five numbers from a uniform distribution on [0, 1] and then

normalizing them. As the hidden state doesn’t change with

respect to time, the transition matrix A is set to the identity

matrix. With initial distribution p(x1) and transition matrix A,

it is convenient to generate the hidden variables x1, x2, ..., xm.

The observation data yi(i = 1, 2, ...,m) is chosen from a

Gaussian distribution with mean value being xi and variance

being 1. We set m = 8 in the following experiments.

A spiking neural network of WTA circuit with self-

connections is used to implement inference of the HMM that

is generated with the method above. Here we test the accuracy

of our method. Fig. 3a shows how the external current changes

with respect to time. The input current for all neurons remains

zero before the first evidence y1 of the HMM comes. Every

150 ms an external current of Ik = 1
ε0τ

ln p(yi|xi = xk)
(i = 1, 2, ..., 8, k = 1, 2, ..., 5) is added to the input current of

neuron k to indicate the new evidence yi. Note that here we

use different colors to denote the currents to different neurons.

The input current will change the membrane potential and

the firing activities of the five neurons (shown at the top of

Fig. 3b). At the beginning all the neurons can fire. After 700

ms, only neurons 2 and 3 can fire, which indicates that through

recurrent accumulation of evidence over time, the state of the

hidden variable is most likely to be 2 or 3. At the bottom of

Fig. 3b we show the total firing rates of each neuron in the

windows of 100 ms (shaded area of Fig. 3b) before each new

input current. Note that here we only show four examples. One

can find that the firing rate of neuron 3 increases with respect

to time and is always larger than that of the other four neurons,

which also implies that the state of the hidden variable is most

likely to be 3.

In Figs. 3c–3g, we compare the normalized firing rates of

spiking neurons (averaged over 500 trials) during inference

with the posterior probabilities computed by belief propagation

(BP) [38], a commonly used algorithm in machine learning

that can get accurate inference results for HMMs [1]. One can

find that the spiking neural network can get comparable results

as that of BP, which indicates the accuracy of our methods.

B. Testing on the convergence of our method

In Theorem 3 and 4, we proved that our method can

converge to the accurate solution as the interval time between
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Fig. 3. (a) The external input currents of the five neurons in WTA circuit change with respect to time. Every 150 ms, a new current is added to the input
current of each neuron due to the coming of the new evidence of HMM. (b) Top: the firing activities of 5 neurons during inference. Bottom: The total firing
rates of different neurons in the windows of 100 ms (shaded area). (c)–(g) Comparison of the normalized firing rate of each spiking neuron (averaged over
500 trials) and accurate inference of HMM with BP.
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Fig. 4. Kullback-Leibler divergence between the distribution of firing probabilities of all neurons in WTA circuit and the distribution of accurate posterior
probability with respect to the interval time. (a) i = 1 represents the inference problem of MM with only one evidence, that is, p(x1 | y1). (b)–(h), the same
as (a), but with more evidences.

two evidences increases to infinity. In this experiment we

verify this conclusion. The interval time between every two

evidences is set as a constant T , ranging from 10 ms to 220 ms.

At the beginning of each new external current, we computed

the Kullback-Leibler (KL) divergence between the distribution

of firing probabilities of all neurons in WTA circuit and

the distribution of accurate posterior probability computed by

BP, that is, KL
(

exp(uk(Ti+1))∑
k
exp(uk(Ti+1))

, p(xi | y1, y2, ..., yi)
)

(i =

1, 2, ..., 8). The results are shown in Fig. 4. We found that the

KL divergence decreases as the interval time T increases and

converges exponentially to zero when the interval time tends

to infinity. These results demonstrate that if the interval time

is large enough, our method can implement optimal inference.

Also, we can see that the KL divergences are less than 10−10

if the interval time is larger than 200 ms. This means T = 200
ms is long enough for accurate inference.

C. Cue combination in spiking neural network

Here we investigate whether the spiking neural network can

scale up to biologically more realistic task. To do this, we

applied the spiking neural network to the task of cue com-

bination. Cue combination is fundamental to our perception

[24], which integrates the cues received from multiple sensory

modalities in an optimal way. It has been shown by numerous

experiments that the process of cue combination is the process

of Bayesian inference [39], [40], [41]. We explore whether

such process of cue combination can be obtained through our

spiking neural network. We consider the simple spiking neural

network of WTA circuit with self-connections and currents

received from different cues, where the task is to integrate the

cues from different sensory modalities.

We first considered the two-cue integration problem, which

could be a combination of visual cue and haptic cue. The prob-

lem can be modeled by a Bayesian network shown in Fig 5a,

in which S represents the location of the stimulus, SV and SH

denote visual cue and haptic cue respectively. This Bayesian

network can also be seen as a HMM with time-invariant hidden

variable S, to which the evidences SV and SH are given in

sequence. Similar to [15], [23], the prior distribution p(S) is

supposed to be a uniform distribution, p(SV |S) and p(SH |S)
are Gaussian distributions with means being S and variances

being σ2
SV

and σ2
SH

respectively. The network receives visual

cue and haptic cue in sequence and the problem is to infer

the posterior distribution p(S|SH , SV ). The spiking network

to solve this problem is similar to that in Fig. 2. Here the input

currents are set to Iextk (t) =
I1
k

ε0τ
Θ(t−T1)+

I2
k

ε0τ
Θ(t−T2) with

I1k = ln p(SV |S) and I2k = ln p(SH |S). The parameters are

set as follows: SV = 55, SH = 65, σ2
SV

= 16 and σ2
SH

= 4.

The interval time between every two evidence is supposed to

be a constant, which is represented by T . Note that variable

S is discretized from 40 to 80 by step 0.5. Thus we need

81 neurons to represent hidden variable S. The results are

shown in Fig. 5b–d. The red curve represents the posterior

distribution p(S|SH , SV ), which is the combination of visual

cue (green curve) and haptic cue (fuchsia). The blue plus signs

are the experimental results of the spiking neural network. One

can find that as the interval time T becomes larger, the result

of spiking neural network tends to be closer to the accurate

curve (red curve). When T = 100, the experimental curve is

almost the same as the accurate curve, which demonstrates the

accuracy of our method.

Next we go a further step and discuss the multi-cue inte-

gration. The problem now is to integrate four cues. Similar to

two-cue integration problem, we can use a Bayesian network

to model it (shown in Fig 5e). Here we use S1, S2, S3 and S4

to represent four different cues. Supposing that the prior distri-



IEEE TRANSACTIONS ON CYBERNETICS 8

Fig. 5. (a) Bayesian model of two-cue integration. (b)–(d) The performance of spiking neural network with respect to the interval time T . (e) Bayesian model
of four-cue integration. (f)–(h) The performance of spiking neural network with respect to the interval time T .

bution p(S) is supposed to be a uniform distribution, p(S1|S),
p(S2|S), p(S3|S) and p(S4|S) are Gaussian distributions with

means being S and variances being σ2
S1

, σ2
S2

, σ2
S3

and σ2
S4

respectively. Then we can use spiking neural network to infer

the posterior distribution of S given S1, S2, S3 and S4, that is,

p(S|S1, S2, S3, S4). The results are shown in Fig. 5f–h, here

S1 = 55, S2 = 65, S3 = 53, S4 = 60, σ2
S1

= 16, σ2
S2

= 4,

σ2
S3

= 64 and σ2
S4

= 36. The red curve is the theoretical result

and the blue plus signs are the experimental results by spiking

neural network. Again, we found that as the interval time T

becomes larger, the blue plus signs tend to be closer to the

accurate curve (red curve). When T = 100, the experimental

curve is almost the same as the accurate curve, which show

the accuracy of our method.

V. CONCLUSION

In this paper, we show that the dynamics of WTA circuit

with self-connections can implement inference of HMM with

time-invariant hidden variables. We prove that the membrane

potential of each spiking neuron in WTA circuit encodes the

logarithm of posterior probability, and the firing intensity of

each spiking neuron encodes posterior probability. Theoretical

analysis and experimental results demonstrate that our method

can get accurate inference result of HMM.

Future work is needed to extend our approach to a more

general case of HMM. A possible way is to implement Viterbi

algorithm with spiking neural networks. Note that the WTA

model used in this paper is a soft WTA model [2], [35], it’s

interesting to see if other WTA models also work [42], [43].

In addition, one also need to find a biologically plausible

way to learn the parameters of HMM. Besides, our present

results have suggested to take WTA circuit as the basic unit

of computation, which is consistent with previous studies that

propose to represent probability distribution with a population

of neurons [44], [45], [46]. However, how to implement large-

scale Bayesian inference by composition of the basic units of

neural circuit is another important yet elusive problem.
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[30] R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner, “Predicting spike
timing of neocortical pyramidal neurons by simple threshold models,”
Journal of Computational Neuroscience, vol. 21, no. 1, pp. 35–49, 2006.

[31] R. J. Douglas and K. A. Martin, “Neuronal circuits of the neocortex,”
Annual Review of Neuroscience, vol. 27, pp. 419–451, 2004.

[32] M. Carandini and D. J. Heeger, “Normalization as a canonical neural
computation,” Nature Reviews Neuroscience, vol. 13, no. 1, pp. 51–62,
2012.

[33] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual at-
tention for rapid scene analysis,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[34] S. Roy and A. Basu, “An online unsupervised structural plasticity
algorithm for spiking neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 4, pp. 900–910, 2017.

[35] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian compu-
tation emerges in generic cortical microcircuits through spike-timing-

dependent plasticity,” PLoS Computational Biology, vol. 9, no. 4, p.
e1003037, 2013.

[36] T. Yang and M. N. Shadlen, “Probabilistic reasoning by neurons,”
Nature, vol. 447, no. 7148, pp. 1075–1080, 2007.

[37] J. I. Gold and M. N. Shadlen, “The neural basis of decision making,”
Annual Review of Neuroscience, vol. 30, pp. 535–574, 2007.

[38] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE

Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312,
2005.

[39] M. O. Ernst and M. S. Banks, “Humans integrate visual and haptic
information in a statistically optimal fashion,” Nature, vol. 415, no. 6870,
pp. 429–433, 2002.

[40] D. C. Knill and A. Pouget, “The bayesian brain: the role of uncertainty
in neural coding and computation,” Trends in Neurosciences, vol. 27,
no. 12, pp. 712–719, 2004.

[41] C. Chandrasekaran, “Computational principles and models of multisen-
sory integration,” Current Opinion in Neurobiology, vol. 43, pp. 25–34,
2017.

[42] P. Tymoshchuk and E. Kaszkurewicz, “A winner-take-all circuit using
neural networks as building blocks,” Neurocomputing, vol. 64, pp. 375–
396, 2005.

[43] M. Oster, R. Douglas, and S. Liu, “Computation with spikes in a winner-
take-all network.” Neural Computation, vol. 21, no. 9, p. 2437, 2009.

[44] M. Sahani and P. Dayan, “Doubly distributional population codes:
simultaneous representation of uncertainty and multiplicity,” Neural

Computation, vol. 15, no. 10, pp. 2255–2279, 2003.
[45] W. J. Ma and M. Jazayeri, “Neural coding of uncertainty and probabil-

ity,” Annual Review of Neuroscience, vol. 37, pp. 205–220, 2014.
[46] A. Pouget, J. Drugowitsch, and A. Kepecs, “Confidence and certainty:

distinct probabilistic quantities for different goals,” Nature Neuroscience,
vol. 19, no. 3, pp. 366–374, 2016.

View publication statsView publication stats


