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On the Optimal Base-station Height in mmWave Small-cell Networks

Considering Cylindrical Blockage Effects

Chen Chen, Graduate Student Member, IEEE, Jiliang Zhang, Senior Member, IEEE,

Xiaoli Chu, Senior Member, IEEE, and Jie Zhang, Senior Member, IEEE

Abstract—Small-cell networks (SCNs), especially those oper-
ating in millimeter-wave bands, are sensitive to blockages. In
this letter, we develop a three-dimensional (3D) SCN model
considering blockages to investigate the impact of base-station
(BS) height, BS density and blockage density on the downlink
coverage probability. More specifically, we model the blockages
as cylinders whose locations follow a Poisson point process and
model the locations of BSs as a Poisson hole process. We assume
that all the BSs are of the same height and the blockage height
follows an exponential distribution. Based on the 3D SCN model,
we derive the exact integral expression of coverage probability
for general SCNs and the closed-form expression of coverage
probability for ultra-dense SCNs. Our analytical results are
verified to be reliable through simulations. The numerical results
quantify the impact of the blockage density and the BS height on
the coverage probability. For a small blockage density, elevated
BSs always degrade the coverage probability, while the coverage
probability first increases and then decreases with the BS height
when the blockage density becomes sufficiently large.

Index Terms—Small-cell networks, BS height, blockages, cov-
erage probability, Poisson hole process.

I. INTRODUCTION

Small-cell network (SCN) is considered as one of the most

promising technologies to address the 1000× network capacity

increase of the fifth generation (5G) mobile networks [1]. The

previous work has mainly modeled the cellular networks on a

two-dimensional (2D) plane [2]–[4]. Such 2D models work for

sparse networks since the link ranges are much larger than the

base-station (BS) height. However, in dense SCNs, BSs and

user equipments (UEs) communicate in proximity and the link

ranges are comparable to the BS heights. Hence, it is of great

importance to model the three-dimensional (3D) SCNs and

study the impact of the BS height.

A dramatical characteristic of SCN is its irregular distribu-

tion, which is commonly modelled with stochastic geometry

[5]. A general mathematical framework using homogeneous

Poisson point process (PPP) was given in [6], where the

SCN was shown to be interference-limited and the increase

of the BS density will not affect the coverage probability. In

[7], the authors extended the one-tier cellular network to a

heterogeneous K-tier network. It was observed that the down-

link coverage probability can either increase or decrease with
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Fig. 1. An illustration of the 3D mmWave small-cell network with blockages.

the network densification, depending on different parameter

configuration among different tiers.

5G SCNs are expected to operate in millimeter-wave

(mmWave) frequencies, i.e., 30–300 GHz, with high pene-

tration loss [8]. Hence, it is crucial to include blockages in

the analysis of SCNs. In [9], a distance-dependent line-of-site

(LOS) probability function was used to analyze the network

coverage probability. It was shown that non-line-of-site links

can be beneficial to the coverage probability by blocking the

inter-cell interference. A more realistic model of blockages

was presented in [10], where the mean value of the signal-

to-interference-plus-noise (SINR) was derived. Nevertheless,

all of these works modeled the SCNs on a 2D plane without

considering the heights of BSs.

Recently, the 3D deployment of small-cells have been

studied [11]–[15]. In [11], the authors proposed an analyt-

ical framework for the 3D mmWave SCN taking account

of both vertical and planar directivities, where the heights

of blockages, BSs and UEs were modeled as independent

exponential distributions. In [12], [13], it was shown that

if the BS height exceeds the UE height, both the coverage

probability and area spectral efficiency (ASE) will decrease

to zero when the BS density goes to infinity. With this

observation, the authors suggested that the BS height should

be set the same as the UE height. In [14], the average path

loss under the effects of human-body blockages was analyzed

using stochastic geometry and validated using a ray-launching

method. The results demonstrated that there exists an optimal

BS height that minimizes the downlink path loss.

To the best of our knowledge, the potentially coupled impact

of the blockage density and the BS height on the coverage

probability has not been studied yet. In this letter, we present
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a 3D model of downlink mmWave SCN using tools from

stochastic geometry, where the locations of blockages and BSs

are modelled as a PPP and a Poisson hole process, respectively.

Based on the 3D system model, we derive the 3D LOS

probability and the probability density function (PDF) of the

distance between the typical UE and the serving BS providing

the strongest received signal. Subsequently, we derive the

tractable expression of the coverage probability, which is then

used to analyze the effects of BS density, blockage density

and BS height on the coverage probability.

II. SYSTEM MODEL

The considered 3D mmWave SCN with blockages is illus-

trated in Fig. 1. The heights of BSs and UEs are denoted

by H and h, respectively, where it is assumed that all the

BSs are of the same height and all the UEs are of the same

height. For analytical tractability, the blockages are modeled

as cylinders, which can be used to model human bodies. We

denote the radius of the blockages by R, and the blockage

height by Hb. For analytical tractability, we assume that Hb

follows an exponential distribution with the parameter µ [11].

The locations of the blockages are distributed following a

homogeneous PPP Φb on a 2D plane with the density λb. The

2D blockage region can be denoted by Sb =
⋃

x∈Φb

B(x,R),

where B(x,R) is a 2D circle centered at x with the radius R.

We assume that the locations of BSs follow a 2D homogeneous

Poisson hole process ΦB, i.e., a PPP outside the blockage

region. The density of ΦB, i.e., λB, can be retained as

λbsexp(−λbπR
2), where λbs is the spatial density of BSs

following a PPP Φbs when there is no blockage, and ΦB =

Φbs\Sb [18]. In this letter, we assume the full buffer traffic

model. The more practical scenarios where the packets arrive

at the UEs following a stochastic process [16], [17] will be

investigated in our future work.

We consider the UE-cell association strategy that connects

a UE to the BS providing the strongest downlink received

signal. For analytical simplicity, we assume that the blockages

are impenetrable. This assumption is reasonable for mmWave

communications. Hence, the typical UE will be associated to

the closet LOS BS.

The channel model consists of two parts: the large scale

path loss and the small scale fading. Without loss of generality,

we assume that a typical UE locates at the origin O and the

distance between the typical UE and its serving BS is d. The

path loss in our 3D system model is expressed as

l(d) =
[

d2 + (H − h)2
]−α/2

, (1)

where α is the path loss exponent. The small scale fading

g is modeled by Nakagami-m fading, where m is the shape

parameter. The power of g follows the Gamma distribution

Γ(m, 1
m ), where m is assumed to be an integer [9].

We assume that BSs are equipped with antenna arrays and

each UE has a single receiving antenna. The widely used

sectored antenna model [9] is adopted to approximate the

beamforming pattern, which is denoted by

G(θ) =

{

GM, PM = θ
2π ,

Gm, Pm = 1− PM,
(2)

where θ is the main lobe beamwidth, GM denotes the main

lobe gain, PM is the probability of main lobe, Gm denotes the

side lobe gain, and Pm is the probability of side lobe.

III. ANALYSIS OF LOS PROBABILITY

In this section, we analyze the LOS probability between the

typical UE at the origin O and a BS at distance r under the

3D SCN model.

A. The Horizontal LOS Probability

As shown in Fig. 1, OX is a link from the origin of the 2D

plane to a BS location X with distance r, and the horizontal

LOS probability is defined as the probability that no blockage

intersects OX on the 2D plane.

Lemma 1: The horizontal LOS probability of the link OX
is e−βr.

Proof: Since the BSs distribute following the Poisson hole

process, there will be no blockage located in the semicircular

region BFD. Hence, a blockage will lie across OX when it

is located in the region ABFDCE. Denote M as the total

number of blockages lying across OX , then M is a Poisson

random variable and its mean can be computed as

E(M) = λbSABFDCE = 2λbRr = βr, (3)

where SABFDCE is the area of the region ABFDCE. The

horizontal LOS probability is the probability that M = 0,

which can be obtained using the properties of Poisson distri-

bution. The LOS probability for general blockages with shapes

other than cylinders will be investigated in our future work.

B. The 3D LOS Probability

Lemma 2: The 3D LOS probability of the link from the

typical UE to the BS at X is given by e−δβr, where δ =
e−µh−e−µH

µ(H−h) .

Proof: As shown in Fig. 1, if a blockage intersects OX
at distance t from O on the 2D plane, it will effectively block

the propagation link from the BS to the typical UE when

Hb > ht. The conditional probability that a blockage blocks

the downlink to the typical UE under the condition that it

intersects OX is given by

δ =
1

r

∫ r

0

P [Hb > ht] dt

(a)
=

1

r

∫ r

0

(

1−

∫

hr+(H−h)t
r

0

fH(Hb)dHb

)

dt

= 1−
1

r

∫ r

0

∫

hr+(H−h)t
r

0

µe−µHbdHbdt

=
e−µh − e−µH

µ(H − h)
, (4)
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where fH(Hb) is the PDF of Hb. Denote the number of

blockages that effectively block the propagation link by M̄ ,

then M̄ can be considered as an independent thinning of M
with the parameter δ [19]. Therefore, M̄ is also a Poisson

random variable and E(M̄) = δβr. The 3D LOS probability

can be obtained by computing the probability that M̄ = 0.

Note that the derivation of 3D LOS probability under the

exponential distribution of blockage height in (4) can be

extended to other distributions using (a).

IV. COVERAGE PROBABILITY ANALYSIS

In this section, we analyze the downlink coverage proba-

bility for SCNs. Firstly, we derive the expression of the PDF

of the horizontal distance from the typical UE to the closet

LOS BS. Based on the PDF, we obtain the expression of

the downlink coverage probability. Moreover, for ultra-dense

SCNs, we obtain the closed-form expression of the downlink

coverage probability.

A. Coverage Probability of Small-cell Networks

Recall that the distance between the typical UE and the

serving BS is denoted by d.

Lemma 3: The PDF of d is computed by

fd(x) = 2πλBxe
−[δβx+2πλBQ(x)], where Q(x) =

1
(δβ)2

[

1− (δβx+ 1)e−δβx
]

.

Proof: The complementary cumulative distribution func-

tion (CCDF) of d is

P(d > x) = P[No LOS BS in B(O, x)]

= exp

{

−2πλB

∫ x

0

e−δβrrdr

}

= e−2πλBQ(x), (5)

where B(O, x) is the circle centered at O with the radius x.

Then we can compute the PDF of d as

fd(x) =
d(1− P(d > x))

d(x)
= 2πλBxe

−[δβx+2πλBQ(x)], (6)

We assume that the SCN is interference-limited [6]. Hence,

the coverage probability is the probability that the SIR of

the typical UE is higher than a threshold T , which can be

expressed as

PCOV = P(SIR > T ). (7)

We further assume that the maximum array gain GM can

always be obtained from the serving BS to the typical UE [9].

Given that d = x, the SIR is defined as

SIR =
g0GM

[

x2 + (H − h)2
]−α/2

∑

i∈ΦL\B0
giG(θ) [R2

i + (H − h)2]
−α/2

, (8)

where g0 and gi are the fading power gains from the typical UE

to the serving BS B0 and to the interfering BS Bi, respectively,

Ri is the distance from the interfering BS Bi to the typical

UE, and ΦL is the set of LOS BSs.

Theorem 1: The downlink coverage probability of a SCN is

given by

PCOV(H,λB, λb) ≈

m
∑

n=1

(−1)n+1
(

m
n

)

×

∫ ∞

0

exp

{

−2πλB

∫ ∞

x

F (T, x, t)e−δβttdt

}

fd(x)dx,

(9)

where

F (T, x, t) = 1−

[

1 +
ζnTGI

m

(

x2 + (H − h)2

t2 + (H − h)2

)

α
2

]−m

,

(10)

ζ = m(m!)−
1
m and GI =

GMPM+GmPm

GM
.

Proof: See Appendix A.

B. Coverage Probability of Ultra-dense Small-cell Networks

When the network becomes ultra-dense, we assume that the

BS density is much higher than the blockage density, such that

the effects of blockages is negligible.

Theorem 2: The closed-form coverage probability of the

ultra-dense small-cell networks is given by

PCOV U(H,λB) ≈

m
∑

n=1

(−1)n+1
(

m
n

)

×

exp

{

πλB(H−h)2
(

1− 2s(ζnTGI)
2
α

α

)}

2s(ζnTGI)
2
α /α

, (11)

where s = Γ
(

− 2
α , ζnTGI

)

− Γ
(

− 2
α

)

, Γ(z, x) =
∫∞

x
tz−1e−tdt is the incomplete gamma function and Γ(z) =

∫∞

0
tz−1e−tdt is the standard gamma function.

Proof: See Appendix B.

V. NUMERICAL RESULTS

In this section, we validate our analytical expressions with

Monte Carlo simulations. We set the the UE height as h = 1 m,

the parameter of the blockage height distribution as µ = 1/1.5,

the coverage probability threshold as T = 5 dB, path loss

exponent α = 2 and the parameter of the Nakagami-m fading

as m = 3. The default values of the radius of blockages,

BS density with no blockage, and blockage density are set as

R = 2 m, λbs = 10−2 BS/m2, and λb = 2×10−2 blockage/m2,

respectively. The default parameters of beamforming are set

as GM = 10 dB, Gm = −10 dB, and θ = 30◦. In Fig. 2, the

coverage probability for our proposed 3D SCN is evaluated.

We can see that the simulation results match well with our

analytical curves.

In Fig. 3, we show the influence of the blockage density

to the coverage probability for H = 1 m, H = 2 m, H =
3 m and H = 4 m, respectively. With the increase of the

blockage density, the coverage probability first increases and

then decreases. This indicates that a low blockage density is

beneficial for the network coverage probability, however, when

the blockage density becomes sufficiently high, it will degrade

the coverage probability. We can also find that for a given BS
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density, the optimal blockage density will be higher when the

BS height increases.

In Fig. 4, we show the influence of the BS height to the

coverage probability. It is obtained that for a small blockage

density, the coverage probability will monotonically decrease

with the BS height. While for the higher blockage densities,

the coverage probability will first increase and then decreases

with the BS height. This demonstrates that for a given BS

density, when the blockage density is beneficial for the cov-

erage probability, the BS height should be identical with the

UE height to avoid the coverage probability loss. However,

when the blockage density becomes harmful, there exists an

optimal BS height higher than the UE height that maximizes

the coverage probability. The optimal BS heights can be found

by computing
dPCOV(H,λB,λb)

dH = 0 and numerically obtained

using the bisection search [21]. The numerical results are

2.2 m and 3.73 m for λb = 6 × 10−2 blockage/m2 and

λb = 8 × 10−2 blockage/m2, respectively. Fig. 5 shows the

numerical results for the ultra-dense small-cell networks where

the blockages are negligible. It is observed that the coverage

probability monotonically decreases with the BS height, which

matches the conclusion obtained from Fig. 4.

From Fig. 6, we observe that for a given blockage density,

the coverage probability first increases and then decreases with

the BS density. This can be intuitively explained that a higher

BS density brings higher LOS probability, however, increasing

BS density also leads to more interference from LOS BSs.

The coverage probability will decline when the loss resulting

from the interference exceeds the gain of the LOS received

signals. The optimal BS densities can be found by computing
dPCOV(H,λB,λb)

dλB
= 0. The numerical results are 1.1 × 10−3

BS/m2, 6×10−4 BS/m2, 3.4×10−4 BS/m2 and 2×10−4 BS/m2

for H = 1 m, H = 2 m, H = 3 m and H = 4 m, respectively.

Moreover, we can observe that a higher BS height leads to a

lower optimal BS density. Hence, for a given blockage density,

less BSs are needed to be deployed to obtain a maximum

coverage probability when increasing the BS height.

In Fig. 7, we plot the 3D figure to show the joint impact of

the BS density and BS height. It can be observed that for a

given BS height range, there exists a corresponding BS density

range that can lead to the maximum coverage probability. This

can provide guidance for the joint optimization of BS density

and BS height.

VI. CONCLUSION AND FUTURE WORKS

In this letter, we have presented a 3D model of mmWave

SCNs under the impact of random blockages. We derived the

downlink coverage probability in an integral form for general

SCNs and in closed-form for ultra-dense SCNs. Our analytical

and simulation results showed that for a small blockage

density, the increasing BS height always degrades the coverage

probability. However, when the blockage density becomes
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sufficiently large, the coverage probability first increases and

then decreases with the BS height. We have also observed that

for a given range of BS heights, there exists an optimal range

of BS densities that maximize the coverage probability.

In our future work, we will include the modeling of more

general blockages. Additionally, we will extend this work to

3D heterogeneous mmWave SCNs.

APPENDIX

A. Proof of Theorem 1

Plugging (8) into (7), we have

PCOV(H,λB, λb)

=

∫ ∞

0

P

[

g0GMl(x)
∑

i∈ΦL\B0
giG(θ)l(Ri)

> T

]

fd(x)dx

=

∫ ∞

0

P



g0>TGIl(x)
−1

∑

i∈ΦL\B0

gil(Ri)



fd(x)dx, (12)

where

P



g0 > TGIl(x)
−1

∑

i∈ΦL\B0

gil(Ri)





(a)
< 1− E

[(

1− e
−ζTGIl(x)

−1 ∑
i∈ΦL\B0

gil(Ri)
)m]

(b)
=

m
∑

n=1

(−1)n+1
(

m
n

)

E

[

e
−ζnTGIl(x)

−1 ∑
i∈ΦL\B0

gil(Ri)
]

.

(13)

Therein, (a) comes from that for a gamma random variable g
with parameter m, P(g < x) can be lower-bounded by P(g <
x) > (1− e−ax)

m
, where x > 0 and a = m(m!)−

1
m [20]. (b)

follows from Binomial series expansion.

Applying the probability generating functional of homoge-

neous PPP, we have

E

[

e
−ζnTGIl(x)

−1 ∑
i∈ΦL\B0

gil(Ri)
]

= exp

{

−2πλB

∫ ∞

x

(

1− Eg

[

e−ζnTGIgl(t)/l(x)
])

e−δβttdt

}

(a)
= exp







−2πλB

∫ ∞

x



1−



1+
ζnTGI

l(t)
l(x)

m





−m

 e−δβttdt







,

(14)

where (a) come from the moment generating function of the

gamma random variable g.

B. Proof of Theorem 2

According to the assumption of ultra-dense SCNs, all the

BSs will be LOS BSs. The coverage probability is computed

as

PCOV U(H,λB) =
∫ ∞

0

P

[

g0GMl(x)
∑

i∈ΦB\B0
giG(θ)l(Ri)

>T

]

2πλBxe
−πλBx2

dx.

(15)

Following (12), we have

P

[

g0GMl(x)
∑

i∈ΦB\B0
giG(θ)l(Ri)

> T

]

=

m
∑

n=1

(−1)n+1
(

m
n

)

E

[

e
−ζnTGIl(x)

−1 ∑
i∈ΦB\B0

gil(Ri)
]

,

(16)

where E

[

e
−ζnTGIl(x)

−1 ∑
i∈ΦB\B0

gil(Ri)
]

is computed by

E

[

e
−ζnTGIl(x)

−1 ∑
i∈ΦB\B0

gil(Ri)
]

= exp

{

−2πλB

∫ ∞

x

(

1− Eg

[

e−ζnTGIgl(t)/l(x)
])

tdt

}

(a)
> exp

{

−2πλB

∫ ∞

x

(

1− e−ζnTGIl(t)/l(x)
)

tdt

}

(b)
= exp

{

−πλB

∫ ∞

x2

(

1− e−A(t+h2
d)
)

dt

}

(c)
= exp

{

πλBA
2
α

∫ A(x2+h2
d)

−α
2

0

∫ r

0

e−ur−
2
α
−1dudr

}

(d)
= exp

{

πλB(x
2+h2

d)

−
2πλBA

2
α

α

[

Γ

(

−
2

α
, ζnTGI

)

− Γ

(

−
2

α

)]

}

. (17)

Therein, (a) comes from
(

1 + k
x

)−x
> e−k for k > 0, in (b),

we define A = ζnTGI/l(x) and hd = H − h, (c) is obtained

by using the substitution A(t + h2
d) → r and (d) follows

from the swapping of integration order in (c). By substituting

(16), (17) into (15), the closed-form expression of coverage

probability can be obtained.
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[12] M. Ding and D. López-Pérez, “Performance impact of base station

antenna heights in dense cellular networks,” IEEE Trans. Wireless

Commun., vol. 16, no. 12, pp. 8147-8161, Dec. 2017.
[13] J. Liu, M. Sheng, K. Wang, and J. Li, “The impact of antenna height

difference on the performance of downlink cellular networks,” in Proc.

IEEE Globecom, Singapore, Dec. 2017, pp. 1-7
[14] M. Gapeyenko et al., “Analysis of human-body blockage in urban

millimeter-wave cellular communications,” in Proc. IEEE Int. Conf.

Commun. (ICC), 2016, pp. 1-7.
[15] J. Lee, X. Zhang, and F. Baccelli, “A 3D spatial model for in-building

wireless networks with correlated shadowing,” IEEE Trans. Wireless

Commun., vol. 15, no. 11, pp. 7778-7793, Nov. 2016.
[16] Y. Zhong, T. Q. S. Quek and X. Ge, “Heterogeneous cellular networks

with spatio-temporal traffic: delay analysis and scheduling,” IEEE J. Sel.

Areas Commun., vol. 35, no. 6, pp. 1373-1386, Jun. 2017.
[17] Y. Zhong, G. Mao, X. Ge and F. Zheng, “Spatio-temporal modeling for

massive and sporadic access,” Jul. 2020, arXiv:2001.11783. [Online].
Available: https://arxiv.org/abs/2001.11783

[18] Y. Zhong, T. Q. S. Quek and W. Zhang, “Complementary networking
for C-RAN: spectrum efficiency, delay and system cost,” IEEE Trans.

Wireless Commun., vol. 16, no. 7, pp. 4639-4653, Jul. 2017.
[19] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban

cellular networks,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp.
5070-5083, Sep. 2014.

[20] A. Thornburg, T. Bai, and R. Heath, “Performance analysis of outdoor
mmWave ad hoc networks,” IEEE Trans. Signal Process., vol. 64, no.
15, pp. 4065-4079, Aug. 2016.

[21] R. L. Burden and J. D. Faires, “Numerical analysis (3rd Ed.),” PWS

Publishers, 1985.


