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A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal sig-
nals of the brain in a closed-loop fashion, while simultaneously receiving stimuli from the environment
and controlling some part of a human brain or body. Incoming visual information can be processed by the
brain in millisecond intervals. The retina computes visual scenes and sends its output to the cortex in the
form of neuronal spikes for further computation. Thus, the neuronal signal of interest for a retinal neu-
roprosthesis is the neuronal spike. Closed-loop computation in a neuroprosthesis includes two stages:
encoding a stimulus as a neuronal signal, and decoding it back into a stimulus. In this paper, we review
some of the recent progress that has been achieved in visual computation models that use spikes to ana-
lyze natural scenes that include static images and dynamic videos. We hypothesize that in order to obtain
a better understanding of the computational principles in the retina, a hypercircuit view of the retina is
necessary, in which the different functional network motifs that have been revealed in the cortex neu-
ronal network are taken into consideration when interacting with the retina. The different building
blocks of the retina, which include a diversity of cell types and synaptic connections—both chemical
synapses and electrical synapses (gap junctions)—make the retina an ideal neuronal network for adapting
the computational techniques that have been developed in artificial intelligence to model the encoding
and decoding of visual scenes. An overall systems approach to visual computation with neuronal spikes
is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual
system.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The concept of precision medicine has been under development
for a few years. This term is usually used to refer to the customiza-
tion of healthcare to individual patients. Current advancements in
artificial intelligence techniques, including hardware, software,
and algorithms, are making the process of healthcare increasingly
precise for each individual patient, as the communication between
healthcare devices or services and patients is specifically designed
and adjusted.

A neuroprosthesis is a precise medical device that provides a
means of therapy aside from traditional pharmacological treat-
ment. A neuroprosthesis usually has direct interaction with the
neuronal activity—and with the neuronal spikes in particular—of
an individual brain [1–9]. It consists of a series of devices that
can substitute for part of a human body and/or brain, such as
motor, sensory, or cognitive modality that has been damaged. As
the brain is the central hub that controls and exchanges the infor-
mation used by human motor, sensory, and cognitive behavior, in
order to improve the performance of a neuroprosthesis, it is neces-
sary to focus on better analyzing the neuronal signal used by the
neuroprosthesis. Therefore, in addition to the development of neu-
roprosthesis hardware, better algorithms are a core feature in
enabling better performance of neuroprostheses [6,10,11].

Motor neuroprostheses have a long history of intensive studies;
in particular, recent techniques have been able to record cortical
neuronal spikes well and use them to control neuroprostheses [6].
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Cochlear implants are the most widely used sensory neuroprosthe-
sis, and have demonstrated fairly good performance in addressing
hearing loss, although many questions remain regarding how to
improve their performance in a noisy environment and their effect
on the neuronal activity of the downstream auditory cortex [11,12].
However, in contrast to the intensive computational modeling of
cochlear implants that has been done [11], retinal neuroprostheses
are much less well studied and have a much worse performance for
restoring eyesight, although a few types of retinal neuroprostheses
are being used in clinical trials [13,14].

The retina consists of three layers of neurons with photorecep-
tors, bipolar cells, and ganglion cells, surrounded by inhibitory
horizontal and amacrine cells. Photoreceptors receive incoming
light signals that encode the natural environment and transform
them into electrical activity that is modulated by the horizontal
cells. The electrical activity is then sent to bipolar cells and ama-
crine cells for further processing. In the end, all of the signals go
to the output side of the retina, where retinal ganglion cells—which
are the only output neurons—produce a sequence of action poten-
tials or spikes that are transmitted via the optic nerve to various
downstream brain regions. In essence, all of the visual information
about the body’s environment, both in space and in time, is encoded
by these spatiotemporal patterns of spikes from ganglion cells.

Many types of eye disease are caused by neuronal degeneration
of the photoreceptors, while the outputs of the retina—the gan-
glion cells—remain healthy. One type of therapy for such diseases
would be to develop an advanced retinal prosthesis to directly
stimulate the ganglion cells with an array of electrodes. Retinal
neuroprostheses have a relatively long history of research [15].
However, much effort has been dedicated to the material design
of retinal neuroprosthesis hardware [13–18]. Recently, it has been
suggested that employing better neural coding algorithms would
improve the performance of retinal neuroprostheses [10]. It was
shown that the reconstruction of visual scenes can be significantly
improved by adding an encoder that converts the input images into
the spiking codes used by retinal ganglion cells; these codes are
then used to drive transducers such as electrodes, optogenetic
stimulators, or other components for vision restoration.

Therefore, better computational models are needed to advance
the performance of retinal neuroprostheses. Compared with other
neuroprostheses, whose stimulus signals are relatively simple, reti-
nal neuroprostheses deal with dynamic visual scenes in space and
time with higher-order correlations. Low performance is mainly
due to the major difficulty of there being no clear understanding
of how ganglion cells encode rich visual scenes. Much of our
knowledge has been documented through experiments with sim-
ple artificial stimuli, such as white noise images, bars, and gratings.
It remains unclear how the retina processes complex natural
images with its neuronal structure. In recent years, remarkable
progress has been made in using artificial intelligence to analyze
complex visual scenes, including natural images and videos. Thus,
it is now possible to develop novel functional artificial intelligence
models to study the encoding and decoding of natural scenes by
analyzing the spiking responses of retinal ganglion cells.

In this paper, we review some of the recent progress that has
been achieved in this field. Most studies on visual coding can be
roughly classified into two streams. The first, more traditional
stream is the feature-based modeling approach, in which visual
features or filters are aligned with the biophysical properties—such
as the receptive field (RF)—of the retinal neurons. The second, rel-
atively new stream is the sampling-based modeling approach, in
which the statistics of visual scenes—such as pixels—are formu-
lated using probabilistic models. It should be noted that these
two approaches are not completely separate; in fact, there are
increasingly close interactions between them due to advances in
recent computational techniques for both hardware and algo-
rithms. Here, we review some of the core ideas that have emerged
from both approaches regarding the analysis of visual scenes using
neural spikes, in order to promote the next generation of retinal
neuroprostheses, in which computational modeling plays an
essential role.

This review is organized as follows: Section 2 provides an intro-
duction of the biological structure of the retina, with a focus on its
inner neuronal circuit. We emphasize that the retinal circuit carries
out rich computations that are beyond the dynamics of the single
cells of the retina.

In Section 3, in contrast to the view that the retina is a simple
neural network, we hypothesize that the retina is highly complex
and is comparable to some aspects of the cortex, with different net-
work motifs for specialized computations in order to extract visual
features. In particular, we outline three views that present the reti-
nal neuronal circuit as feedforward, recurrent, and winner-take-all
(WTA) network structures. For each of these three viewpoints, we
provide some evidence and recent results that fit into the proposed
framework.

In Section 4, a feature-based modeling approach is discussed,
and the models of encoding and decoding visual scenes based on
feature extraction by the retina are reviewed. For encoding, we first
summarize the biophysical models that directly analyze and fit
neuronal spikes in order to determine some neuronal properties,
such as the RF of the neuron. We then review some encoding mod-
els based on artificial neural networks (ANNs) that use recent
state-of-the-art machine learning techniques to address complex
natural scenes. For decoding, however, it is necessary to rely on
statistical and machine learning models that aim to reconstruct
visual scenes from neuronal spikes. We review some of these deco-
ders with an emphasis on how they can be used to give retinal neu-
roprostheses a better performance for both static images and
dynamic videos.

In Section 5, a sampling-based modeling approach is discussed.
We give an overview of the retinal circuitry in which visual compu-
tation can be implemented by means of spiking neuronal networks
(SNNs) and probabilistic graph models (PGMs), such that different
functional networks can conduct the visual computations observed
in the retina. We first introduce the basis of neural computation
with spikes. Modeling frameworks of neuronal spikes and SNNs
are discussed from a sampling perspective. We then propose that
the study of retinal computation should go beyond the classical
description of the dynamics of neurons and neural networks by
taking into account probabilistic inference. We review some recent
results on implementing probabilistic inference with SNNs. These
approaches are traditionally applied to theoretical studies of the
visual cortex. Here, we demonstrate how similar computational
approaches can be used for retinal computation. Finally, in the last
section, we conclude the paper with a discussion of possible
research directions in the future.
2. Visual computation in the neuronal circuit of the retina

Fig. 1 shows a typical setup of the retinal neuronal circuit.
Roughly speaking, there are three layers of networks consisting
of a few types of neurons. Following the information flow of visual
scenes, photoreceptors convert light with a wide spectrum of
intensities (from dim to bright) and colors (ranging from red, to
green, to blue), into electrical signals that are then modulated by
inhibitory horizontal cells. Next, these signals are transferred to
excitatory bipolar cells that carry out complex computations. The
outputs of bipolar cells are mostly viewed as graded signals; how-
ever, recent evidence suggests that bipolar cells can generate fast
spiking events [19]. Inhibitory amacrine cells then modulate these
outputs in different ways in order to make the computations more



Fig. 1. Illustration of the retinal neuronal circuit. Visual scenes are converted by photoreceptors in the first layer, where rods encode the dim light and cones encode color.
After being modulated by horizontal cells, the signals are sent to bipolar cells in the second layer. The outputs are sent to the third layer, which consists of amacrine cells and
ganglion cells, for further processing. The final signals of the retina are the spikes from the ganglion cells, which are transferred to the cortex. In addition to chemical synapses
between cells, massive gap junctions exist between different and the same types of cells (e.g., ganglion–ganglion cells).
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efficient, specific, and diverse [20]. At the final stage of the retina,
the signals pass on to the ganglion cells for final processing. In the
end, the ganglion cells send their spikes to the thalamus and cortex
for higher cognition.

Each type of neuron in the retina has a large variation in mor-
phology; for example, it has been suggested that in the mouse
retina, there are about 14 types of bipolar cells [21,22], 40 types
of amacrine cells [23], and 30 types of ganglion cells [24]. In addi-
tion to neurons, a unique feature of any neuronal circuitry is the
connections between neurons. Connections between neurons in
the retina are typically formed by various types of chemical
synapses. However, there are a massive number of electrical
synaptic connections, or gap junctions, between different types of
cells and between the same type of cells [25–28]. The functional
role of these gap junctions remains unclear, however [25]. We
hypothesize that gap junctions have the functional role of creating
recurrent connections in order to enhance visual computation in
the retina; this concept will be discussed in later sections.

In the field of retinal research, most studies are based on the
traditional view that neurons in the retina have static RFs that
act as spatiotemporal filters to extract local features from visual
scenes. We also know that the retina has many levels of complexity
in its information processing—from photoreceptors, to bipolar
cells, to ganglion cells. In addition, the functional role of the modu-
lation of inhibitory horizontal and amacrine cells is still unclear
[20,29]. It is possible that the only relatively well-understood
example is the computation of direction selectivity in the retina
[30–33].

The retinal ganglion cells are the only output of the retina; how-
ever, their activities are tightly coupled and highly interactive with
the rest of the retina. These interactions not only make the retinal
circuitry complicated in its structure, but also make the underlying
computation for visual processing much richer. Therefore, the
retina should be considered to be ‘‘smarter” than what scientists
have believed [34]. These observations lead us to rethink the func-
tional and structural properties of the retina. Given such a com-
plexity of neurons and neuronal circuits in the retina, we
propose that the computations of visual scenes that are carried
out by the retina should be perceived in a way that goes beyond
the view that the retina is similar to a feedforward network that
causes information to pass through. Like the cortical cortex, the
retina has lateral inhibition and recurrent connections (e.g., gap
junctions), which cause the retina to inherit various motifs of neu-
ral networks for the specific computations involved in extracting
different features of visual scenes, just as visual processing occurs
in the visual cortex [35–37].

It should be noted that in comparison with the visual cortex, a
detailed understanding of the computation and function of the
retina for visual processing has just emerged in recent decades.
Today, the retinal computation of visual scenes by means of the
retina’s neurons and neuronal circuits is seen as being refined at
many different levels; for more detail, see recent reviews on neu-
roscience advancements on the retina [20,21,25–29,34].
3. Computational framework for the retina

It seems to be difficult to unify the different pieces of neurosci-
entific experimental evidence from the retinal circuit from a biol-
ogy perspective [38]. Instead, we hypothesize that it is necessary
to study the computation carried out by the retinal circuit using
a combination of diverse neural network structure motifs. Such
an as-yet-to-emerge computational framework could benefit our
understanding of visual computation by utilizing the machine
learning techniques that have emerged in recent years [39]. When
looking at a complete overview of the retinal neuronal circuitry, as
shown in Fig. 1, it seems rather complicated. After extracting some
of the features of network structures, however, simple network
motifs emerge. Here, we only focus on three types of network
structures—namely, the feedforward, recurrent, and WTA net-
works, as illustrated in Fig. 2—and hypothesize that these struc-
tures play different functional roles in the visual computation of
the retina. However, the retina is more than a hybrid of these three
network motifs; rather, it consists of multiple types of networks



Fig. 2. Illustration of different computational network motifs. (a) Parts of the retinal circuity show different network motifs such as feedforward, recurrent, and WTA
subnetworks. (b) Abstract representation of different types of neural networks used by modeling, where the stimulus is first represented by the activities of afferent neurons,
and is then fed into a network of excitatory and/or inhibitory neurons for computation. Shadowed networks indicate the same motifs. (c) Abstract computation specifically
used by certain typical ANNs, such as convolutional neural networks (CNNs), Markov random fields (MRFs), and hidden Markov models (HMMs). Note that ANNs can use one
or mixed computational network motifs, as shown in (b). In MRF, xi are variables represented by a WTA circuit. In HMM, xi are observation variables represented by afferent
neurons in a WTA circuit, and yi are hidden variables represented by excitatory neurons in a WTA circuit.
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that form a hypercircuit [38], from which more computational fea-
tures can be extracted with advancements in experimental and
computational techniques. Such a hypercircuit view provides a
biological basis for a potentially unified framework of retinal com-
putation, although how these different networks work together
more efficiently for visual computation remains an open question.

3.1. Feedforward network

The feedforward network is the most classical view of the
direction of visual information flow in the retina, as shown in
Figs. 2(a,b). The feedforward information flow of the light passes
through the retina by means of three major types of cells: photore-
ceptors, bipolar cells, and ganglion cells. The other two types of
inhibitory cells play a modulation role, which has been ignored
for simplicity in this viewpoint. The biological basis of this view
can be seen in the fovea, where excitatory cells play a major role,
with few inhibitions [40]. In the fovea, there is direct cascade pro-
cessing from photoreceptors, to bipolar cells, and then to ganglion
cells as the outputs.

The advantage of the feedforward network has been demon-
strated by the advancement of ANNs in recent years. In particular,
breakthroughs have been made in the framework of deep convolu-
tional neural networks (CNNs) [39]. A simple CNN with three lay-
ers, as in the retina, is shown in Fig. 2(c), where a convolutional
filter plays the role of the RF of the retinal cell. Cascade processing
of visual inputs is computed by the RF of each individual neuron in
the retina. The pooling of the computation from the previous layer
passes to a neuron in the next layer. Recent studies highlight the
similarity between the structure of CNNs and retinal neural cir-
cuitry [41,42], which will be discussed in later sections.

3.2. Recurrent network

The dynamics of a recurrent network [43–45], together with the
diversity of synaptic dynamics and plasticities [46,47], are impor-
tant for understanding the brain’s function. Here, we hypothesize
that recurrent connections are also important for the retina. Recur-
rent connections in the retina are mainly produced by a massive
number of gap junctions, as shown in Fig. 2(a). Unlike chemical
synapses, gap junctions are bidirectional or symmetric. Occurring
within and between all types of cells in the retina, gap junctions
are used to form short connections between neighboring cells.
However, the functional role of these gap junctions remains
unclear [25].

From the computational viewpoint, recurrent connections
formed by gap junctions make the retinal circuit similar to a
PGM of an undirected Markov random field (MRF), as shown in
Figs. 2(b,c). A PGM provides a powerful formalism for multivariate
statistical modeling by combining graph theory with probability
theory [48]. PGMs have been widely used in computer vision and
computational neuroscience. In contrast to the MRF, there is
another type of PGM that is mainly referred to as the Bayesian net-
work, in which the connections have a direction between nodes.
Fig. 2(c) shows one type of Bayesian network, termed the hidden
Markov model (HMM). In recent years, much effort has been
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dedicated to implementing these PGMs by SNNs, setting up an
insightful connection between artificial machine computation by
PGMs and the neural computation observed in the brain, as well
as the visual computation in the retina.

3.3. WTA network

Finally, we hypothesize that the retinal circuit has a computa-
tional network unit as a WTA motif. In the cortical cortex, the
WTA circuit has been suggested to be a powerful computational
network motif that implements normalization [49], visual atten-
tion [50], classification [51], and more [52].

Two types of inhibitory neurons sit in the first two layers of the
retina. Horizontal cells target photoreceptors and relay light infor-
mation to bipolar cells, while amacrine cells modulate the signals
between bipolar cell terminals and ganglion cell dendrites.
Both types of cell have specific subtypes that are wide-field or
polyaxonal, such that they spread action potentials over a long dis-
tance (greater than 1 mm) [38]. From the computational view-
point, this hypercircuit feature of the retina plays a functional
role that is similar to that of a WTA network motif. A recent study
has shown that a MRF can be implemented by the network of a
WTA circuit, which suggests that the WTA could be the minimal
unit of probabilistic inference for visual computation [53].

3.4. Rich computation with network motifs

In the discussion above, we briefly reviewed retinal circuitry
and identified three basic neural network motifs that act as units
for the complex computations conducted in the retina. However,
more types of network motifs have been suggested for cortical
microcircuits [37], and it has been suggested that these motifs
are also involved in the retinal computation as part of the retinal
hypercircuit [38]. The hypercircuit view of the retina transfers
most of the methods that have been developed for studying visual
processing in the cortex to the investigation of the retinal compu-
tation, thereby introducing rich dynamics that are beyond the tra-
ditional view of the retina [34]. In particular, quite a few visual
functions have been found to be implemented by certain types of
network mechanisms in the retina; see Ref. [34] for detailed
discussions.

Recent computational advancements in the field of ANNs have
led to many breakthroughs in computational vision. For example,
deep CNNs can perform hierarchical network modeling of visual
computation passing from the retina to the inferior temporal part
of the cortex [54]. These feature-based models take advantages
of the RF to capture visual features. However, CNN models have
a few disadvantages for visual computation; for example, CNN
architecture largely lacks design principles, so it may be enhanced
by the knowledge of biological neural network design in the brain,
including the retina [55].

On the other hand, it has been suggested that a hierarchical
Bayesian inference framework is necessary in order to understand
visual computation [56]. When using such a sampling-based
modeling approach, statistical computation of visual scenes can
be formulated by various types of probabilistic models, where
different types of network motifs can implement certain computa-
tions [57]. These computational techniques in Bayesian models are
suitable for the visual processing of the visual cortex and the retina
[56].

However, these two approaches are not completely separate; in
fact, there are close interactions between them [55]. We will
explain these ideas by using the retina as a model system in the
sections below: The feature-based approach will be discussed in
Section 4, and the sampling-based approach will be discussed in
Section 5.
4. Encoding and decoding models of the retina

The usability of neural coding is one of the central questions in
systems neuroscience [58–60]. In particular, for visual coding, it is
necessary to understand first how visual scenes are represented by
neuronal spiking activities, and then how to decode neuronal spik-
ing activities to represent the given visual information. The retina
serves as a useful system to study these questions.
4.1. Biophysical encoding model

In order to understand the encoding principles of the retina,
several models have been developed based on the biophysical
properties of the neurons and neuronal circuits in the retina, and
have recently been reviewed [61]. Here, we briefly review these
approaches.

The starting point for examining retinal neuronal computation
was to find the RFs of neurons. The classical approach to mapping
the neuronal RF is to patch a single cell and then vary the size of a
light spot in order to obtain the RF structure as a difference-of-
Gaussian filter with central excitation and surrounding inhibition.
Later on, a systematic experimental method was developed using a
multi-electrode array to record a population of retinal ganglion
cells; using this method, it is possible to manipulate light stimula-
tion with various types of optical images, including simple bars,
spots, gratings, white noise, and complex well-controlled images
and videos. In particular, it is possible to analyze the spike trains
of individual neurons when simultaneously recording a large
population with white noise stimulus. A simple reverse correlation
technique termed the spike-triggered average (STA) [62] can be
used to obtain the RF of every recorded ganglion cell. An extension
of the STA to covariance analysis, which is known as spike-
triggered covariance, serves as a powerful tool for analyzing the
second-order dynamics of the retinal neurons [63,64].

With the RF mapped from each neuron, a simple and useful
analysis is based on a linear–nonlinear (LN) model to simulate
the cascade processing of light information. There are two stages
in the LN model [65,66]. The first stage is a linear spatiotemporal
filter that represents the sensitive area of the cell—that is, the char-
acteristic of the RF. The second stage is a nonlinear transformation
to convert the output of the linear filter into a firing rate. Both
properties of the LN model can be easily estimated from the spikes
with white noise stimulus [64]. Otherwise, when dealing with
complicated stimulus signals rather than white noise, it is
necessary to use other methods—such as maximum likelihood
estimation [65] and maximally informative dimensions [67]—to
estimate the model components when there is enough data.

To date, several models have been developed to refine the
building blocks of the LN model in order to make the model more
powerful. These models include: the LN Poisson model [63], in
which after nonlinear operation, a Poisson process is used to deter-
mine whether a spike will be generated; and the generalized linear
model [68], in which several additional components are included,
such as a spike history filter for adaptation and a coupling filter
to address the influence of nearby neurons. Recently, there has
been an emphasis on models with a few subunit components to
mimic upstream nonlinear components; examples include the
nonlinear input model [69], in which a few upstream nonlinear fil-
ters are included with the assumption that the inputs of the neuron
are correlated; the spike-triggered covariance model [64,70,71], in
which the covariance of the spike-triggered ensemble is analyzed
by means of eigenvector analysis in order to obtain a sequence of
filters as a combination of some parts of the RF; the two-layer LN
network model [72], in which a cascade process is implemented
by two-layer LN models; and the spike-triggered non-negative
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matrix factorization (STNMF) model [73], in which the orthogonal-
ity constraint used in spike-triggered covariance is relaxed to
obtain a set of non-orthogonal subunits that is experimentally ver-
ified as the bipolar cells in the retina. It has been further demon-
strated that STNMF can recover various biophysical properties of
upstream bipolar cells, including spatial RFs, temporal filters,
transferring nonlinearities, and synaptic connection weights from
bipolar cells to ganglion cells. In addition, a subset of spikes con-
tributed by each bipolar cell can be teased apart from the whole
spike train of one ganglion cell [74].
4.2. ANN-based encoding model

In recent years, breakthroughs have been made in using ANNs—
such as deep CNNs and PGMs—for numerous practical tasks related
to the system identification of visual information [39]. For exam-
ple, given a large set of visual images that are collected and well-
labeled with specific tags, ANNs can outperform human-level per-
formance in object recognition and classification [39]. Various
techniques have been developed to visualize the features of images
learned by CNN. However, the way in which CNN conducts the
end-to-end learning of complex natural images makes it difficult
to use this method to interpret underlying network structure com-
ponents [75,76].

Inspired by experimental observation in neuroscience [55,77], a
typical deep CNN has a hierarchical architecture with many layers
[78]. Of these layers, some have a bank of convolutional filters,
such that each convolutional filter serves as a feature detector to
extract the important properties of the images [79,80]. Therefore,
after training with a large set of images, these convolutional filters
can play the same functional role as the neurons in our retina and
in other visual systems to encode complex statistical properties of
natural images [59]. The shapes of these filters are sparse and
localized, and are similar to the RFs of visual neurons.

Therefore, it is reasonable to use the similar ANN-based
approach to investigate the central question of neuronal coding in
neuroscience [54,81]. In particular, for visual coding, it has been
widely accepted that the ventral visual pathway in the brain is a
path that starts from the retina and then passes through the lateral
geniculate nucleus and the layered visual cortex to reach the infe-
rior temporal part of the cortex. This visual pathway has been sug-
gested as the ‘‘what” pathway for the recognition and identification
of visual objects. When CNN is used to model experimental neuro-
science data recorded in the neurons of the inferior temporal cortex
in monkeys, the neuronal response can be predicted very well
[54,82–84]. Therefore, it is possible to relate the biological structure
of visual processing in the brain with the network structure compo-
nents used in CNN. However, interpreting this relationship is not a
straightforward process, since the pathway from the retina to the
inferior temporal cortex is complicated [54]. One possible easier
way is to use CNN to model the early visual system of the brain—
and the retina in particular, as discussed above—in which the neu-
ronal organization is relatively simple.

Indeed, a few studies take this approach by using CNNs and
their variations to model earlier visual systems in the brain, such
as the retina [41,42,85–87], the visual cortical areas V1 [88–92],
and V2 [93]. Most of these studies are driven by the assumption
that better neural response performance can be achieved by using
either feedforward or recurrent neural networks (or both). These
new approaches increase the level of complexity of system identi-
fication, compared with conventional LN models [71]. Some of
these studies also attempt to examine network components in
detail after determining whether and how such components are
comparable to the biological structure of neuronal networks
[41,42,92].
Fig. 3 [41,74,85] shows a typical setup of a CNN modeling
approach for the retina. To understand the fine structure of the
RF in the retinal circuit, it is important to understand the filters
learned by the CNNs. In contrast to studies in which a population
of retinal ganglion cells is used [42,92,94], the model can be simpli-
fied from a complicated retinal circuit to a simple network model,
as shown in Fig. 3(a); this makes it easier to refine the model of the
structural components at the single-cell level of the retina. Indeed,
it has been found that CNNs can learn to adjust their internal struc-
tural components to match the biological neurons of the retina
[42,85], as illustrated in Fig. 3(d).

Given that the retina has a relatively clear and simple circuit,
and the eyes have (almost) no feedback connection from the corti-
cal cortex, it is reasonable to model this system as a feedforward
neural network, similar to the principle of the CNN. It is certain
that the inhibitory neurons, such as the horizontal cells and ama-
crine cells, play a role in the functioning of the retina. In this sense,
potential neural networks with lateral inhibition and/or recurrent
units are desirable [86,94].

4.3. Decoding visual scenes from retinal spikes

For a retinal neuroprosthesis, an ideal encoder model is able to
deliver precise stimulation to electrodes for given visual scenes. To
achieve this, it is necessary to find an ideal decoder model that can
read out and reconstruct the stimuli of visual scenes from neuronal
responses.

The reconstruction of visual scenes by means of algorithms has
been studied over many years. Neuronal signals of interest include
functional magnetic resonance imaging (fMRI) human brain
activities [95–98], neuronal spikes in the retina [99–102] and lat-
eral geniculate nucleus [103], and neuronal calcium imaging data
in V1 [104]. However, the decoding performance of current
methods is rather low for natural scenes, whether static natural
images or dynamic videos. A particularly interesting example of
videos reconstructed from fMRI data can be found in Ref. [97].

For a retinal neuroprosthesis, one would expect to decode visual
scenes by using the spiking responses of a population of ganglion
cells. The decoding of visual scenes is possible when there are
enough retinal ganglion cells available, as shown in a recent study
with simulated retinal ganglion cells [100]. However, it is unclear
whether it is possible to use experimental data to achieve this
aim. This decoding approach can be described as a spike–image
decoder that performs an end-to-end training process from neu-
ronal spikes to visual scenes.

We recently developed such a decoder with a model of a deep
learning neural network. Our decoder can achieve much better
resolution than previous studies in reconstructing real-life visual
scenes—including both static images and dynamic videos—from
the spike trains of a population of retinal ganglion cells recorded
simultaneously [105].

The workflow of the spike–image decoder is illustrated in
Fig. 4 [105,106]. With a multi-electrode array setup, a large popu-
lation of retinal ganglion cells can be recorded simultaneously,
and their spikes can be extracted. Next, a spike–image converter
is used to map the spikes of every ganglion cell to images at the
pixel level. After that, an autoencoder deep learning neural net-
work is applied to transform the spike-based images to the orig-
inal stimulus images. In essence, this approach has two stages:
spike–image conversion and image–image autoencoding. Most
of the previous studies have focused on the first stage, and
involve optimizing a traditional decoder by means of statistical
models and/or ANN-based models in either a linear or nonlinear
fashion [95–103]. A recent study trained a separate CNN autoen-
coder as the second stage in order to enhance the quality of the
images [100]. Instead, we found that a better quality can be



Fig. 3. Encoding visual scenes by means of a simplified biophysical model with the CNN approach. (a) Simplification of retinal circuitry to a biophysical model: (top) A
feedforward network is represented as part of the retinal circuitry that receives incoming visual scenes and sends out spike trains from ganglion cells; (middle) a minimal
network with one ganglion cell and five bipolar cells; (bottom) a biophysical model with five subunits representing five bipolar cells, where each has a linear filter as the RF,
and a nonlinearity. The outputs of the five subunits are pooled and rectified by another output nonlinearity. The final output can be sampled to give a spike train. (b) A
representative CNN model trained with images as input and spikes as output. Here, there are two convolutional layers and one dense layer. (c) After training, the CNN model
shows the same RF as the biophysical model of the ganglion cell. (d) The convolutional filters after training resemble the RFs used by the biophysical model of the bipolar cells
in part (a). (a) is reproduced from Ref. [74], and (b–d) are reproduced from Refs. [41,85].

Fig. 4. Decoding visual scenes from neuronal spikes. (Top) Workflow of decoding visual scenes. Here, a video of a salamander swimming was presented to a salamander
retina in order to obtain a population of ganglion cells fired with a sequence of spikes. A population of spike trains is used to train a spike–image decoder to reconstruct the
same video. RFs of ganglion cells are mapped onto the image. Each colored circle is an outline of a RF. (Bottom) A spike–image decoder is an end-to-end decoder with two
stages: spike–image conversion, which is used to map a population of spikes to a pixel-level preliminary image; and image–image autoencoding, which maps every pixel to
the target pixels in the desired images. Note that the spike–image decoder has no unique architecture, and a state-of-the-art model could be adopted and optimized. The
exact preliminary images depend on the loss functions used for training. Details of the decoding process can be found in Ref. [105] and online. The data presented in this
figure are publicly available online [106]. RGC: retinal ganglion cell.
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achieved by means of an end-to-end training process that
includes both stages of spike-to-image conversion and image-
to-image autoencoding. However, the detailed architecture of
the networks used in these two stages could be optimized to an
even better quality using other possible deep learning neural
networks.
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5. Modeling the retina with SNNs and PGMs

SNNs are viewed as the third generation of ANN models; they
use neuronal spikes for computation, as the brain does [107]. In
addition to neuronal and synaptic states, the importance of spike
timing is considered in SNNs. It has been demonstrated that SNNs
are computationally more powerful than other ANNs with the
same number of neurons [107]. In recent years, SNNs have been
widely studied in a number of research areas [108–110]. In
particular, recent studies have shown that SNNs can be combined
with a deep architecture of multiple layers in order to obtain simi-
lar to or better performance than ANNs [111–115]. The spiking fea-
ture of SNNs is particularly important for the next generation of
neuromorphic computer chips [116,117].

The computational capability of a single neuron is limited.
However, when a population of neurons is connected to form a
network, the computational ability of the connected neurons can
be greatly expanded. In terms of the language of graphs [118], an
SNN can be denoted as a graph G = (V, E), where V represents the
set of neurons and E � V � V represents the set of synapses. Given
this equivalence between graphs and neural networks, a different
approach known as PGMs has been intensively studied in recent
years. Both ANNs and SNNs traditionally perform modeling as a
deterministic dynamical system, which has been demonstrated
by the classical Hodgkin–Huxley model [119]. However, the com-
putational principles used in the brain seem to go beyond this
viewpoint [57], leading to the use of PGMs.

An increasing volume of neuroscience evidence indicates that
humans and monkeys (and other animals as well) can represent
probabilities and implement probabilistic computation [120–
122]; thus, the perspective of the probabilistic brain is increasingly
recognized [123]. Therefore, it is reasonable to employ a network
of spiking neurons to implement probabilistic inference at the neu-
ral circuit level [123]. Increasing research interest has focused on
the combination of SNNs and probabilistic computation in order
to both understand the principles of brain computation and solve
practical problems with these brain-inspired principles.

Probabilistic inference studied in the framework of PGMs is tra-
ditionally a combination model of probability theory and graph
theory. The core idea of PGMs is to take advantage of a graph to
represent the joint distribution among a set of variables, where
each node corresponds to a variable and each edge corresponds
to a direct probabilistic interaction between two variables. With
the benefit of a graph structure, a complex distribution over a
high-dimensional space can be factorized into a product of low-
dimensional local potential functions. PGMs can be divided into
directed graphical models, such as Bayesian networks, and undi-
rected graphical models, such as MRFs. Bayesian networks can rep-
resent causality between variables, so they are often used to model
the processes of cognition and perception, while MRFs can repre-
sent a joint distribution by a product of local potential functions.

Implementing PGMs by SNNs is done in order to explain how
neuronal spikes can implement probabilistic inference. Inference
in SNNs includes two main questions related to probabilistic cod-
ing and to probabilistic inference, respectively:① How do the neu-
ral activities of a single cell or a population of cells (such as the
membrane potential and spikes) encode probability distribution?
and ② How do the dynamics of a network of spiking neurons
approximate the inference with probabilistic coding?

It is clear that probabilistic coding is the precondition of proba-
bilistic inference. Depending on how probability is expressed,
probabilistic codes can be divided into three basic types: ① those
that encode the probability of each variable in each state, such as
the probability code [124], log-probability code [125,126], and
log-likelihood ratio code [127,128]; ② those that encode the
parameters of a distribution, such as a probabilistic population
code that takes advantage of neural variability [129–131] (i.e., neu-
ral activities in response to a constant stimulus have a large vari-
ability, which suggests that the population activities of neurons
can encode distributions automatically); and③ those that consider
neural activities to be a sampling from a distribution [132,133],
which has been suggested by numerous experiments [134–137].

According to these coding principles, there are different ways to
implement inference with a network of neurons: ① Inference can
be implemented with neural dynamics using equations that are
similar to the inference equations of some PGMs over the time
course [125,126,128,138–140]. This approach is mainly suitable
for small-scale SNNs.② Inference can be implemented with neural
variational approximations; this is suitable for describing
the dynamics of a large-scale SNN directly [53,56,141–148].
③ Inference can be implemented with probabilistic population
coding and some neural plausible operations, including
summation, multiplication, linear combination, and normalization
[149–153]. ④ Inference can be implemented with neural sampling
over time, where the noise—such as the stochastic neural response
found in experimental observations [154,155]—is the key to neural
sampling and inference [156–160]. Similarly, it is possible to per-
form sampling by using a large number of neurons to sample from
a distribution at the same time [153,161–163], as it has been found
that the states of neurons in some areas of the brain follow special
distributions [164,165].

The studies described above were mostly conducted in an
abstract way in order to model the neural computation of the cor-
tex, including the visual cortex. We suggest that these computa-
tional techniques can be transferred to study retinal
computation. Fig. 5 [53,166,167] shows some examples in the
retina where there is a similarity at the network level between a
network of photoreceptors connected by gap junctions (Fig. 5(a)),
a MRF model (Fig. 5(b)), and the implementation of a MRF by a net-
work of spiking neurons consisting of clusters of WTA microcir-
cuits (Fig. 5(b)). As illustrated in Fig. 2, massive gap junctions
play a functional role as recurrent connections between retinal
neurons. A recent study shows that a network of rod photorecep-
tors with gap junctions can denoise images that can be further
enhanced by an additional CNN, as shown in Fig. 5(c). It was found
that this CNN, which included photoreceptors, in contrast to other
traditional CNNs, could achieve state-of-the-art performance in
de-noising [166]. Similarly, PGM has been used to denoise images
[168]. Recently, it was shown that PGMs can be implemented by
SNNs for various types of computations [53,163,169–172]; thus,
a similar performance, when using SNNs for denoising, can be
achieved [167], as illustrated in Fig. 5(d).

PGMs have been intensively studied and used for visual coding,
but are mostly used to model the cortical process [56]. Here, these
results discussed in this article suggest that it is possible to study
visual computation in the retina by combining several approaches
into a systematical framework, including classical PGMs, nontrivial
retinal circuit structures, gap junctions in particular, and recent
efforts regarding the implementation of PGMs by SNNs. Future
work is needed to study this framework with more inspiration
from the rich network structure of the retina, including the
recurrent neural network, WTA circuit, and feedforward neural
network, along with other ubiquitous motifs of cortical
microcircuits [37].
6. Discussion

Neuroprostheses are promising medical devices within the
framework of precision medicine. As they directly interact with
the brain of each individual patient, advancements in neuropros-



Fig. 5. Implementation of noise reduction computation with retinal photoreceptors, a PGM, and a spiking neural network. (a) A network of rod photoreceptors connected by
gap junctions. (b) A graph of a MRF represented by a network of spiking neurons with subnetworks as WTA circuits. Each variable of the MRF is represented by one WTA
neural network. (c) Noisy images can be denoised by means of a photoreceptor network, and then enhanced by CNN. (d) Noisy images can be denoised by a MRF implemented
by a recurrent spiking neural network without enhancement. In MRF models shown in (b) and (d), xi are variables represented by a WTA circuit. (a) and (c) are reproduced
from Ref. [166], (b) is reproduced from Ref. [53], and (d) is reproduced from Ref. [167].
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theses are necessary, with better computational algorithms for
neuronal signals in addition to better hardware designs. The major
difficulty in developing the computational capability of the retinal
neuroprosthesis is the need to track the complexity of spatiotem-
poral visual scenes.

In contrast to other neuroprostheses, for which the incoming
signals are in a low-dimensional space—such as the moving trajec-
tory of the body’s arms or legs in three-dimensional space, or an
auditory signal in a one-dimensional frequency space—visual sce-
nes are extremely complex and contain information in a spa-
tiotemporal fashion. Recent advancements in computer vision
have resulted in breakthroughs in the analysis of these complex
natural scenes, which make artificial intelligence up to a high atti-
tude than ever before.

Given the experimental advancements that have been made in
neuroscience, it is now possible to record a large population of
neurons simultaneously. In particular, in the retina, a population
of spike trains from hundreds of retinal ganglion cells can be
recorded as a result of exposing the retina to well-controlled visual
scenes, such as images and videos [173]. The newest technique can
record several thousand neurons simultaneously [174–176]. This
technology opens up a way to study the encoding and decoding
of visual scenes by using enough spikes to achieve superb
resolution.

Implants with electrodes are the most common of the current
approaches for retinal neuroprostheses, and have been used in
clinical trials. However, there are very limited computational
models embedded into such retinal prostheses [10,13,177]. With
an encoder embedded in the retinal prosthesis, it is possible to
process incoming visual scenes in order to better trigger ganglion
cells [10,13]. The benefit of using decoding models is to verify
the spiking patterns produced by the targeted downstream
neurons. Ideally, electrical stimulation should be able to achieve
a result that is close to the desired patterns of retinal neural
activity in a prosthesis. The traditional approach for comparing
the similarity between spiking patterns focuses on how to compute
the distance between two spike trains, both in general [178,179]
and in the context of the retinal prosthesis [180]. Another way of
doing this is to use decoding models to achieve better performance
from the neuroprosthesis [10,100,181]. Like other neuroprosthe-
ses, in which a closed-loop device can be employed to decode
the neuronal signal in order to control the stimulus, the signal
delivered by a retinal prosthesis should ideally be able to recon-
struct the original stimuli—that is, the dynamic visual scenes that
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are projected onto the retina. Thus, it is possible to use a decoding
model to reconstruct such visual scenes from the spiking patterns
produced by the retinal ganglion cells [10,100]. Direct measure-
ment of the precision of spiking patterns with the given decoding
model could play the functional role of controlling the electrical
stimulation patterns generated by the retinal neuroprosthesis,
which is the goal of a better and adjustable neuroprosthesis.

In this article, we focused on the issue of computational model-
ing for just one type of retinal neuroprosthesis, with embedded
electrodes. Of course, for retinal neuroprostheses as engineering
systems, many parallel and difficult issues remain, such as the
need for advanced materials, power designing, communication
efficiency, and other related hardware issues; these issues have
been covered in many well-written reviews [13,15,16,18]. It should
be noted that there are different types of visual implants, including
those with light retinal stimulation such as optogenetics and
chemical photoswitches, as well as implants in other parts of the
brain, beyond the retina. The computational issues raised in this
paper are also relevant to general visual prostheses. In addition
to artificial visual implants, another line of research focuses on
retinal repair by means of the biological manipulation of stem cells,
such as induced pluripotent stem cells [182–184]; in this context,
understanding the computational mechanisms of the biological
neurons and neuronal circuits is more relevant for encoding visual
scenes. For these applications, more effort may be needed to
include the biological principles found in the retina in potential
decoding models [34].

Given these advancements in neuroscience experiments and
prosthesis engineering, it is now time to advance our understand-
ing of visual coding by using retinal spiking data and ANN-based
models to obtain better computational algorithms to improve the
performance of retinal neuroprostheses. In this article, we
reviewed some of the recent progress that has been made in devel-
oping novel functional artificial intelligence models for visual com-
putation. Feature-based modeling approaches, such as deep CNN,
have made significant progress in analyzing complex visual scenes.
For some particular visual tasks, these models can outperform
humans [39]. However, the levels of efficiency, generalization
ability, and adaption or transfer learning between different tasks
in well-trained models are still far from a human level of perfor-
mance [55]. Sampling-based modeling with neuronal spikes has
emerged as a new approach that takes advantage of many factors
of the neuronal system of the brain [57], such as noise at the level
of single neurons and synapses [52,157,160]. With the generic
benefit of pixel representation of visual scenes, sampling models
can be easily used for various types of visual computation [168].
However, the efficiency of the learning algorithms used in
sampling models is still far from the flexibility of the brain’s
neuron system [185]. Nevertheless, these two approaches could
be combined by utilizing both of the advantages of feature and sam-
pling for visual computation. To achieve this, it is necessary to con-
sider the retina as a neuronal network in which visual computation
can be performed by different functional network structures. In
future, more work is needed to combine various network motifs
into a hybrid network, in which different visual information can
be extracted, processed, and computed. Such hybrid or hypercircuit
networks have only been explored very recently; in particular, the
WTA network motif has been shown to be a functional module
within a more complex hypercircuit network model for various
types of computations [52,53,110,186]. We expect that more stud-
ies will align with this research direction in future.

The modeling framework described in this paper is not limited
to application to the retina; it could also be applied to other visual
systems in the brain, and to other artificial visual systems. The
main feature of these algorithms is to make use of neural spikes.
Recent advancements in artificial intelligence computing align
with the development of the next generation of neuromorphic
chips and devices, in which the new data format is processed as
spikes or events [187–191]. Therefore, these methods can be
applied to neuromorphic visual cameras with spike or event sig-
nals as well. These computational retinal models can be used to
simulate a population of spikes for the encoding and decoding of
any given visual scene, including static natural images, dynamic
videos, and even real-time videos captured by a standard frame-
based camera [105]. By combining neuromorphic hardware with
event/spiking computing algorithms, the next generation of com-
putational vision will develop a better system for artificial vision
that extends beyond the purpose of retinal neuroprostheses.
Therefore, we believe that rich interactions between artificial intel-
ligence, computer vision, neuromorphic computing, neuroscience,
bioengineering, and medicine will be important in advancing our
understanding of the brain and developing the next generation of
retinal neuroprosthesis for an artificial vision system. The algo-
rithm part of the artificial eye, including the models for encoding
and decoding real-life visual scenes, will be particularly crucial
for such a systems-level approach.
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