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Abstract. We study the effects of an intermittent harmonic potential of strength

µ = µ0ν—that switches on and off stochastically at a constant rate γ, on an

overdamped Brownian particle with damping coefficient ν. This can be thought of

as a realistic model for realisation of stochastic resetting. We show that this dynamics

admits a stationary solution in all parameter regimes and compute the full time

dependent variance for the position distribution and find the characteristic relaxation

time. We find the exact non-equilibrium stationary state distributions in the limits—

(i) γ ≪ µ0 which shows a non-trivial distribution, in addition as µ0 → ∞, we get back

the result for resetting with refractory period; (ii) γ ≫ µ0 where the particle relaxes

to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength

of the original potential and (iii) intermediate γ = 2nµ0 for n = 1, 2. The mean first

passage time (MFPT) to find a target exhibits an optimisation with the switching

rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a

stationary value at large rates. MFPT also shows similar behavior with respect to the

potential strength. Our results can be verified in experiments on colloids using optical

tweezers.

1. Introduction

Brownian motion is a simple stochastic process that has found a wide range of

applications across many disciplines including natural sciences [1–3], ecology [4],

computer science [5], and finance [6]. The standard Brownian motion is described by

the Langevin equation

ẋ =
√
2D η(t), (1)

where η(t) is the Gaussian white noise with zero mean and delta-correlated two-point

correlation, and D = kBT/ν (where ν is the damping coefficient). Here the variance

increases linearly with time (σ2(t) = 2Dt) and the position distribuion never reaches a

stationary state. One of the ways to attain a stationary state is to put the Brownian

particle in a confining potential—the most popular one being the Ornstein-Uhlenbeck
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process where the confining potential is harmonic (V (x) = µx2/2) [7]. This process

reaches a steady state and the position distribution is given by the corresponding

Boltzmann distribution (∝ exp(−V (x)/(kBT ))).

Another way of reaching a stationary state is by adding a stochastic resetting [8]

to the normal Brownian dynamics. Stochastic resetting refers to random interuptions

and restarting of a dynamical process [9]. Early motivation for stochastic resetting

was because of its relevance to search processes where a searcher tries to find a target

object for a while, upon an unsuccessful attempt, it returns to the initial location

and restarts the process of searching. Since the last decade stochastic resetting has

made a profound impact in the field of nonequilibrium statistical physics because of

its rich features— attainment of a nonequilibrium stationary state at long times [8],

optimisation of search times [10], dynamical transition in relaxation to the stationary

states, etc. The effect of resetting has been studied in a wide range of systems—

diffusive processes such as Brownian motion, random walks and Lévy walks and Lévy

flights [11–19], random acceleration process [20], active particles [21–24], enzymatic

reactions [25, 26], active transport in living cells [27], fluctuating interfaces [28, 29],

reaction-diffusion systems [30], Ising model with Glauber dynamics [31], asymmetric

exclusion processes [32, 33]. Most of the works consider instantaneous resetting and

restart, however recently the effect of refractory period has been studied [34] where

the particle is reset and remains inactive at the resetting position for sometime before

restarting.

In spite of vast amount of theoretical works, experiments in resetting have been

very limited [35, 36] due to the challenging nature of the setup. In [35] an optical

tweezer is turned on, kept on for a pre-determined period and then turned off. During

the time period when the tweezer is turned on no measurements are made. In the

other experiment [36] the particle diffuses freely and after exponentially distributed

time intervals the particles are driven back to the starting position mimicking resetting

events. Similar theoretical models with different return protocols have been proposed

recently [37–42].

In this paper we consider a simple scenario where a particle executing standard

Brownian motion is subjected to an intermittent harmonic potential switched on and

off at a constant rate. We show that this process retrieves many known results and

properties of stochastic resetting in certain regimes. Clearly, switching off the potential

allows the free Brownian motion of the particle, while the on-state produces an attractive

motion of the particle towards the centre of the potential, which actually brings in the

effect of resetting. One advantage of this process is that an experimentalist does not need

to track the return or drive the particle to the resetting position in a deterministic way.

A variant of this problem was studied very recently where linear confining potential was

considered [43]. However, harmonic potentials are much easier to set up in experiments

using optical tweezers and any trapping potential can be approximated to a harmonic

potential near its minima. From this viewpoint our findings in this paper can easily be

verified in experiments.
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The rest of the paper is arranged as follows. First, in section 2, we discuss the

model briefly. Next, in section 3 we study the time-dependent behavior of the variance

of the displacement starting with the both off and on state of the potential. In section 4

we discuss the stationary state distribution of the displacement in detail with a brief

discussion about the mean first passage time in section 5. Finally, we summarize our

findings with conclusions in section 6.

2. Model and Results

We consider a Brownian particle in a stochastically fluctuating, confining potential

V (x, t) which is turned on or off stochastically at a constant hazard rate γ.

Mathematically this can be modelled by the Langevin equation

ẋ = − 1

ν
∂xV (x, t) +

√
2D η(t) with V (x, t) = λ(t)V (x) (2)

where λ(t) is a dichotomous noise that switches between 0 and 1, stochastically, at a

constant rate γ and η(t) is a Gaussian white noise with zero mean and delta-correlator

〈η(t)η(t′)〉 = δ(t − t′). We consider V (x) to be a harmonic potential µx2/2. Switching

off the potential allows the overdamped Brownian motion of the particle of the form

ẋ(t) =
√
2D η(t). As soon as the harmonic trap is turned on, the dynamics of the particle

becomes an Ornstein-Uhlenbeck process ẋ(t) = −µ0x(t)+
√
2D η(t), where µ0 = µ/ν can

be thought of as an effective potential strength, normalized by the damping coefficient.

From this point onward, we will refer the potential strength in terms of this normalized

strength µ0. Figure 1 shows a typical trajectory of a particle undergoing the dynamics

described by Eq. (2).

Figure 1. Typical trajectory of a particle under intermittent harmonic trap which

switches on and off at rate γ. The red denotes phases when the harmonic trap is off,

while the blue denotes phases when the harmonic trap is on.

In the following, we summarize the main results obtained in this paper.

• We calculate the full time dependent variance and see that this process always

reaches a nonequilibrium stationary state. The leading order relaxation time comes
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out to be (γ+µ0−
√

γ2 + µ2
0)

−1 beyond which the variance relaxes to the stationary

value D(2/µ0 + 1/γ).

• We solve the stationary Fokker-Planck equation and obtain the exact characteristic

function. This we invert in certain limiting cases to obtain the exact stationary

state distributions, which show very interesting behavior (see figure 2): (i) For

γ ≪ µ0 a distinct central Gaussian region followed by exponential tails is seen.

The exponential tails have the exact same decay exponent as that of a standard

Brownian particle undergoing resetting events at a constant rate, with the switching

rate playing the role of the resetting rate. The central Gaussian region becomes

narrower as µ0 keeps on increasing and in the limit µ0 → ∞ it becomes a

δ-function—which is precisely the result for diffusion in presence of stochastic

resetting with Poissonian refractory periods. (ii) for γ ≫ µ0 the stationary

distribution is same as that of an Ornstein-Uhlenbeck process, but with a trap

strength µ0/2. We also calculate the distribution for some specific intermediate

values of γ and µ0 and predict the general functional form for the stationary

distribution to be a combination of Gaussian and exponential function.

Ornstein Uhlenbeck Process
with trap strength 

Resetting with Poissonian 
refractory periods

 Combination of Gaussian 
and exponential

Figure 2. Stationary state phase diagram for a Brownian motion under intermittent

harmonic potentials µ0x
2/2 showing the different limiting behaviors.

• We numerically investigate the mean first-passage time (MFPT) for this process in

presence of an absorbing boundary away from the minima of the harmonic potential.

For a fixed µ0 the MFPT reaches a minima for a particular value of γ, however for

very large γ it saturates to a constant value unlike in the case of resetting where

MFPT actually diverges as the resetting rate goes to ∞. For a fixed γ the variation

of MFPT with µ0 shows a similar behavior i.e., it reaches a minima and then

saturates to a constant value for large µ0. We analytically predict the saturation

values in both cases which shows excellent agreements with our simulations.

In the following section we compute the full time dependent variance for the

dynamics.

3. Moments

An analysis of the moments provides a good basic understanding of a stochasitc process.

For this process, the Gaussian nature of the white noise and the symmetry of the trap
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ensures that the distribution is symmetric at all times and thus all the odd moments of

the distribution vanish. In this section we look at the time evolution of the first non-zero

moment—the variance. Unlike normal Brownian motion, Ornstein-Uhlenbeck process

or instantaneous resettings, it is difficult to calculate the exact time dependent moments

from the Langevin equations directly, so we use a different procedure. At a particular

time t the trap can be on or off, thus the probability that the particle is at position x

at time t has two components—Pon(x, t) and Poff(x, t), with the total probability being

P (x, t) = Pon(x, t) + Poff(x, t). The full Fokker-Planck equations governing the time

evolutions of these probabilities can be written as,

∂Pon(x, t)

∂t
= µ0

∂

∂x
(xPon(x, t)) +D

∂2Pon(x, t)

∂x2
− γPon(x, t) + γPoff(x, t), (3)

∂Poff(x, t)

∂t
= D

∂2Poffx, t

∂x2
− γPoff(x, t) + γPon(x, t). (4)

First we take the Fourier transform with respect to the position variable x, and then

the Laplace transform with respect to the time variable t of both the Eqs. (3) and (4),

sP̃on(k, s) = −Dk2P̃on(k, s)− µ0k
∂P̃on(k, s)

∂k
− γP̃on(k, s) + γP̃off(k, s). (5)

sP̃off(k, s)− 1 = −Dk2P̃off(k, s)− γP̃off(k, s) + γP̃on(k, s), (6)

where we use the conventions for Fourier and Laplace transforms as

P̂j(k, t) =

∫ ∞

−∞

Pj(x, t) e
−ikx dx, and P̃j(k, s) =

∫ ∞

0

P̂j(k, t) e
−st dt, (7)

respectively for the index j ∈ {on, off}. We have taken the initial condition that

the particle starts from the origin in the off state i.e., Poff(x, t = 0) = δ(x), and

Pon(x, t = 0) = 0.

Solving for P̃off from Eq. (6) as

P̃off(k, s) =
γ

Dk2 + s+ γ
P̃on(k, s) +

1

Dk2 + s+ γ
, (8)

and substituting its value in Eq. (5) we obtain

∂P̃on(k, s)

∂k
= f(k, s)P̃on(k, s) + g(k, s). (9)

where, f(k, s) = − 1
µ0k

(
Dk2 + s+ γ − γ2

Dk2+s+γ

)
and g(k, s) = γ

µ0k(Dk2+s+γ)
. The general

solution of the above differential equation can be written as,

P̃on(k, s) = P̃on(0, s)e
∫ k

0
f(k1,s)dk1 + e

∫ k

0
f(k1,s)dk1

∫ k

0

g(k1, s)e
−

∫ k1
0

f(k2,s)dk2 , (10)

where k1 and k2 are introduced just as the dummy variables of integrations with respect

to the Fourier variable. The total probability density is P (x, t) = Poff(x, t) + Pon(x, t),

which implies P̃ (k, s) = P̃off(k, s) + P̃on(k, s) in the Fourier-Laplace space. Thus, using

Eq. (8) we have

P̃ (k, s) = P̃off(k, s) + P̃on(k, s)

= P̃on(k, s)

(
1 +

γ

Dk2 + s+ γ

)
+

1

Dk2 + s+ γ
. (11)
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Inverting the expression of P̃ (k, s) in Eq. (11) to get its value in the (x, t) domain is

a highly nontrivial task. We, however, are interested in obtaining the time evolution

of the moments, for which we need the derivatives of Eq. (11) as k → 0. The general

relation between the nth moment of a distribution p(x) and its Fourier transform p̂(k)

is given by

〈xn〉 = (−i)n lim
k→0

∂np̂(k)

∂kn
,

when the nth absolute moment of p(x) exists. Therefore, from Eq. (11) we calculate the

second derivative of P̃ (k, s) with respect to k as

∂2P̃ (k, s)

∂k2
= γP̃on(k, s)

(
8D2k2

(γ +Dk2 + s)3
− 2D

(γ +Dk2 + s)2

)

− 4γDk

(γ +Dk2 + s)2
∂P̃on(k, s)

∂k
+

∂2P̃on(k, s)

∂k2

(
γ

γ +Dk2 + s
+ 1

)

+
8D2k2

(γ +Dk2 + s)3
− 2D

(γ +Dk2 + s)2
. (12)

The full-time dependent variance in the Laplace domain is obtained by taking the limit

k → 0 of the above equation. Taking this limit is quite non-trivial and has been worked

out in detail in the Appendix A. We quote the final result here,

σ2
off(t) =

D(2γ + µ0)

γµ0

− De−2γt

γ
− D

µ0

cosh(t
√

γ2 + µ2
0)

− De−t(γ+µ0)

µ0

√
γ2 + µ2

0

(
(γ + µ0) sinh(t

√
(γ2 + µ2

0))
)
, (13)

where σ2
off(t) denotes the variance when the particle starts from off state. Similarly, if

we start from the on state, the initial conditions used in Eqs. (5) and (6) change (see

details in the Appendix A) and the corresponding variance turns out to be

σ2
on(t) =

D(2γ + µ0)

γµ0

+
De−2γt

γ
− D

√
γ2 + µ2

0

γµ0

e−t(γ+µ0) sinh(t
√

γ2 + µ2
0)

−D(γ + µ0)

γµ0

e−t(γ+µ0) cosh(t
√

γ2 + µ2
0). (14)

Taking limit t → ∞ in Eqs. (13) and (14) we find that the two variances tend to the

same steady state value D(2/µ0+1/γ), irrespective of the initial state. This observation

indicates that the particle forgets its initial condition after sufficiently long time. The

predictions in Eqs. (13) and (14) are compared with numerical simulations in Fig. 3

(a). The variance reaches the stationary value exponentially,

σ2(t → ∞)− σ2(t) ∼ e
−t

(
γ+µ0−

√
γ2+µ2

0

)

. (15)

We compare the decay in Eq. (15) with numerical simulations in Fig 3 (b).
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Figure 3. Panel (a): Variance of position of the particle is plotted versus time for the

both off and on initial state of the harmonic potential. Discrete symbols are simulation

results which are showing excellent agreements with the analytical results of Eqs. (13)

and (14) respectively as shown by solid lines. The dashed horizontal line indicates the

stationary value of the variance. Panel (b) shows the approach of the time dedpendent

variance to its stationary value. Red dashed line denotes the analytical slope of the

form of Eq. (15). In both plots D = µ0 = γ = 1. Simulation results are averaged over

8 × 105 number of realizations with time step of integration ∆t = 10−3.

4. Stationary Distribution

Having an indication from the calculation of the moments that the distribution reaches a

stationary state, we try to obtain the corresponding nonequilibrium stationary (NESS)

distribution. At large time, we assert that both Pon and Poff become independent of

time, individually. Therefore, to obtain the stationary distribution of such states we set

the lhs of the Fokker-Planck Eqs. (3), (4) to 0, to obtain

µ0
∂

∂x
(xPon(x)) +D

∂2Pon(x)

∂x2
− γPon(x) + γPoff(x) = 0, (16)

D
∂2Poff(x)

∂x2
− γPoff(x) + γPon(x) = 0. (17)

Note that we use the same notation for the stationary probabilities as the time dependent

ones for simplicity. To solve the above equations, it is easier to work in the Fourier

space where the equation governing Poff(x) becomes an algebraic one. Thus upon doing

a Fourier transform as defined earlier, we have

−Dk2P̂on(k)− µ0
∂

∂k
(kP̂on(k)) + (µ0 − γ)P̂on(k) + γP̂off(k) = 0, (18)

−Dk2P̂off(k)− γP̂off(k) + γP̂on(k) = 0. (19)

Writing P̂off(k) in terms of P̂on(k), using Eq. (19), and replacing it in Eq. (18) we get a

single differential equation in terms of P̂on(k) as,

µ0
∂P̂on(k)

∂k
+Dk

(
1 +

γ

γ +Dk2

)
P̂on(k) = 0. (20)
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The solution of Eq. (20) can be easily obtained as

P̂on(k) =
C0

(γ +Dk2)γ/(2µ0)
e−Dk2/(2µ0). (21)

where C0 is a numerical constant independent of k. Now, C0 can be obtained to be

γγ/(2µ0)/2 using the fact that P̂ (0) = P̂on(0) + P̂off(0) = 1. Thereafter, using Eq. (19),

we have the full distribution in k-space as

P̂ (k) =
e−Dk2/(2µ0)

2(1 +Dk2/γ)γ/(2µ0)

(
1 +

1

1 +Dk2/γ

)
. (22)

To get the stationary distribution in real space we have to invert P̂ (k), which

unfortunately does not yield any closed form expression for any general values of γ,

D, and µ0. However, it turns out that we can write P (x) as a convolution, which gives

us information about some of the asymptotes of the distribution in real space. We can

rewrite Eq. (22) as,

P̂ (k) =
1

2

(
e−Dk2/(2µ0)

f1(k)α
+

e−Dk2/(2µ0)

f1(k)1+α

)
, (23)

where f1(k) = (1 + Dk2/γ) and α = γ/2µ0. The inverse Fourier transform of the

individual terms can be evaluated exactly as,

F−1[e−Dk2/(2µ0)] =
1√

2πD/µ0

e−
µ0x

2

2D = g1(x) (24)

F−1
[
f1(k)

−α
]
=

√
π

Γ(α)

(√
γ

D

|x|
2

)α−1/2

K 1

2
−α

(√
γ

D
|x|
)

= g2(x, α) (25)

where Kn(z) is the modified Bessel function of the second kind. Thus, the full

distribution is,

P (x) =
1

2

(∫ ∞

−∞

dy g2(y, α)g1(x− y) +

∫ ∞

−∞

dy g2(y, α + 1)g1(x− y)

)
. (26)

This integral gives the exact stationary state of the particle for any value of γ, D and

µ0. Unfortunately, a closed form expression for the above integral is difficult to obtain.

However, for asymptotic parameter values we do obtain the limiting distributions

exactly.

If the rate of switching the trap is very small with respect to the strength of the

potential, i.e., γ/µ0 is very small, approximating f1(k)
α by its limiting value 1, we obtain

P̂ (k) ≈ 1

2

(
e−Dk2/(2µ0) +

e−Dk2/(2µ0)

(1 +Dk2/γ)

)
. (27)

Upon Fourier inversion, the first term yields a Gaussian distribution with variance

D/(2µ0), while the second term can be evaluated by convolution to obtain,

P (x) =
1

2

(
e−µ0x2/(2D)

√
2πD/µ0

+

√
γ/Deγ/(2µ0)

4
e−

√
γ/D|x| Erfc

(√
γ/D

2µ0

−
√

µ0

2D
|x|
))

, (28)
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Figure 4. Stationary distribution of position P (x) is plotted in the limit γ ≪ µ0

with the diffusion constant D = 1. In (a) we plot P (x) for different switching rate

γ with a fixed µ0 = 1, whereas in (b) P (x) is plotted for different µ0 with a fixed

γ = 10−3. Discrete symbols in each plot are from the numerical simulation which

are showing excellent agreements with the analytical result of Eq.(28) as shown by

solid lines. Simulation results are averaged over 1.28×108 number of realizations with

∆t = 10−3. The stationary state results are obtained by running the simulation for

time t = 104.

where Erfc(z) is the complementary error function. Near the origin the first term

dominates, while the behavior at the tails is dictated by the second term. When the trap

is turned on, the typical time taken by a particle to relax to the stationary distribution is

∼ µ−1
0 , however, here γ/µ0 ≪ 1, i.e., the average time to turn the trap off again (∼ γ−1)

is much larger than µ−1
0 . As a result the particle spends some time near the minima

of the trap, with the usual Boltzmann distribution (Gaussian distribution for our case)

as dictated by the trap, while outside this region the distribution is governed by same

exponential tails as the NESS of a diffusion in the presence of instantaneous resetting.

The results in Eq. (28) is compared with the numerical simulations in Fig. 4 (a), where

we see excellent match. Note that the central Gaussian part becomes narrower as we

increase the strength of the potential (as shown in Fig. 4 (b)) and in the limit µ0 → ∞,

the first term in Eq. (28) becomes a δ-function and we get

P (x) ≈ 1

2

(
δ(x) +

√
γ/D

2
e−

√
γ/D|x|

)
, (29)

where we have also used the limiting value of Erfc(−z) as z → ∞. When µ0 → ∞
the particle returns to the origin almost instantaneously as the trap is turned on, and

remains there until it is turned off. Physically, this corresponds to the instantaneous

resetting with refractory periods where instantaneous resetting events are followed by

a period of immobility at the resetting position. Indeed Eq. (29) is exactly the same

as obtained in the reference [34] for resetting with Poissonian refractory periods. In

fact, if the switching on and off rates of the trap are considered to be different (γon and

γoff, respectively), then one can obtain the results of instantaneous resetting without
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Figure 5. Stationary distribution of position P (x) are plotted in the limits (a) γ ≫ µ0

and (b) γ ≈ µ0 respectively with the diffusion constant D = 1. In both diagrams we

plot for different switching rates γ with fixed µ0 = 0.1 and µ0 = 1 respectively. Discrete

symbols in both plots indicate simulation results which show excellent agreement with

the analytical predictions denoted by solid lines. In plot (a) the solid line represents

Eq. (31); in (b) the solid lines for γ = 2, 4 represent Eq. (32), (33) respectively, while

the same for γ = 3 is obtained from numerical integration of Eq. (26)). Simulation

results are averaged over 1.28 × 108 number of realizations with ∆t = 10−3. The

stationary state results are obtained by running the simulation for time t = 102.

refractory period [8] in the limit γoff/γon ≪ 1 (see Appendix B for a detailed discussion).

On the other hand, when the switching rate of the potential is large with respect

to the potential strength (γ/µ0 ≫ 1), Eq. (22) can be approximated as

P̂ (k) ≈ e−Dk2/µ0 , (30)

using (1 +Dk2/γ)γ/(2µ0) ≈ (1 +Dk2/γ)1+γ/(2µ0) ≈ eDk2/(2µ0) for large γ. Thus for very

large switching rate (γ → ∞) the stationary distribution becomes independent of γ,

and Eq.(30) upon Fourier inversion, yields a Gaussian distribution

P (x) ≈ e−µ0x2/4D

√
4πD/µ0

. (31)

Note that this is the Boltzmann distribution of an Ornstein-Uhlenbeck process where

the trap strength is µ0/2. This indicates that as the trap switches on and off very

fast (as γ → ∞), the particle experiences an average potential of strength µ0/2 and

relaxes to the corresponding Boltzmann distribution. We compare this with numerical

simulations in Fig. 5 (a), and the excellent match confirms our prediction.

For γ ∼ µ0 it is very difficult to obtain any closed form expression for the stationary

state distribution, but one can obtain closed form expressions for γ = 2nµ0, for any fixed

integral value of n. However, it is difficult to write any closed form expression in terms

of an arbitrary integer n. For example, when n = 1, we have

P (x) =
e−

µ0x
2

2D

2
√

2πD
µ0

+
e

16
√

D
µ0

e−|x|
√

2µ0

D

[(
2|x|

√
µ0

D
+
√
2

)
Erfc

(
1− |x|

√
µ0

2D

)
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+

(
2|x|

√
µ0

D
−

√
2

)
Erfc

(
1 + |x|

√
µ0

2D

)]
. (32)

Similarly, for n = 2, we have

P (x) =
3e−

µ0x
2

2D

4
√
2π
√

D
µ0

+
e−|x|

√
4µ0

D

32D3/2
e2
√
µ0

[((
2|x|

(√
Dµ0 + 2µ0|x|

)
−D

)
Erfc

( |x|√Dµ0 + 2D√
2D

))

−
((

2|x|
(√

Dµ0 − 2µ0|x|
)
+D

)
Erfc

( |x|√Dµ0 − 2D√
2D

))]
. (33)

We compare these with the numerical simulations in Fig. 5 (b), along with the case

γ = 3µ0. Although there are no formal expressions, since the stationary distribution

is a well behaved function for all values of γ, µ0 and D, as can be understood from

its characteristic function, one can anticipate the general form for the stationary

distribution to be

P (x) ∼ e−µ0x2/(2D)h1(x
2) + e−

√
γ/D|x|h2(|x|), (34)

where h1(x) and h2(x) are polynomials of x. Near the origin, the fluctuations are

Gaussian, while tails decay exponentially.

5. Mean First Passage Times

Another important physical quantity for stochastic problems is the first-passage

time distribution. The corresponding first-passage probability F (x0, t)dt denotes the

probability that a particle starting from x0 at t = 0 reaches the target position (or an

absorbing boundary) xabs for the first time between times t and t+dt. The mean of this

distribution is called the mean first passage time(MFPT). This is particularly relevant

in resetting problems as introduction of resetting dynamics optimise the MFPT— i.e.,

the mean time to reach the target is minimised for some optimal value of the resetting

rate. Here, we have two parameters, namely the potential switching rate γ and the trap

strength µ0, we numerically look at how the MFPT depends on these parameters.

We consider a particle starting from λ(t = 0) = 0 state from x(0) = 0 with

an absorbing boundary located at xabs = −1. Figure 6(a) shows that for a fixed µ0,

the MFPT shows a non-monotonic behavior— initially it decreases with increase in γ,

reaches a minimum at some optimal switching rate γ∗ and then increases with increase

in γ. When γ → 0 the dynamics is very much like the normal Brownian motion for

which MFPT diverges owing to the trajectories that take particle far away from the

target. As γ increases the particle switches between a free Brownian particle and an

Ornstein Uhlenbeck particle, the effect of the trap forces the particle to return close

to the minima of the potential, thus cutting out the trajectories which take larger

excursions away from the target. When γ is increased further, the MFPT increases and

saturates to a constant value. This is unlike instantaneous resetting where it always

diverges with increasing resetting rate beyond γ∗, because in the limit of a very high

switching rate, the particle is essentially trapped at the resetting position all the time
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Figure 6. Numerical result of the mean first passage time of a particle starting from

λ(0) = 0 state at x(0) = 0 with an absorbing boundary at xabs = −1 and diffusion

constant D = 1 are plotted versus the switching rate γ and harmonic potential strength

µ0 in (a) and (b) for different µ0 and γ respectively. Solid lines in (a) and (b) correspond

to the analytical estimations of the saturation values of MFPT from Eqs. (35) and (36)

respectively. Simulation results are averaged over 2.56 × 104 number of realizations

with ∆t = 10−5.

restricting it from reaching the absorbing boundary in a finite time. However, in our

case, we obtain a saturation in MFPT with increasing switching rate. A heuristic

argument for this saturation can be given in terms of the stationary distribution in the

regime γ ≫ µ0 without any absorbing boundaries. The particle actually feels that it is

in a harmonic potential of strength µ0/2 and relaxes to the corresponding Boltzmann

distribution which is independent of γ as shown in Eq. (31)—thus heuristically, when

γ ≫ µ0, MFPT saturates to the corresponding stationary value. In fact this stationary

value is exactly same as that of an Ornstein-Uhlenbeck process with the trap strength

µ0/2 (keeping the starting position and absorbing boundary same in both cases). The

solid lines in Fig. 6 (a) indicate the values of MFPT for an Ornstein-Uhlenbeck process

with trap strength µ0/2

MFPTou = lim
s→0

1

s

(
1− e−x2

abs
µ0/(8D) D−2s/µ0

(0)

D−2s/µ0
(−xabs)

)
, (35)

where Dn denotes parabolic cylinder function of order n (See Appendix C).

If we change the strength of the harmonic potential (µ0), keeping γ fixed then

also the MFPT shows a non-monotonic behavior, see Fig. 6 (b). For µ0 → 0 we

recover free Brownian motion where MFPT diverges. As µ0 is increased, the MFPT

decreases, hits a minima and eventually reaches a saturation value. In this limit, the

saturatation of MFPT can be understood heuristically from the distribution without

any absorbing boundary for very large µ0 (which corresponds to the stochastic resetting

with Poissonian refractory periods as shown in Eq. (29)), which is independent of µ0.

In fact, the saturation value can be predicted exactly using the result for resetting with
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refractory periods [34]

MFPTref =
2

γ

(
e
√

γ/D |xabs| − 1
)

(36)

(see Appendix D for more details). This is plotted using solid lines Fig. 6 (b) and

excellent match confirms our prediction.

6. Summary and Conclusion

In this paper we study a Brownian particle under the effect of an intermittent harmonic

potential µ0, which switches on and off at a constant rate γ. We show that this process

reaches a stationary state and calculate the full time dependent variance that gives us

the leading order relaxation time scale for the system as (µ0+γ−
√

µ2
0 + γ2)−1. We then

solve the stationary Fokker Planck equation and find the exact characteristic function

of the nonequilibrium stationary state. We invert exactly for few special cases: (i) for

γ ≪ µ0 there is a distinct central Gaussian region followed by exponential tails. The

central Gaussian region becomes narrower as µ0 keeps on increasing and in the limit

µ0 → ∞ it becomes a δ-function—which is precisely the result for diffusion in presence

of stochastic resetting with exponentially distributed refractory period. (ii) for γ ≫ µ0

the stationary distribution is same as that of an Ornstein-Uhlenbeck process with trap

strength µ0/2. We also compute the distribution for a few special intermediate cases

γ = 2µ0, 4µ0 and conclude that for γ ∼ µ0 the stationary state is a combination of

Gaussian and exponential distributions. Finally, we investigate the mean first-passage

time numerically—we see that the MFPT is optimised w.r.t. both the switching rate and

trap strength when the other is fixed. We also numerically investigate the saturation

of MFPT with respect to the switching rate and potential strength, and present an

interesting heuristic analytical estimation of these saturation values.

There are several possible extensions and open questions related to our work. Let us

address the theoretical questions first. An obvious question is how the obtained physical

behaviors change when we have a general confining potential of the form of |x|p. We

look at the MFPT numerically, however it would be interesting to see if one can solve

the Fokker-Planck equation with the aborbing boundary conditions exactly and see

transitions similar to [17]. Another generalisation would be to consider the on and off

switching rates to be different (γon and γoff say) as in [43] and see if the MFPT shows

transitions in the γon − γoff plane. One can also apply this protocol on other diffusive

models like Levy flights, random acceleration processes, active particles like RTP [44,45],

ABP [46, 47] and DRABP [48]. We expect similar kind of phase diagram (figure 2) for

any stochastic process under intermittent attractive potential—at large switching rates

the distribution relaxes to the normal steady state distribution, as in the presence of a

trap with renormalised trap strength, and to resetting with poissonian refractory periods

at very small switching rates. Our predictions can be verified in colloidal systems using

optical tweezers, for the confining potential in optical traps is inherently harmonic in

nature [49,50] , and hence, does not require any additional experimental modifications.
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In fact, experiments following this protocol can also be performed on active matter like

bacteria and Janus swimmers.
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Appendix A. Fluctuating trap: calculation of relaxation time scales from

moments

The Fokker-Planck equation for the density function of the position of a Brownian

particle in a fluctuating harmonic potential can be written as

∂Poff

∂t
= D

∂2Poff

∂x2
− γPoff + γPon, (A.1)

∂Pon

∂t
= D

∂2Pon

∂x2
+ µ0

∂

∂x
(xPon)− γPon + γPoff. (A.2)

We now intend to calculate the time-dependent second moment to understand the

relaxation time scales for this system. Therefore, first we take the Fourier transform

with respect to the position variable x, and then the Laplace transform with respect to

the time variable t of both the Equation (A.1) and Equation (A.2). This gives us the

Equation (A.1) and Equation (A.2) in the Fourier-Laplace domain as

sP̃off(k, s)− P̂off(k, 0) = −Dk2P̃off(k, s)− γP̃off(k, s) + γP̃on(k, s), (A.3)

sP̃on(k, s)− P̂on(k, 0) = −Dk2P̃on(k, s)− µ0k
∂P̃on(k, s)

∂k
− γP̃on(k, s) + γP̃off(k, s), (A.4)

where we use the conventions for Fourier and Laplace transforms as

P̂j(k, t) =

∫ ∞

−∞

Pj(x, t) e
−ikx dx, and P̃j(k, s) =

∫ ∞

0

P̂j(k, t) e
−st dt, (A.5)

respectively for the index j ∈ {on, off}. Assuming that the particle starts from the origin

with the potential in the off state, we have the initial conditons as Poff(x, t = 0) = δ(x),

and Pon(x, t = 0) = 0. With the help of these initial conditions, Equations (A.3) and

(A.4) become

sP̃off(k, s)− 1 = −Dk2P̃off(k, s)− γP̃off(k, s) + γP̃on(k, s), (A.6)

sP̃on(k, s) = −Dk2P̃on(k, s)− µ0k
∂P̃on(k, s)

∂k
− γP̃on(k, s) + γP̃off(k, s). (A.7)

Solving for P̃off from Equation (A.6) as

P̃off(k, s) =
γ

Dk2 + s+ γ
P̃on(k, s) +

1

Dk2 + s+ γ
, (A.8)

and substituting its value in Equation (A.7) we obtain

∂P̃on(k, s)

∂k
= − 1

µ0k

(
Dk2 + s+ γ − γ2

Dk2 + s+ γ

)
P̃on(k, s) +

γ

µ0k(Dk2 + s+ γ)
.(A.9)
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Defining

f(k, s) = − 1

µ0k

(
Dk2 + s+ γ − γ2

Dk2 + s+ γ

)
, and g(k, s) =

γ

µ0k(Dk2 + s+ γ)
,(A.10)

we see that P̃on can be solved from Equation (A.9), in the Fourier-Laplace domain, as

P̃on(k, s) = P̃on(0, s)e
∫ k

0
f(k1,s)dk1 + e

∫ k

0
f(k1,s)dk1

∫ k

0

g(k1, s)e
−

∫ k1
0

f(k2,s)dk2 , (A.11)

where k1 and k2 are introduced just as the dummy variables of integrations with

respect to the Fourier variable. Since the total probability density is P (x, t) =

Poff(x, t) + Pon(x, t), which again implies P̃ (k, s) = P̃off(k, s) + P̃on(k, s) in the Fourier-

Laplace space, we obtain with the help of Equations (A.8) and (A.11) that

P̃ (k, s) =

(
P̃on(0, s)e

∫ k

0
f(k1,s)dk1 + e

∫ k

0
f(k1,s)dk1

∫ k

0

g(k1, s)e
−

∫ k1
0

f(k2,s)dk2dk1

)

(
1 +

γ

Dk2 + s+ γ

)
+

1

Dk2 + s+ γ
. (A.12)

Inverting the expression of P̃ (k, s) in Equation (A.12) to get its value in the (x, t) domain

is a highly nontrivial task. Therefore, we choose an alternate strategy to calculate its

second moment without inverting P̃ (k, s). From the theory of characteristic function we

know that if in the limit k → 0 the second derivative of the characteristic function has a

finite value, then the modulus of this limiting value is equal to the second moment of the

distribution. With this fact in mind we first intend to calculate the second derivative of

P̃ (k, s), which in the limit k → 0 will give us the second moment in the Laplace domain.

Using Equation (A.8) we obtain

P̃ (k, s) = P̃off(k, s) + P̃on(k, s)

= P̃on(k, s)

(
1 +

γ

Dk2 + s+ γ

)
+

1

Dk2 + s+ γ
. (A.13)

Taking limit k → 0 on both sides of the Equation (A.13), and using the continuity

properties of the characteristic functions, we obtain

P̃ (0, s) = P̃on(0, s)

(
1 +

γ

s+ γ

)
+

1

s+ γ
. (A.14)

Since P (x, t) is the total probability density which integrates to 1 on the whole real line,

the limit of its charateristic function P̂ (k, t), as k → 0, is 1. Therefore, we can write

from Equation (A.14)

lim
k→0

∫ ∞

0

P̂ (k, t) e−st dt = P̃on(0, s)

(
1 +

γ

s+ γ

)
+

1

s+ γ
. (A.15)

Taking the limit inside the integral on the LHS of Equation (A.15), which is permitted

by the Dominated Convergence Theorem (DCT), we obtain
∫ ∞

0

1 e−st dt = P̃on(0, s)

(
1 +

γ

s+ γ

)
+

1

s+ γ
,

⇒ 1

s
= P̃on(0, s)

(
1 +

γ

s+ γ

)
+

1

s+ γ
,
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⇒ P̃on(0, s) =
γ

s(s+ 2γ)
. (A.16)

From Equation (A.13) we calculate the second derivative of P̃ (k, s) with respect to k as

∂2P̃ (k, s)

∂k2
= γP̃on(k, s)

(
8D2k2

(γ +Dk2 + s)3
− 2D

(γ +Dk2 + s)2

)
− 4γDk

(γ +Dk2 + s)2
∂P̃on(k, s)

∂k

+
∂2P̃on(k, s)

∂k2

(
γ

γ +Dk2 + s
+ 1

)
+

8D2k2

(γ +Dk2 + s)3
− 2D

(γ +Dk2 + s)2
.

Therefore, in the limit k → 0 we obtain

lim
k→0

∂2P̃ (k, s)

∂k2
= − 2γD

(γ + s)2

(
lim
k→0

P̃on(k, s)
)

+

(
γ

γ + s
+ 1

)(
lim
k→0

∂2P̃on(0, s)

∂k2

)
− 2D

(γ + s)2
, (A.17)

provided the limits limk→0P̃on(k, s) and limk→0∂
2
kP̃on(k, s) exist.

We now show that both the above mentioned limits exist. Representing the RHS

of (A.9) as a fraction we observe that

∂P̃on(k, s)

∂k
=

γ − (Dk2 + s) (2γ +Dk2 + s) P̃on(k, s)

kµ0 (γ +Dk2 + s)
, (A.18)

If we take limit k → 0 on the both sides of Equation (A.18), and use the value of

P̃on(0, s) from Equation (A.16), we observe that the numerator and the denominator of

the RHS both tend to zero, and hence, it is required to apply the L’Hospital’s rule on

the RHS to evaluate this limit. After applying L’Hospital’s rule on the RHS of Equation

(A.18) we obtain

lim
k→0

∂P̃on(k, s)

∂k
=

s(2γ + s)

µ0(γ + s)

(
lim
k→0

∂P̃on(k, s)

∂k

)
. (A.19)

Solving Equation (A.19) for limk→0∂kP̃on(k, s), we obtain limk→0∂kP̃on(k, s) = 0. To

evaluate limk→0∂
2
kP̃on(k, s) we take derivative on the both sides of the Equation (A.18)

with respect to k, and take the limit k → 0 to obtain

lim
k→0

∂2P̃on(k, s)

∂k2
= lim

k→0

Q(k, s)

k2µ0 (γ +Dk2 + s)2
, (A.20)

where

Q(k, s) = P̃on(k, s)
(
−D3k6 −D2k4(γ + s) +Dk2

(
−2γ2 + s2 + 2γs

)
+ s(γ + s)(2γ + s)

)

−k
(
Dk2 + s

) ∂P̃on(k, s)

∂k

(
γ +Dk2 + s

) (
2γ +Dk2 + s

)
− γ

(
γ + 3Dk2 + s

)
.

Again, we observe that in the limit k → 0, both the numerator and the denominator

on the RHS of the Equation (A.20) tend to zero (using the vales of limk→0P̃on(k, s)

and limk→0∂kP̃on(k, s) from Equations (A.16) and (A.19), respectively). This demands

another application of L’Hospital’s rule in evaluating the limit in Equation (A.19).
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Therefore, applying L’Hospital’s rule to the RHS of Equation (A.20), and using

Equations (A.16) and (A.19), we obtain

lim
k→0

∂2P̃on(k, s)

∂k2
= −

6γD +
2γD(2γ2−s2−2γs)

s(2γ+s)
+
(
limk→0

∂2P̃on(k,s)
∂k2

)
s(γ + s)(2γ + s)

2µ0(γ + s)2
.(A.21)

Solving for limk→0∂
2
kP̃on(k, s) from Equation (A.21), and substituting its value in

Equation (A.17), we get

lim
k→0

∂2P̃ (k, s)

∂k2
= −2D

s

(
2γ

2γµ0 + s2 + 2s(γ + µ0)
+

1

2γ + s

)
, (A.22)

which is the Laplace transform of the negative of the second moment of the position

distribution. Therefore, inverting this expression and taking its absolute value, we

obtain the time dependent variance of the distribution as

σ2
off(t) =

D(2γ + µ0)

γµ0

− De−2γt

γ
− D

µ0

√
γ2 + µ2

0

{
−γe

t
(
−
√

γ2+µ2
0
−γ−µ0

)

+γe
t
(√

γ2+µ2
0
−γ−µ0

)

− µ0e
t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ µ0e
t
(√

γ2+µ2
0
−γ−µ0

)}

−D

µ0

{
e
t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ e
t
(√

γ2+µ2
0
−γ−µ0

)}
, (A.23)

where the suffix “off” is to emphasize on the fact that the potential is in the “off” state

at t = 0. Since (γ + µ0) ≥
√

γ2 + µ2
0, we observe from Equation (A.23) that in the

steady sate, i.e., when t → ∞, the variance becomes

σ2
off(∞) = D

(
2

µ0

+
1

γ

)
. (A.24)

Also, we see in Equation (A.23) that there are three time scales in the expression

of the time-dependent variance, which are τ1 = 1/γ, τ2 = 1/(γ + µ0 +
√

γ2 + µ2
0), and

τ3 = 1/(γ + µ0 −
√

γ2 + µ2
0). It is evident that τ3 > τ2. Since 0 ≥ (µ0 −

√
γ2 + µ2

0),

and hence, γ ≥ (γ + µ0 −
√
γ2 + µ2

0), we conclude that τ3 ≥ τ1. Therefore, τ3 =

1/(γ + µ0 −
√

γ2 + µ2
0) is the largest time scale in this dynamical system.

The time-dependent variance σoff(t) in Equation (A.23) is obtained in the case when

at time t = 0 the potential is in the “off” state. On the other hand, if we start with the

potential in the “on” state, we also get the variance σon(t), just by following the similar

procedure. In that case, using the initial conditions P̂off(k, 0) = 0 and P̂on(k, 0) = 1 in

Equations (A.3) and (A.4), respectively, and subsequently, following the same procedure

as above we get the time dependent variance σ2
on(t) as

σ2
on(t) =

D(2γ + µ0)

γµ0

+
De−2γt

γ

− D

γµ0

√
γ2 + µ2

0

{
−γ2e

t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ γ2e
t
(√

γ2+µ2
0
−γ−µ0

)

−µ2
0e

t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ µ2
0e

t
(√

γ2+µ2
0
−γ−µ0

)}
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− D

γµ0

{
γe

t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ γe
t
(√

γ2+µ2
0
−γ−µ0

)

+µ0e
t
(
−
√

γ2+µ2
0
−γ−µ0

)

+ µ0e
t
(√

γ2+µ2
0
−γ−µ0

)}
. (A.25)

Appendix B. Discussion for γon 6= γoff

In this section we discuss the stationary distribution for different switching on and

off rates (γon and γoff, respectively)—when in on-state the potential is turned off at a

hazard rate γon, while in off-state the potential is turned on at the rate γoff. Thus the

Fokker-Planck equations (16) and (17) have the form

µ0
∂

∂x
(xPon(x)) +D

∂2Pon(x)

∂x2
− γonPon(x) + γoffPoff(x) = 0, (B.1)

D
∂2Poff(x)

∂x2
− γoffPoff(x) + γonPon(x) = 0. (B.2)

Following a similar procedure as described in section 4, here we find the solution in

Fourier space as

P̂on(k) =

(
γoff

γon + γoff

)
e−Dk2/(2µ0)

[f1(k)]γon/(2µ0)
, (B.3)

P̂off(k) =

(
γon

γon + γoff

)
e−Dk2/(2µ0)

[f1(k)]1+γon/(2µ0)
, (B.4)

where f1(k) = (1 + Dk2/γoff) and P̂ (k) = P̂on(k) + P̂off(k). The generalization of Eqs.

(24)-(34) follows trivially. In particular, the corresponding form of Eq. (29) is

P (x) =

(
γoff

γon + γoff

)
δ(x) +

(
γon

γon + γoff

) √
γoff/D

2
e−

√
γoff/D |x|. (B.5)

In the limit γoff/γon ≪ 1, the first term on the rhs of the above vanishes and we obtain,

P (x) ≈
√

γoff/D

2
e−

√
γoff/D|x|. (B.6)

This is exactly the result of a diffusion with instantaneous resetting without refractory

period [8]. Physically, as soon as the trap is turned on, the particle still returns to the

origin instantaneously (as the trap strength is very large), however as γoff/γon ≪ 1 the

trap is turned off very fast. Thus, there is no refractory period after a resetting event.

Appendix C. Mean First Passage Time for an Ornstein-Uhlenbeck process

We provide the derivation of the mean first-passage time to an absorbing target for

the Ornstein-Uhlenbeck process used in Eq. (35) in the main text for the sake of

completeness. Let Q(x0, t) denote the survival probability i.e., the probability that

a Brownian particle in a harmonic trap (V (x) = µ0x
2/4) does not reach a target located
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at x = xabs at time t, starting from x(t = 0) = x0. We can immediately write the

backward Fokker Planck equation for the survival probability,

∂Q(x0, t)

∂t
= −µ0

2
x0

∂Q(x0, t)

∂x0

+D
∂2Q(x0, t)

∂x2
. (C.1)

We need to solve this equation with the initial condition, Q(x0, 0) = 1 and the boundary

conditions Q(∞, t) = 1 and Q(xabs, t) = 0. We take a Laplace transform of the Eq. (C.1)

with respect to t defined by f̃(s) =
∫∞

0
e−stf(t)dt followed by a variable transformation,

G(x0, s) = Q̃(x0, s)− 1/s to get,

D
∂2G(x0, s)

∂x2
− µ0

2
x
∂G(x0, s)

∂x
− sG(x0, s) = 0 (C.2)

Now, substituting

G(x0, s) = eµ0x2/(8D)W (x0

√
µ0/2D), (C.3)

we get,

W ′′(z) + (−2s/µ0 + 1/2− z2/4)W (z) = 0 (C.4)

where z = x0

√
µ0/2D. The general solution of the above equation can

be written in terms of the Parabolic cylinder functions D−2s/µ0
(x0

√
µ0/2D)

and D−2s/µ0
(−x0

√
µ0/2D). Noting that D−2s/µ0

(x0

√
µ0/2D) → ∞ and

D−2s/µ0
(−x0

√
µ0/2D) → 0 as x0 → ∞, we conclude

G(x0, s) = Aeµ0x2/(8D)D−2s/µ0
(−x0

√
µ0/2D). (C.5)

Using the absorbing boundary condition at x = xabs, we obtain

A = e−µ0x2

abs
/(8D)D−2s/µ0

(−xabs

√
µ0/2D). (C.6)

Thus the survival probability in the Laplace space comes out to be

Q̃(x0, s) =
1

s

(
1− e−µ0(x2

0
−x2

abs
)/(8D) D−2s/µ0

(−x0

√
µ0/2D)

D−2s/µ0
(−xabs

√
µ0/2D)

)
. (C.7)

The mean first passage time (MFPT) can be obatined by taking s → 0 of Eq. (C.7) [51],

which we have used in Eq. (35) in the main text.

Appendix D. Mean first passage time in resetting with refractory period

In this section, we discuss the behavior of the mean first passage time, in the limit

where the strength of the harmonic potential (µ0) is large. In this limit, the particle

quickly returns to the centre of the harmonic potential as soon as the potential is turned

on. In fact, the dynamics of the particle in the limit µ0 → ∞ becomes equivalent to

the dynamics of a Brownian particle undergoing a stochastic resetting followed by a

random refractory period during which the particle does not move [34]. In the presence

of refractory periods the mean first passage time at xabs < 0, starting from the origin

(x = 0), can be written as [34]

T (xabs) =

∫∞

0
dt
[
g(t) +

∫∞

0
dτ τ H(t, τ)

]
Q0(xabs, t)

1−
∫∞

0
dt h(t) Q0(xabs, t)

, (D.1)
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where H(t, τ) is the joint probability density of resetting to be occurred at time t

followed by a refractory interval of time τ , h(t) is the marginal distribution of time

t of the reset event given by h(t) =
∫∞

0
dτ H(t, τ), g(t) =

∫∞

t
dt′ h(t′) denotes the

corresponding survival probability, and Q0(xabs, t) represents the survival probability at

xabs < 0 starting from the origin in the absence of resetting. In the absence of resetting,

the particle in our case is execuites an overdamped Brownian motion. In this case the

survival probability Q0(xabs, t) = Erf[|xabs|/
√
4Dt]. Note that in the present case both

the resetting and refractroy period occur at the rate γ, and hence, H(t, τ) = γ2e−γ(t+τ),

h(t) = γe−γt, and g(t) = e−γt. Using these results in (D.1) we obtain

T (xabs) =
2

γ

(
e
√

γ/D |xabs| − 1
)
, (D.2)

which we directly use in the main text as the expression of MFPTref in Eq. (36).
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[50] A. Datar, T. Bornschlögl, P. Bassereau, J. Prost, and P. A. Pullarkat, Biophysical journal, vol. 108,

no. 3, pp. 489–497, 2015.

[51] S. Redner, A guide to first-passage processes, Cambridge university press (2001).


	Introduction
	Model and Results
	Moments
	Stationary Distribution
	Mean First Passage Times
	Summary and Conclusion
	Acknowledgements
	Fluctuating trap: calculation of relaxation time scales from moments
	Discussion for on =off
	Mean First Passage Time for an Ornstein-Uhlenbeck process
	Mean first passage time in resetting with refractory period

