UNIVERSITY of York

This is a repository copy of *Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/176106/</u>

Version: Accepted Version

Article:

Zhou, Nan, Zhang, Cheng, Cao, Yang et al. (4 more authors) (2021) Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system. Journal of Cleaner Production. 127780. ISSN 0959-6526

https://doi.org/10.1016/j.jclepro.2021.127780

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Amount of words=7210
2	Conversion of xylose into furfural over MC-SnO _x and NaCl
3	catalysts in a biphasic system
4	
5	Nan Zhou ^{a, b, c, d} , Cheng Zhang ^{d, e} , Yang Cao ^{a, b, c} , Jiahui Zhan ^{a, b, c} , Jiajun Fan ^f , James H.
6	Clark ^{a, b, f} , Shicheng Zhang ^{a, b, c, *}
7	
8	^a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of
9	Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
10	^b Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes,
11	Shanghai 200438, China.
12	^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
13	^d These authors contributed equally to this work.
14	^e College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
15	^f Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD,
16	UK.
17	*Corresponding author: zhangsc@fudan.edu.cn
18	
19	

20 ABSTRACT

21 Furfural is a promising platform chemical that can be catalyzed from lignocellulose 22 biomass. In this study, a novel micro-mesoporous carbon supported tin oxide catalyst (MC-SnO_x) was developed to convert xylose into furfural in a low sodium chloride (NaCl) 23 24 concentration and acid-free biphasic system. The catalysts synthesized by annealing from 25 400 °C to 600 °C for 3.5h were characterized by BET, SEM, XPS, XRD, NH₃-TPD and 26 FTIR techniques. The factor that mostly affected the catalytic performance was the acid 27 concentration of the catalysts, and the best catalytic performance was achieved by MC-28 SnO_x annealed at 450 °C. Further increasing the annealing temperature can cause reduction, 29 volatilization and aggregation of Sn species, which can finally affect acid concentration 30 and performance of the catalyst. In addition, a synergistic catalytic effect was found 31 between MC-SnO_x and NaCl and effectivity of low concentration of NaCl indicated the 32 potential of applying seawater or wastewater containing NaCl as a low-cost reaction 33 solvent and NaCl source. To balance the catalytic performance, cost, equipment safety and 34 environmental concerns, a reasonable furfural yield of 53.9 % was achieved over the MC-35 SnO_x-450 and NaCl (0.2 M) in biphasic system under mild conditions (180 °C and 20 min) 36 with a good catalyst reusability.

- 38 KEYWORDS: Furfural, Annealing temperature, Sn reduction, Xylose conversion, Biphasic
- 39 solvent, Seawater
- 40

41 Graphical abstract

42

43 **1. Introduction**

Furfural is one platform chemical that can be derived from lignocellulose biomass in large scale and can be converted to various useful chemicals to replace part of fossil derived chemicals. Furfural and its conversion products can be used as various industrial raw

47	materials such as resin, adhesives, solvent, biofuel and so on (Bhaumik and Dhepe, 2016).
48	Hence, furfural is believed as a kind of promising bio-based chemical (Wettstein et al.,
49	2012). Currently, furfural is produced by a dilute acid catalytic hydrolysis process in
50	industry. Biomass is first treated with dilute sulfuric acid or hydrochloric acid, and then the
51	furfural is separated by high pressure steam (Choudhary et al., 2012). However, this
52	method is not efficient enough and can produce massive acid wastewater, byproducts and
53	cause severe equipment corrosion (Karinen et al., 2011). To overcome these disadvantages,
54	many catalytic methods were developed to produce furfural.
55	Biphasic solvent systems are often used to enhance furfural yields. With FeCl ₃ ·6H ₂ O and
56	sodium chloride (NaCl) in the aqueous phase and 2-methyltetrahydrofuran (2-MTHF) as
57	the organic phase, a furfural yield of 71% was achieved with 98% furfural extracted
58	(Vomstein et al., 2011). The advantages of the biphasic system are that furfural can be
59	transferred to the organic phase and the reduction in the furfural concentration minimizes
60	the degradation of furfural (Cai et al., 2014). Also, furfural can be recovered from the
61	reaction solvent more easily (Sweygers et al., 2018). Among organic solvents, 2-MTHF
62	displays promising application potential because of its good extraction ability (Wang et al.,
63	2015), low toxicity (Lin et al., 2017), acid stability and recycle convenience (Li et al., 2016).
64	Chloride salts were found to have excellent catalytic efficiency. Researchers studied the
65	catalysis influence of FeCl ₃ , AlCl ₃ , NaCl and HCl on furfural synthesis (Li et al., 2016).

66	FeCl ₃ showed a similar catalysis effect with HCl in aqueous phase and NaCl also improve
67	the synthesis of furfural when FeCl ₃ , AlCl ₃ or HCl are in the system. Other salts like SnCl ₄
68	(Wang et al., 2015), ZnCl ₂ , MnCl ₂ (Jiang et al., 2018), CuCl ₂ (Guenic et al., 2015), CrCl ₃
69	(Choudhary et al., 2012), Al ₂ (SO ₄) ₃ (Yang et al., 2017) and alkali halide (Enslow and Bell,
70	2015) have been proven to have considerable promotion on furfural production. In addition,
71	the salting out effect of chlorides also contribute to the higher yields due to more product
72	can be extracted by the organic phase (Román-Leshkov et al., 2007). To realize greener
73	conversion, researchers applied seawater to furfural production. However, in previous
74	studies seawater itself cannot provide enough catalytic effect because of its low NaCl
75	concentration. Systems containing concentrated seawater and other homogeneous catalysts
76	were proven effective in xylose conversion into furfural (T. Guo et al., 2018; Vomstein et
77	al., 2011).
78	However, high concentration of chlorides can also cause equipment corrosion at high
79	temperatures. Thus, heterogeneous catalysts have been widely explored in furfural
80	production. Heteropoly acids (X. Guo et al., 2018), polymeric solid catalyst (Agirrezabal-
81	Telleria et al., 2012, 2011), metal oxides (H. Li et al., 2014), zeolites (Zhang et al., 2017)
82	and carbon-based catalysts (Wang et al., 2017) have already been proven to be effective in
83	furfural synthesis. The mechanism of xylose conversion into furfural has already been
84	proposed as following one of 3 pathways (Yang et al., 2017): (1) xylose isomerizes to

85	xylulose intermediate and subsequently dehydrates to furfural, (2) xylose directly
86	dehydrate into furfural and (3) xylose in a stepwise fashion dehydrates to furfural through
87	a dicarbonyl intermediate. The second route is common in the homogeneous reactions
88	catalyzed by strong acid (Nimlos et al., 2006). The third route has been proven in the
89	research on Nb ₂ O ₅ catalysis (Gupta et al., 2017). Among the three routes, the first route is
90	widely accepted in the presence of catalysts with both Brønsted and Lewis acid.
91	Among solid catalysts, tin and its oxide showed promising catalytic abilities and addition
92	of SO ₄ ²⁻ can further promote catalytic performance: SO ₄ ²⁻ /SnO ₂ ⁻ MMT (montmorillonite)
93	(Qing et al., 2017) showed even higher furfural yield in solvents like toluene, methyl
94	isobutyl ketone (MIBK) and cyclopentyl methyl ether (CPME) with addition of NaCl.
95	SO ₄ ²⁻ /SnO ₂ -diatomite (Jiang et al., 2018) was also found to have a maximum furfural yield
96	of 68.9% in a γ -valerolactone (γ -GVL)–water system with 15 g/L ZnCl ₂ . Waste like coal
97	fly ash has been considered as a support for catalysts: Researchers (Gong et al., 2019)
98	prepared SO ₄ ²⁻ /SnO ₂ -AI ₂ O ₃ -CFA (coal fly ash) and achieved a good furfural yield of 84.7%
99	in the NH4Cl-toluene biphasic system. As a kind of carbon-based material, bio-based
100	materials which can be found from food and agriculture waste captured researchers'
101	interest because of their characteristics of eco-friendly and low-cost. Rape pollen was used
102	as raw material to produce $SO_4^{2-}/Sn-TRP$ (treated rape pollen) catalyst (Teng et al., 2020).
103	High performance was observed in a prolonged reaction of xylose to furfural, which

104	reached a furfural yield of 82.79%. However, the sulfuric acid treatment process can
105	discharge acid wastewater while providing catalytic activity to catalysts. Several recent
106	studies reported the effectiveness of such bio-based/carbon-based tin oxide in biorefinery
107	(Yang et al., 2017, 2019). Rare studies reported the application of carbon-supported tin
108	oxide catalyst in furfural production. Since bio-based/carbon-based support has advantages
109	of eco-friendly and low-cost and tin oxide displays promising performance, a greener bio-
110	based/carbon-based tin oxide catalytic system is still deserved to develop.
111	In this study, we have prepared a novel mesoporous carbon-supported tin oxide catalyst
112	$(MC-SnO_x)$ without acid treatment process, which has proven to have a reasonable catalytic
113	performance with low concentration of NaCl. Characteristics of acid-free process and
114	potential of applying seawater or wastewater containing NaCl enable greener production
115	of furfural. Comprehensive characterization was conducted to construct the structure-
116	performance relationship between MC-SnO _x catalyst and furfural production. In addition
117	to factors like catalyst loading, NaCl concentration, reaction temperature and time,
118	temperature of catalyst's annealing process impacts most on furfural production. The
119	probable mechanism of Sn species content and contribution variation at different annealing
120	temperature was investigated and a catalytic activity order of Sn species was concluded.
121	Finally, the reusability of MC-SnO _x catalyst was studied and proven good. The results are

meaningful for further development of carbon-supported tin oxide catalysts in furfuralproduction.

124

125 **2. Materials and methods**

126	2.1.	Materials
120	~	maicritics

127 Furfural (≥99.5%), D-xylose (98%) and D-fructose (99%) were supplied by Aladdin

128 Reagent Corporation. 2-methyltetrahydrofuran (2-MTHF) (≥99%), SnCl₄·5H₂O

- 129 (analytical grade) and NaCl (≥99.5%) were brought from Shanghai Titan Scientific Co.,
- 130 LTD, Sinopharm Chemical Reagent Co., Ltd and Shanghai Dahe Chemicals Co. LTD,
- 131 respectively. Pluronic P-123 (M_w=5800, EO₂₀PO₇₀EO₂₀) and Pluronic F-127 (M_w=2600,

132 EO106PO70EO106) were purchased from Sigma Aldrich. All reagents were used without

133 further purification.

134

135 2.2. Synthesis of MC-SnO_x catalysts

136 The synthesis method of MC-SnO_x catalysts refers to previous study (Zhang et al., 2019),

137 and the basic process is shown in Fig. 1. P-123 and F-127 were used as composite template

138 in the preparation. Briefly, 8.7 g SnCl₄ \cdot 5H₂O, 2 g fructose, 1 g P-123 and 3 g F-127 were

- 139 dissolved in 70 mL ultrapure water and stirred at room temperature for 2 h. The solution
- 140 was then sealed in a stainless reactor with 100 mL polytetrafluoroethylene lining and

141	heated in the oven at 180 °C for 24 h. The mixture was centrifuged and the residual was
142	washed by ultrapure water to neutral pH value, then residual was dried in oven at 80 °C
143	overnight. The as-prepared samples were annealed at the temperature from 400 °C to
144	600 °C with a heating rate of 2 °C /min in a tube furnace for 3.5 h in a nitrogen atmosphere.
145	Finally, the MC-SnO _x catalysts was ground and pulverized to 80 mesh before use. In the
146	following sections, MC-SnOx-X is used to represent catalysts annealed at certain
147	temperature. For example, MC-SnO _x -400 is the MC-SnO _x catalyst annealed at 400 °C.

148 Fig. 1. Diagram of catalyst preparation and furfural production processes

- 150 2.3. Conversion of xylose to furfural
- 151 As shown in Fig. 1, the catalytic conversion from xylose to furfural was conducted in a
- 152 25 mL Hastelloy reactor. A biphasic rate of 1:1 (v/v) was selected because of its prior

153	performance (Qing et al., 2017; Wang et al., 2019). In a typical run, 5 mL aqueous solution
154	containing 20 g/L xylose (some with NaCl) and 5 mL 2-MTHF organic solvent were mixed
155	with $MC-SnO_x$ catalysts in the reactor. Then the reactor was heated up to target temperature
156	(160–180 °C) while stirring at 700 rpm. The reactor can reach the target temperature no
157	longer than 10 min as shown in Fig. S1. When reaction completed, the reactor was cooled
158	in tap water to room temperature quickly. Needle filters equipped with filter paper were
159	used to separate catalysts. Water phase and organic phase was then separate after quick
160	stratification. All samples were filtered by a 0.22 μ m syringe filter before analyzing.

162 2.4. Catalysts characterization

Catalysts' specific surface area were analyzed by a Quantachrome Quantasorb SI 163 164 Brunauer-Emmett-Teller (BET) analyzer. The surface composition and structure of MC-SnO_x catalysts were analyzed by a VEGA3 (TESCAN) scanning electron microscopy 165 166 (SEM) instrument with a Bruker XFlash Detector 610M energy dispersive spectroscopy (EDS) system. X-ray photoelectron spectroscopy (XPS) was used to analyze the state of 167 168 the developed catalysts with an RBD-upgraded PHI 5000C ESCA system (Perkin Elmer). 169 The crystal structures of the catalysts were analyzed by a Bruker advance D8 powder X-170 ray diffraction (XRD) analyzer equipped with a Cu-Ka radiation (40 kV, 35 mA) at a scan 171 rate of 5 °/min. The spectra were scanned over a 20 range from 5 to 90°. A Thermo Fisher

172	Nicolet iS5 Fourier Transformed Infrared (FTIR) spectrometer with a spectral resolution
173	of 4 cm ⁻¹ was employed to characterize the functional groups of MC-SnO _x catalysts.
174	The ammonia-temperature-programmed desorption (NH ₃ -TPD) was employed to
175	analyze acid properties of MC-SnO _x catalysts on a TP 5080 (Tianjin Xianquan) analyzer.
176	Before adsorption of NH ₃ , the samples were treated at 450 °C for 30 min in the nitrogen
177	atmosphere. Then catalysts were exposed to ammonia at 50 °C for 1 h and stabilized at the
178	same temperature for 30 min before the run. Afterwards, the sample tube was heated to
179	500 °C at a rate of 10 °C/min. The desorption of NH_3 was detected by a thermal
180	conductivity detector.

182 2.5. Product analysis

After separation of organic and water phase, furfural concentrations in organic phase were analyzed by a gas chromatograph (Shimadzu GC-2010 plus) equipped with a flame ionization detector (FID) and a HP-5ms column (30 m, 0.25 mm i.d., 0.25 μm film thickness). Nitrogen was used as the carrier gas with a flow rate of 1 mL/min. The injector was set at 240 °C and the detector was maintained at 250 °C. Initially, the column oven was maintained at 100 °C for 3 min, then the temperature was increase to 200 °C at a rate of 10 °C/min and kept for 10 min.

190	For samples of water phase, a HPLC (Agilent 1260) equipped with an Agilent Hi-plex
191	H column (diameter 7.7 mm, length 300 mm, particle size 8 μ m), a UV detector at a
192	wavelength of 280 nm and a refractive index detector (RID) were employed to determine
193	the concentrations of furfural and xylose. 5 mmol/L H ₂ SO ₄ solution was used as mobile
194	phase and the flow rate was 0.6 mL/min. The column oven and RID were maintained at
195	60 °C and 55 °C, respectively.
107	

Furfural yield and selectivity contained furfural production in both water phase and
organic phase. Furfural yield, D-xylose conversion and furfural selectivity were calculated
by the following equations:

199 Furfural yield (%) =
$$\frac{\text{Moles of furfural in the product (mol)}}{\text{Moles of initial xylose (mol)}} \times 100$$
 (1)
Moles of xylose in reactant consumed (mol)

200 D – xylose conversion (%) =
$$\frac{\text{Moles of xylose in reactant consumed (mol)}}{\text{Moles of initial xylose (mol)}} \times 100$$
 (2)
201 Furfural selectivity (%) = $\frac{\text{Moles of furfural in the product (mol)}}{\text{Moles of furfural in the product (mol)}} \times 100$ (3)

201 Furfural selectivity (%) =
$$\frac{10000 \text{ of rational and the product (mor)}}{\text{Moles of xylose in reactant consumed (mol)}} \times 100$$
 (3)

202

203 **3. Results and discussion**

204 *3.1. Characterization of MC-SnO_x Catalyst*

205 Table 1 and Fig. S2 shows surface area and pore volume properties of MC-SnO_x catalysts.

206 The specific surface area increased gradually from $331.4 \text{ m}^2/\text{g}$ to $387.4 \text{ m}^2/\text{g}$ when

- 207 annealing temperature rose from 400 to 500 °C, which can be attributed to improvement
- 208 of higher annealing temperature. $MC-SnO_x$ -400, has the lowest micropore surface area of

209	107.7 m ² /g and micropore volume of 47 cm ³ /kg, which is only 41.5% and 43.9% of those
210	of MC-SnO _x -500. There are similar differences between MC-SnO _x -400 and MC-SnO _x -500
211	in other properties. It can be concluded that MC-SnO _x -400 has less micropore structure
212	and MC-SnO _x -500 has most, consistent with the measured pore distributions (Fig. S2).
213	MC-SnOx-400 has abundant mesopore structure, leading to the largest average pore
214	diameter and the highest total pore volume among the catalysts.

Table 1

Surface areas and porosities of MC-SnO_x catalysts.

Catalyst Annealing	$S_{BET}{}^{a}$	S _{micro} ^b	$V_{\text{total}}{}^{c}$	$\mathbf{V}_{micro}{}^{d}$	Average pore
temperature (°C)	(m²/g)	(m²/g)	(cm ³ /kg)	(cm ³ /kg)	diameter (nm)
400	331.4	107.7	474	47	5.7
450	342.8	194.6	423	81	4.9
500	387.4	259.3	409	107	4.2
550	360.4	178.8	433	75	4.8
600	381.4	196.5	421	81	4.4

^a Specific surface area calculated by Brunauer-Emmett-Teller (BET) equation.

^b Specific surface area of micro-pores calculated by density functional theory
 (DFT) method.

 $^{\rm c}$ Total pore volume determined at P/P₀=0.99.

^d Micropore volume calculated using t-plot method.

216	SEM images (see Fig. 2) demonstrate morphology and surface Sn proportion of MC-
217	SnO _x catalysts. Fig. 2a, 2b, 2c, 2d and 2f captured irregular sharp particles of catalysts
218	annealed at temperature from 400 °C to 600 °C. Ravine and pit structures were found on
219	the surface of these catalyst particles. EDS mapping results indicate that MC-SnO _x -450 has
220	the highest tin concentration on the surface of 5.31% (atomic ratio). With further increase
221	of annealing temperature, the Sn content decreased sharply to MC-SnOx-600 catalyst's
222	0.68%. However, another kind of globular particles are found in MC-SnO _x -600 (Fig. 2e).
223	It can be noted that these particles had relatively smooth surface and very low levels of Sn
224	content on their surface (only 0.02%). These globular particles were commonly found in
225	MC-SnO _x -600 (Fig. S3). EDS mapping images (Fig. S4) proved that highly dispersed Sn
226	species exist on the surface of catalysts' particles, which confirms successful hybridization
227	of Sn species with MC in the catalysts.

Fig. 2. SEM images and EDS mapping results of particles of (a) MC-SnO_x-400, (b) MC-

229 SnO_x -450, (c) MC-SnO _x -500, (d) MC-SnO _x -550, (e) globular MC-SnO _x -6	0, and	(f)
---	--------	-----

- 230 irregular MC-SnO_x-600. Sn element content information (atomic ratio) was achieved by
- EDS mapping of the area that framed in red boxes.
- 232

233	The X-ray photoelectron spectroscopy characterization of Sn in the catalysts is shown in
234	Fig. 3. The fitting curves consist of three subpeaks in the XPS spectra of Sn $3d_{5/2}$. The
235	resolved peaks at binding energies of ~485.6 eV, ~487.0 eV, ~487.8 eV originate from the
236	Sn ⁰ , Sn ²⁺ and Sn ⁴⁺ states, respectively. However, the binding energies for all peaks of Sn
237	appear higher than the reference values (Quackenbush et al., 2013; Zhu et al., 2016). The
238	increase of binding energies is probably caused by strong interactions between Sn species
239	and the carbon-based support (Ma et al., 2011). MC-SnOx catalyst annealed at 400 °C, has
240	10.60% Sn^0 , 42.50% Sn^{2+} and 46.89% Sn^{4+} species. When the annealing temperature rose
241	to 600 °C, there remained only 29.93% Sn^{4+} and the proportion of Sn^{0} increased to 30.79%.
242	It can be concluded that more Sn converted to lower valence species such as Sn ⁰ and Sn ²⁺
243	at higher annealing temperature, which indicates that reduction reactions become more
244	significant with increasing annealing temperature.

Fig. 3. X-ray photoelectron spectroscopy (XPS) Sn 3d_{5/2} spectra of (a) MC-SnO_x-400, (b)

246 MC-SnO_x-450, (c) MC-SnO_x-500, (d) MC-SnO_x-550, (e) MC-SnO_x-600 catalysts.

Fig. 4. X-Ray diffraction (XRD) pattern of MC-SnO_x catalysts.

257 NH₃-TPD was employed to analyze acid site strength and distribution in the catalysts.

258 Fig. S5 depicts NH₃ desorption profile of MC-SnO_x catalysts. The distribution of acid site

270 SnO_x-450.

Fig. 5. Acid concentration of MC-SnO_x catalysts calculated from NH₃-TPD profiles.

272 3.2. Impact of annealing temperature on catalyst characteristics

Since the MC-SnO_x catalysts synthesis consists of two steps: (1) hydrothermal treatment to produce catalyst precursor containing Sn element; and (2) annealing preparation at different temperature to obtain activated MC-SnO_x catalyst, the key step that significantly influence the catalytic effect was step (2).

277 The difference of acid site abundance is induced by the tin species distribution and 278 content variation. Increasing the annealing temperature can accelerate the reduction 279 reaction of tin oxide. This reduction reaction was probably caused by reducing ambient CO 280 produced in the high-temperature reaction of carbon-rich support. Fig. S6 demonstrates an 281 oxygen-containing functional groups decrease with increasing annealing temperature, 282 indicating the emission of CO or CO₂ could form a reducing atmosphere at higher 283 temperature. In the metallurgical industry, iron concentrate is roasted in an atmosphere of 284 CO and CO_2 to remove tin element and this process is called selective reduction 285 volatilization (G. Li et al., 2014; Su et al., 2016), which has similar conditions with that in 286 the annealing process in catalyst preparation. Thus, it is supposed that similar reduction 287 and volatilization of Sn species happen in the annealing process, which follows the results of XPS and EDS. With an increase of annealing temperature, Sn⁴⁺ species react with 288 289 reductive substance like C and CO produced during annealing process (Ma et al., 2011) and transform into lower valence species such as Sn⁰ and Sn²⁺. Lower valence Sn species 290

291	are further volatilized and cause decreases of surface Sn content. Similar reduction reaction
292	between tin oxide and carbon-based support in the annealing process were found in the
293	catalyst preparation for glucose isomerization reaction (Yang et al., 2020, 2019) and
294	conversion of cellulose into acetol (Liu et al., 2019). According to the mechanism of xylose
295	conversion into furfural mentioned in section 1, the amount of acid sites plays a dominant
296	role in influencing the conversion of xylose to furfural. The variation of Sn content and
297	valence further change the acid sites of catalysts and finally influence catalytic
298	performance of them.
299	It is worth noting that similar reduction reactions can occur in the preparation of other
300	carbon-supported metallic oxide catalyst. The changes of metal valence and volatilization
301	of low boiling point metal compounds should be considered when performing catalytic
302	reactions.
303	
304	3.3. Effect of MC-SnO _x catalyst annealing temperature on catalytic conversion
305	The catalytic effect on furfural production from xylose of MC-SnO _x annealed at different
306	temperatures was evaluated in the batch reactor at 170 °C with a reaction time of 30 min
307	and summarized in Fig. 6. The addition of MC-SnO _x catalysts annealed at 400 to 550 $^\circ$ C
308	showed acceptable catalytic effect. When adding 0.15 g MC-SnO_x -400 in the reaction, the
309	highest furfural yield of 41.6% was reached, which corresponded to an increase of 18.8%

310 compared with the control group. MC-SnOx-400 and MC-SnOx-500 gave furfural yields of 311 39.6% and 38.1% respectively. While annealing temperature was further increased above 312 450 °C, the furfural yield went down. In the reaction with 0.15 g MC-SnO_x-600, the furfural 313 yield was only 6.2% and inferior to that of the control group, indicating its negative effect 314 in the reaction. In these six reaction groups, xylose conversions were always higher than 315 94.9%, which made furfural selectivity have similar trend with furfural yield. Formation 316 of humins or other intermediates causes that the xylose cannot converted completely into 317 furfural (Qing et al., 2017; Sweygers et al., 2020).

Fig. 6. Influence of annealing temperature (400 to 600 °C) of MC-SnO_x catalyst on

319 catalytic conversion. Batches were conducted at 170 °C for 30 min with 0.15 g MC-SnO_x

320 catalyst (Control group contained no MC-SnO_x catalyst.) in 1:1 (v/v) 20 g/L xylose

- 321 aqueous phase/2-MTHF phase.
- 322

323 As the results showed in Fig. 5 and Fig. 6, trends of acid site concentration characterized 324 by NH₃-TPD and catalytic effect represented by furfural yield are very similar. Thus, the 325 catalytic effect difference can be ascribed to the different intensity of acid site 326 concentration. MC-SnO_x catalysts with higher acid site concentration have better catalytic 327 capability in the conversion of xylose to furfural, consistent with previous reports 328 (Chatterjee et al., 2019; Lin et al., 2017). Combining with the results of EDS Sn element 329 content and XPS Sn distribution, it was indicated that MC-SnO_x-400 and MC-SnO_x-450 330 had similar Sn species distribution, but extra surface Sn content can lead to a higher acid 331 concentration and catalytic effect for MC-SnO_x-450. MC-SnO_x-500 and MC-SnO_x-550 showed little difference in surface Sn content. However, MC-SnO_x-500 had both more Sn⁴⁺ 332 333 species and better catalytic effects, which demonstrate the higher catalytic activity of Sn⁴⁺. Further increasing annealing temperature induced the greatest amount of Sn⁰ species and 334 the lowest catalytic effect of MC-SnOx-600. These results probably indicate a catalytic 335 activity order of $Sn^{4+} > Sn^{2+} > Sn^0$ in the reaction of xylose to furfural. To conclude, the 336 337 difference in both Sn content and Sn species distribution influences the acid site abundance

- 338 and finally causes the variation of catalytic effect. Fig. 7 shows the probable Sn
- 339 transformation in MC-SnO_x catalysts.

Fig. 7. Transformation schematic diagram of MC-SnO_x catalysts.

Morphology and microstructure changes further explain the catalytic effect variation. XRD results (see Fig. 4) prove the formation of metallic Sn in MC-SnO_x annealed higher than 500 °C. At the same time, crystallite dimension of both SnO₂ and Sn grew larger with the increase of annealing temperature (see Table S1). The growth of crystallite dimension means that the distribution of Sn species becomes concentrated, which can diminish the effective contact area of the catalysts.

348

351	To analyze the impact of catalyst loading on the reaction of xylose to furfural, different
352	catalyst amounts (0.05 g, 0.1 g, 0.15 g, 0.2 g and 0.3 g) of MC-SnO _x -450 catalyst were
353	selected for reactions at 170 °C for 30 min. Fig. 8 showed that catalyst loading influenced
354	the furfural yield, selectivity and xylose conversion. When adding 0.15 g of MC-SnO _x -450
355	catalyst, the reaction reached a highest furfural yield of 41.6% at a catalyst loading of 0.15
356	g. However, a further increase of catalyst loading above 0.15 g did not lead to a higher
357	furfural yield. At the same time, the xylose conversion was improved gradually with
358	increasing catalyst loading. Trends were recognized in furfural selectivity, whereby
359	batches with more than 0.1 g catalyst were observed to increase xylose conversion.
360	However, furfural yields were in growth in low catalyst loading and decreased in higher
361	catalyst loading.

Excess catalyst loading may cause more side reactions, hence a decreased furfural yield and an increased xylose conversion simultaneously. Humins by-products may formed by the reaction between furfural and other intermediates in the presence of excess catalyst (Sweygers et al., 2020; Zhang et al., 2017). As seen in Fig. 8, the furfural yield using 0.15 g catalyst loading was only slightly higher than that using 0.1 g catalyst. Thus, a catalyst loading of 0.1 g was chosen in the following sections.

368 Fig. 8. Influence of MC-SnO_x-450 catalyst loading on catalytic conversion. Batches were

369 conducted at 170 °C for 30 min with 0.05-0.3 g MC-SnO_x-450 catalyst in 1:1 (v/v) 20

- 370 g/L xylose aqueous phase/2-MTHF phase.
- 371
- 372

390 salting out effect (Román-Leshkov et al., 2007; Sweygers et al., 2021). It proved that MC-

391 SnO_x catalyst and NaCl have a synergistic catalytic effect in conversion from xylose to
392 furfural.

393	However, contribution of furfural yield by adding more NaCl from 0.2 mol/L to 2 mol/L
394	was only 7.7% and 0.2 mol/L NaCl itself improved furfural yield by 9.7%, which means
395	that it is not economical to multiple NaCl concentration by 10 times. These results prove
396	low concentration of NaCl to be effective and economical in conversion of xylose into
397	furfural. In addition, the intense concentration of chlorine salt can cause severe corrosion
398	of reactors and refractory wastewater pollution containing high concentration of salt. To
399	balance the furfural yield and other factors, a NaCl concentration of 0.2 mol/L was selected
400	to complete next part's experiments. At the same time, since seawater contains about 0.5
401	mol/L NaCl, these results indicate the potential of applying seawater (Mao et al., 2013) or
402	wastewater containing NaCl as a low cost reaction solvent and NaCl catalyst source in
403	conversion of xylose to furfural.

404 **Fig. 9.** Catalytic effect of NaCl in the system and synergistic effect between MC-SnO_x and 405 NaCl. 0 mol/L (control groups), 0.2 mol/L, 0.5 mol/L, 1 mol/L and 2 mol/L NaCl were 406 added into 1:1 (v/v) 20 g/L xylose aqueous phase/2-MTHF phase and reacted at 170 °C for 407 30 min. Groups in right half contained 0.1 g MC-SnO_x-450 catalysts.

409 *3.6. Effect of reaction temperature and time on catalytic conversion*

- 410 In Fig. 10, the influence of reaction temperature and time was investigated (160–180 °C
- 411 and 10–120 min). Each batch contains 0.2 mol/L NaCl in aqueous phase and 0.1 g MC-
- 412 SnO_x-450 catalyst. The highest furfural yield of 54.8% was reached at 180 °C for 40 min.
- 413 However, the batches at 180 °C for 20 and 30 min had a very close furfural yield at 53.9%
- 414 and 54.6%, which suggested that the reaction at 180 °C for 20 min is suitable for furfural

415	production. For all reaction temperature, furfural yield reached peak at certain reaction time
416	(40 min for 180 °C, 60 min for 170 °C and 100 min for 160 °C). As shown in Fig. 10, low
417	reaction temperature reaction needs more time to reach the highest furfural yield. At the
418	same time, the highest furfural yields were 50.0%, 53.0% and 54.8% for reaction at 160 $^{\circ}$ C,
419	170 °C and 180 °C, which proves reaction at 180 °C can achieve better furfural yield than
420	that at 160 °C and 170 °C in a shorter time. Higher temperature of 180 °C can accelerate
421	the reaction greatly comparing to the lower temperature of 170 °C and 160 °C, which save
422	time and possibly energy for reaction batches. A similar pattern was found for xylose
423	conversion. With the increase of reaction temperature, the furfural yields first increased
424	then decreased after reacting for more than 40 min at 180 °C, as excess reaction time can
425	cause furfural degradation and limits furfural yield. Similar phenomena were observed for
426	batches at 160 °C and 170 °C.

Fig. 10. Influence of reaction temperature and time on catalytic conversion. Batches were
conducted at 160–180 °C for 10–120 min with 0.1 g MC-SnO_x-450 catalyst in 1:1 (v/v) 20
g/L xylose and 0.2 mol/L NaCl aqueous phase/2-MTHF phase.

432 3.7. Reusability of MC-SnO_x catalyst in the system

433 The reusability is critical to catalyst's application in the industrial production process.

- 434 Fig. 11 showed results of MC-SnO_x catalyst's reusability in 5 times' recycle. The MC-
- 435 SnO_x -450 catalyst was separated and washed by pure water and ethanol for several times
- 436 to remove residues after each batch. The results demonstrate that MC-SnO_x-450 catalyst
- 437 has a good reusability. The furfural yield went down from first run's 53.9% to third run's

438	48.6%, which caused only 9.8% total catalytic performance decrease (calculated by
439	furfural production). After 3 times' run, furfural yield maintained stable and kept higher
440	than 48.2%, which proofs that $MC-SnO_x$ catalyst can maintain a stable catalytic
441	performance in the following run. Xylose conversion rate also first decreased from first run
442	to third run and then kept stable. Comparing with other catalysts such as sulfonated carbon
443	based catalysts (Deng et al., 2016), SO ₄ ²⁻ /SnO ₂ ⁻ MMT (Qing et al., 2017), Sn-MMT (Li et
444	al., 2015) and SO ₄ ²⁻ /SnO ₂ -AI ₂ O ₃ -CFA (Gong et al., 2019), MC-SnO _x catalyst showed prior
445	reusability without regeneration. The trend that catalytic performance decreased slightly
446	from first run to third run and maintained stable in the following run indicates promising
447	application potential of MC-SnO _x catalyst.

Fig. 11. Reusability of MC-SnO_x-450 catalyst for conversion xylose into furfural. Batches
were conducted at 180 °C for 20 min with 0.1 g MC-SnO_x-450 catalyst in 1:1 (v/v) 20 g/L
xylose and 0.2 mol/L NaCl aqueous phase/2-MTHF phase.

452 **4.** Conclusions

We produced a novel MC-SnO_x catalyst without acid treatment process to convert xylose into furfural. In the preparation process, annealing temperature impacted most on catalytic performance because higher temperature can cause decrease of surface Sn content and promote reduction reaction, volatilization and aggregation of Sn species, which finally influenced acid site concentration of catalysts and limited furfural yield. The best annealing temperature was 450 °C. A reasonable furfural yield of 53.9% was achieved using the

459	conditions of 0.1g MC-SnO _x -450 in 20 g/L xylose aqueous phase with 0.2 mol/L NaCl in
460	the reaction at 180 °C for 20 min representing a balance between catalytic performance,
461	cost, equipment safety and environmental concerns. The synergistic catalytic effect was
462	found between MC-SnO _x and NaCl and effectivity of low concentration of NaCl indicate
463	the potential of applying seawater or wastewater containing NaCl as a low-cost reaction
464	solvent and NaCl catalyst source in conversion of xylose to furfural. In addition, MC-SnO _x
465	catalyst displayed a good reusability. These results guide the further development of
466	carbon-supported tin oxide catalysts in furfural production.
467	
468	Acknowledgements
469	This research was supported by the National Key Research and Development Program
470	of China (No. 2017YFC0212205), the National Natural Science Foundation of China (No.
471	21876030), the International Cooperation Project of Science and Technology Commission
472	of Shanghai Municipality (No. 18230710700).
473	
474	Appendix A. Supplementary data
475	E-supplementary data of this work can be found in online version of the paper.
476	
477	

References

479	Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Güemez, M.B., Arias, P.L., 2011.
480	Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and
481	simultaneous stripping with nitrogen. Bioresour. Technol. 102, 7478–7485.
482	https://doi.org/10.1016/j.biortech.2011.05.015
483	Agirrezabal-Telleria, I., Requies, J., Güemez, M.B., Arias, P.L., 2012. Furfural
484	production from xylose + glucose feedings and simultaneous N2-stripping. Green
485	Chem. 14, 3132–3140. https://doi.org/10.1039/c2gc36092f
486	Bellayer, S., Viau, L., Tebby, Z., Toupance, T., Bideau, J. Le, Vioux, A., 2009.
487	Immobilization of ionic liquids in translucent tin dioxide monoliths by sol-gel
488	processing. Dalt. Trans. 1307–1313. https://doi.org/10.1039/b814978j
489	Bhaumik, P., Dhepe, P.L., 2016. Solid acid catalyzed synthesis of furans from
490	carbohydrates. Catal. Rev. 58, 36–112.
491	https://doi.org/10.1080/01614940.2015.1099894
492	Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E., 2014. Integrated furfural production as a
493	renewable fuel and chemical platform from lignocellulosic biomass. J. Chem.
494	Technol. Biotechnol. 89, 2–10. https://doi.org/10.1002/jctb.4168

495	Chatterjee, A., HU, X., Lam, F.L.Y., 2019. Modified coal fly ash waste as an efficient
496	heterogeneous catalyst for dehydration of xylose to furfural in biphasic medium.
497	Fuel 239, 726–736. https://doi.org/10.1016/j.fuel.2018.10.138
498	Choudhary, V., Sandler, S.I., Vlachos, D.G., 2012. Conversion of xylose to furfural using
499	Lewis and Brønsted acid catalysts in aqueous media. ACS Catal. 2, 2022–2028.
500	https://doi.org/10.1021/cs300265d
501	Delbecq, F., Takahashi, Y., Kondo, T., Corbas, C.C., Ramos, E.R., Len, C., 2018.
502	Microwave assisted efficient furfural production using nano-sized surface-
503	sulfonated diamond powder. Catal. Commun. 110, 74–78.
504	https://doi.org/10.1016/j.catcom.2018.03.020
505	Deng, A., Lin, Q., Yan, Y., Li, H., Ren, J., Liu, C., Sun, R., 2016. A feasible process for
506	furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in
507	a new biphasic system. Bioresour. Technol. 216, 754–760.

https://doi.org/10.1016/j.biortech.2016.06.002 508

- 509 Enslow, K.R., Bell, A.T., 2015. The role of metal halides in enhancing the dehydration of
- 510 xylose to furfural. ChemCatChem 7, 479–489.
- 511 https://doi.org/10.1002/cctc.201402842
- 512 Gong, L., Xu, Z.Y., Dong, J.J., Li, H., Han, R.Z., Xu, G.C., Ni, Y., 2019. Composite coal
- fly ash solid acid catalyst in synergy with chloride for biphasic preparation of 513

- 514 furfural from corn stover hydrolysate. Bioresour. Technol. 293, 122065.
- 515 https://doi.org/10.1016/j.biortech.2019.122065
- 516 Guenic, S. Le, Delbecq, F., Ceballos, C., Len, C., 2015. Microwave-assisted dehydration
- 517 of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic
- 518 system. J. Mol. Catal. A Chem. 410, 1–7.
- 519 https://doi.org/10.1016/j.molcata.2015.08.019
- 520 Guo, T., Li, X., Liu, X., Guo, Y., Wang, Y., 2018. Catalytic Transformation of
- 521 Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural.

522 ChemSusChem 11, 2758–2765. https://doi.org/10.1002/cssc.201800967

- 523 Guo, X., Guo, F., Li, Y., Zheng, Z., Xing, Z., Zhu, Z., Liu, T., Zhang, X., Jin, Y., 2018.
- 524 Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in
- 525 DMSO/H2O mixture. Appl. Catal. A Gen. 558, 18–25.
- 526 https://doi.org/10.1016/j.apcata.2018.03.027
- 527 Gupta, N.K., Fukuoka, A., Nakajima, K., 2017. Amorphous Nb2O5 as a Selective and
- 528 Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and
- 529 Toluene. ACS Catal. 7, 2430–2436. https://doi.org/10.1021/acscatal.6b03682
- 530 Jiang, C.X., Di, J.H., Su, C., Yang, S.Y., Ma, C.L., He, Y.C., 2018. One-pot co-catalysis
- 531 of corncob with dilute hydrochloric acid and tin-based solid acid for the

- enhancement of furfural production. Bioresour. Technol. 268, 315–322.
- 533 https://doi.org/10.1016/j.biortech.2018.07.147
- 534 Karinen, R., Vilonen, K., Niemelä, M., 2011. Biorefining: Heterogeneously catalyzed
- reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.

536 ChemSusChem 4, 1002–1016. https://doi.org/10.1002/cssc.201000375

- 537 Le Guenic, S., Gergela, D., Ceballos, C., Delbecq, F., Len, C., 2016. Furfural production
- from D-xylose and xylan by using stable nation NR50 and NaCl in a microwave-
- assisted biphasic reaction. Molecules 21, 1102.
- 540 https://doi.org/10.3390/molecules21081102
- 541 Li, G., You, Z., Zhang, Y., Rao, M., Wen, P., Guo, Y., Jiang, T., 2014. Synchronous
- 542 Volatilization of Sn, Zn, and As, and Preparation of Direct Reduction Iron (DRI)
- from a Complex Iron Concentrate via CO Reduction. Jom 66, 1701–1710.
- 544 https://doi.org/10.1007/s11837-013-0852-4
- 545 Li, H., Deng, A., Ren, J., Liu, C., Wang, W., Peng, F., Sun, R., 2014. A modified
- 546 biphasic system for the dehydration of d-xylose into furfural using SO42-/TiO2-
- 547 ZrO2/La3+ as a solid catalyst. Catal. Today 234, 251–256.
- 548 https://doi.org/10.1016/j.cattod.2013.12.043
- 549 Li, H., Ren, J., Zhong, L., Sun, R., Liang, L., 2015. Production of furfural from xylose,
- 550 water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-

- 551 loaded montmorillonite solid acid catalyst. Bioresour. Technol. 176, 242–248.
- 552 https://doi.org/10.1016/j.biortech.2014.11.044
- Li, X.K., Fang, Z., Luo, J., Su, T.C., 2016. Coproduction of Furfural and Easily
- 554 Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic
- 555 System: Influence of Acid Species, NaCl Addition, and MTHF. ACS Sustain. Chem.
- 556 Eng. 4, 5804–5813. https://doi.org/10.1021/acssuschemeng.6b01847
- 557 Lin, Q., Li, H., Wang, X., Jian, L., Ren, J., Liu, C., Sun, R., 2017. SO42–/Sn-MMT solid
- acid catalyst for xylose and xylan conversion into furfural in the biphasic system.
- 559 Catalysts 7, 1–14. https://doi.org/10.3390/catal7040118
- 560 Liu, Xiaohao, Liu, Xiaodong, Xu, G., Zhang, Y., Wang, C., Lu, Q., Ma, L., 2019. Highly
- 561 efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on
- nanosilica and the mechanism study. Green Chem. 21, 5647–5656.
- 563 https://doi.org/10.1039/c9gc02449b
- 564 Ma, H., Teng, K., Fu, Y., Song, Y., Wang, Y., Dong, X., 2011. Synthesis of visible-light
- 565 responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction. Energy
- 566 Environ. Sci. 4, 3067–3073. https://doi.org/10.1039/c1ee01095f
- 567 Mao, L., Zhang, L., Gao, N., Li, A., 2013. Seawater-based furfural production via
- 568 corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem. 15, 727–
- 569 737. https://doi.org/10.1039/c2gc36346a

570	Nimlos, M.R., Qian, X., Davis, M., Himmel, M.E., Johnson, D.K., 2006. Energetics of
571	xylose decomposition as determined using quantum mechanics modeling. J. Phys.
572	Chem. A 110, 11824–11838. https://doi.org/10.1021/jp0626770
573	Qing, Q., Guo, Q., Zhou, L., Wan, Y., Xu, Y., Ji, H., Gao, X., Zhang, Y., 2017. Catalytic
574	conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic
575	system with addition of sodium chloride. Bioresour. Technol. 226, 247–254.
576	https://doi.org/10.1016/j.biortech.2016.11.118
577	Quackenbush, N.F., Allen, J.P., Scanlon, D.O., Sallis, S., Hewlett, J.A., Nandur, A.S.,
578	Chen, B., Smith, K.E., Weiland, C., Fischer, D.A., Woicik, J.C., White, B.E.,
579	Watson, G.W., Piper, L.F.J., 2013. Origin of the bipolar doping behavior of SnO
580	from X-ray spectroscopy and density functional theory. Chem. Mater. 25, 3114-
581	3123. https://doi.org/10.1021/cm401343a
582	Román-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A., 2007. Production of
583	dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447,
584	982-985. https://doi.org/10.1038/nature05923
585	Su, Z., Zhang, Y., Liu, B., Zhou, Y., Jiang, T., Li, G., 2016. Reduction behavior of SnO2
586	in the tin-bearing iron concentrates under CO-CO2 atmosphere. Part I: Effect of
587	magnetite. Powder Technol. 292, 251–259.
588	https://doi.org/10.1016/j.powtec.2015.12.047

589	Sweygers, N., Depuydt, D.E.C., Willem, A., Vuure, V., Degrève, J., Potters, G., Dewil,
590	R., Appels, L., 2020. Simultaneous production of 5-hydroxymethylfurfural and
591	furfural from bamboo (Phyllostachys nigra "Boryana") in a biphasic reaction
592	system. Chem. Eng. J. 386, 123957. https://doi.org/10.1016/j.cej.2019.123957
593	Sweygers, N., Harrer, J., Dewil, R., Appels, L., 2018. A microwave-assisted process for
594	the in-situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic
595	polysaccharides in a biphasic reaction system. J. Clean. Prod. 187, 1014–1024.
596	https://doi.org/10.1016/j.jclepro.2018.03.204
597	Sweygers, N., Mohammadreza, K., Aminabhavi, T.M., Dewil, R., Appels, L., 2021.
598	Efficient microwave-assisted production of furanics and hydrochar from bamboo
599	(Phyllostachys nigra "Boryana") in a biphasic reaction system: effect of inorganic
600	salts. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-021-01372-6
601	Teng, X., Si, Z., Li, S., Yang, Y., Wang, Z., Li, G., Zhao, J., Cai, D., Qin, P., 2020. Tin-
602	loaded sulfonated rape pollen for efficient catalytic production of furfural from corn
603	stover. Ind. Crops Prod. 151, 112481. https://doi.org/10.1016/j.indcrop.2020.112481
604	Vomstein, T., Grande, P.M., Leitner, W., Domínguezdemaría, P., 2011. Iron-catalyzed
605	furfural production in biobased biphasic systems: From pure sugars to direct use of
606	crude xylose effluents as feedstock. ChemSusChem 4, 1592–1594.
607	https://doi.org/10.1002/cssc.201100259

608	Wang, W., Ren, J., Li, H., Deng, A., Sun, R., 2015. Direct transformation of xylan-type
609	hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems.
610	Bioresour. Technol. 183, 188–194. https://doi.org/10.1016/j.biortech.2015.02.068
611	Wang, X., Li, H., Lin, Q., Li, R., Li, W., Peng, F., Ren, J., 2019. Efficient catalytic
612	conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using
613	recyclable ironic phosphates catalysts. Bioresour. Technol. 290, 121764.
614	https://doi.org/10.1016/j.biortech.2019.121764
615	Wang, Y., Delbecq, F., Kwapinski, W., Len, C., 2017. Application of sulfonated carbon-
616	based catalyst for the furfural production from D-xylose and xylan in a microwave-
617	assisted biphasic reaction. Mol. Catal. 438, 167–172.
618	https://doi.org/10.1016/j.mcat.2017.05.031
619	Wettstein, S.G., Martin Alonso, D., Gürbüz, E.I., Dumesic, J.A., 2012. A roadmap for
620	conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem.
621	Eng. 1, 218–224. https://doi.org/10.1016/j.coche.2012.04.002
622	Yang, T., Zhou, Y.H., Zhu, S.Z., Pan, H., Huang, Y.B., 2017. Insight into Aluminum
623	Sulfate-Catalyzed Xylan Conversion into Furfural in a Γ-Valerolactone/Water
624	Biphasic Solvent under Microwave Conditions. ChemSusChem 10, 4066–4079.
625	https://doi.org/10.1002/cssc.201701290

626	Yang, X.,	Yu, I.K.M.,	Cho, D.W.,	Chen, S.S.,	Tsang,	D.C.W.,	, Shang, J.,	Yip, A.C.K.,
-----	-----------	-------------	------------	-------------	--------	---------	--------------	--------------

- 627 Wang, L., Ok, Y.S., 2019. Tin-Functionalized Wood Biochar as a Sustainable Solid
- 628 Catalyst for Glucose Isomerization in Biorefinery. ACS Sustain. Chem. Eng. 7,
- 629 4851–4860. https://doi.org/10.1021/acssuschemeng.8b05311
- 630 Yang, X., Yu, I.K.M., Tsang, D.C.W., Budarin, V.L., Clark, J.H., Wu, K.C.W., Yip,
- 631 A.C.K., Gao, B., Lam, S.S., Ok, Y.S., 2020. Ball-milled, solvent-free Sn-
- 632 functionalisation of wood waste biochar for sugar conversion in food waste
- 633 valorisation. J. Clean. Prod. 268, 122300.
- 634 https://doi.org/10.1016/j.jclepro.2020.122300
- 635 Zhang, C., Jia, C., Cao, Y., Yao, Y., Xie, S., Zhang, S., Lin, H., 2019. Water-assisted
- 636 selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst
- 637 in the biphasic process. Green Chem. 21, 1668–1679.
- 638 https://doi.org/10.1039/c8gc04017f
- 639 Zhang, L., Xi, G., Chen, Z., Jiang, D., Yu, H., Wang, X., 2017. Highly selective
- 640 conversion of glucose into furfural over modified zeolites. Chem. Eng. J. 307, 868–
- 641 876. https://doi.org/10.1016/j.cej.2016.09.001
- 642 Zhao, X., Huang, L., Namuangruk, S., Hu, H., Hu, X., Shi, L., Zhang, D., 2016.
- 643 Morphology-dependent performance of Zr-CeVO4/TiO2 for selective catalytic

- 644 reduction of NO with NH3. Catal. Sci. Technol. 6, 5543–5553.
- 645 https://doi.org/10.1039/c6cy00326e
- 646 Zhu, H., Rosenfeld, D.C., Harb, M., Anjum, D.H., Hedhili, M.N., Ould-Chikh, S., Basset,
- 647 J.M., 2016. Ni-M-O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method
- 648 for Oxidative Dehydrogenation of Ethane. ACS Catal. 6, 2852–2866.
- 649 https://doi.org/10.1021/acscatal.6b00044