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Abstract  8 

Seepage-induced instabilities pose a challenge in many geotechnical applications. Particle-scale 9 

mechanisms govern the initiation of instability. However, current understanding is based on a 10 

macro-scale perspective that draws on continuum mechanics. Recent developments in imaging and 11 

numerical analysis can provide the particle-scale fundamental perspective needed to develop a 12 

comprehensive insight. This contribution demonstrates the value of combining particle-scale 13 

experimental and numerical studies. The experiments consider transparent soil samples created 14 

using refractive image matching and monitored by particle image velocimetry (PIV). Three-15 

dimensional pore topology is extracted from a series of 2D images and imported into 16 

computational fluid dynamics (CFD) simulations. Permeability is estimated by three distinct 17 

approaches: using flow rate, PIV- and CFD-generated data. The flow fields obtained from PIV and 18 

CFD are in good agreement considering both flow rate contour plots and flow rate distributions; 19 

this demonstrates the successful reconstruction of three-dimensional pore structure and flow-field 20 

analysis. The comparison also reveals that the side boundary effects in CFD simulations are 21 

constrained within a limited region. The multi-plane results characterize the variance of flow 22 
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velocity with the three-dimensional pore topology. Finally, the fluid-particle interactions obtained 23 

from CFD results show a larger variance in the angular particle packings. 24 

 25 
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 29 

1. Introduction  30 

A comprehensive understanding of seepage flow in cohesionless or granular soils is critical in 31 

many geotechnical analyses associated with dewatering, dam and flood embankment design, slope 32 

stability etc. Seepage analyses to inform engineering design typically adopt a continuum approach 33 

with macro-scale parameters. However, the fundamental processes that lead to the internal erosion 34 

in embankment dams (ICOLD, 2015) and settlement due to fines migration during dewatering 35 

(Preene & Rosser, 2012) initiate at the particle scale. Understanding these processes is important 36 

to inform robust approaches to design, e.g. considering whether to continue to use hydraulic 37 

gradient rather than seepage velocity when assessing the risk of a seepage-induced instability 38 

(Vogt et al., 2015). Incidents such as the failure of Gouhou Dam in 1993 (Zhang & Chen, 2006) 39 

and the serious sinkhole incident at WAC Bennett dam in Canada in 1996 (Muir Wood, 2007) 40 

remind us of the significant hazard that can be posed by seepage instabilities. Globally, seepage 41 

instabilities have caused about 50% of recorded embankment dam failures (Foster et al., 2000). 42 

This contribution adopts a combination of particle image velocimetry (PIV) and computational 43 

fluid dynamics (CFD) to quantify seepage flow in the void space of a transparent granular soil and 44 

to determine the fluid-particle interaction forces that can lead to particle migration and instability. 45 
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Saturated transparent soils can be created by refractive index (RI) matching between model 46 

(analogue) sands formed of borosilicate glass and carefully selected pore fluids. Illumination by a 47 

laser light sheet enables visualization of the particles along a plane within the material, and so the 48 

internal mechanisms that underlie complex macro-scale behaviours can be studied (Hunter & 49 

Bowman, 2018; Iskander et al., 2015). Hunter and Bowman (2018) developed a transparent soil 50 

rigid-walled permeameter to study the particle-scale mechanisms that occur during internal erosion 51 

in gap graded particulate systems. They considered a single plane within the sample and 52 

successfully imaged particle migration. However, there was no local measurement of fluid flow, 53 

and the data generated were two-dimensional. Saleh et al. (1992) and Northrup et al. (1993) applied  54 

Particle Imaging Velocimetry (PIV) to tracer particles in the pore fluid to generate 2D images of 55 

flow in transparent porous media created using RI matching. Peurrung et al. (1995) applied Particle 56 

Tracking Velocimetry using a similar experimental set-up, again obtaining 2D data. Alternatively, 57 

the flow fields in 2D transparent micromodels fabricated with soft lithography may be determined 58 

with micro-PIV (Karadimitriou et al., 2013; Karadimitriou & Hassanizadeh, 2012; Meinhart et al., 59 

1999). However, it is the 3D geometry of the void space that controls flow in the pores; a complete 60 

picture cannot be obtained from planar data. 3D flow data can be obtained using tomographic 61 

technologies which can be used on opaque materials, e.g. Magnetic Resonance Imaging MRI and 62 

Particle Emission Tomography PET (Khalili et al., 1998; Sederman et al., 1997). However, the 63 

data generated are often of limited spatial or temporal resolution.  64 

Computational fluid dynamics (CFD) has been applied to study flow in porous rocks 65 

(Mostaghimi et al., 2013; Nunes et al., 2015; Piller et al., 2014) and in sands  (Garcia et al., 2009; 66 

Taylor et al., 2016, 2017). In these studies, the topology of the pore space was obtained from 67 

micro-computed tomography scans. The volumes of soil/rock considered was relatively small, and 68 
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ideal flow boundary conditions were typically assumed along the sides of the sample. While the 69 

resulting permeabilities appeared reasonable, the accuracy of the velocities within the pores could 70 

not be verified, and the implications of the idealized boundary conditions could not be quantified. 71 

Huang et al. (2008) and Thaker et al. (2019) determined the 3D topology of the void space in 72 

transparent samples, and applied CFD to simulate flow and compared these data with flow field 73 

data acquired using PIV. However, the comparisons considered only a single plane and spherical 74 

particles. 75 

Developing the work of Hunter & Bowman (2018), this study adopts refractive-index-matched 76 

transparent materials and PIV to monitor the flow field in a transparent permeameter. A method 77 

was developed to precisely control the laser sheet position in order to enable multiple images of 78 

the pore topology and the fluid-flow field to be acquired so that, in contrast to earlier studies, quasi-79 

3D experimental data were recorded. Three-dimensional pore topologies reconstructed from slice-80 

by-slice scanning and image processing are incorporated in CFD simulations. This combination of 81 

laboratory experiments and numerical modelling enables the following questions to be addressed: 82 

i) Can PIV be used to develop a three-dimensional understanding of seepage flow in the void 83 

space of granular soils? 84 

ii) To what extent do the assumed flow boundary conditions compromise the accuracy of the 85 

predictions of the local fluid velocities in CFD analyses of seepage flow in the void space 86 

of soil? 87 

iii) Particle migration induced by the fluid-particle interaction force initiates all of the 88 

instabilities noted above. Can the combined PIV and CFD analyses enable quantification 89 

of the fluid-particle interaction forces in real physical systems? 90 
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In a preliminary application of the approach proposed here, we considered two materials with very 91 

different particle morphologies and show how this technique can be used to explore the influence 92 

of morphology on flow fields and fluid-particle interaction forces. 93 

 94 

2. Experimental Setup  95 

2.1. Transparent soil permeameter 96 

The experimental apparatus is a rigid-walled ‘transparent soil’ permeameter that has been 97 

designed to visualize the mechanisms occurring during seepage-induced internal erosion in 98 

susceptible granular media (Hunter & Bowman, 2018). Fig.1 is a sketch of the experimental device. 99 

The permeameter is a rectangular cell (100 mm by 100 mm in plan area and 265 mm high). Five 100 

vertical manometer ports are arranged at the back of the permeameter for local head measurements. 101 

The flow is directed upward via a constant head applied at the base using an adjustable header tank. 102 

Flow from the top of the cell is recirculated back into a reservoir and then pumped back into the 103 

header tank. A constant head was applied, and the resulting local head values were measured using 104 

the manometers located at the back of the permeameter cell. Consideration was restricted to 105 

laminar, low Reynolds number flows, typically encountered in geotechnical applications. Particle 106 

movement was not expected since the drag forces were relatively low compared with the particle 107 

weights (i.e. gravitational force). Also, analysis of the images showed no visible particle movement 108 

throughout testing. 109 
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2.2. Laser and imaging systems 110 

A 1.5 mm thick laser sheet parallel to the direction of the flow was applied to the side of the 111 

permeameter to illuminate a selected plane perpendicular to the z-axis in Figure 1. The light source 112 

was a 1W Kvant continuous wave laser at 520 nm (green) wavelength with variable power control. 113 

The laser beam was coupled from the laser head into an optical fibre, recollimated at the fibre 114 

output, and then sent through a line generator lens mounted on a lens post and base plate to provide 115 

height adjustment. This optical assembly was fixed on a linear micrometre stage with a 25 mm 116 

travel range so that specific planes of interest could be imaged and returned to with precision over 117 

long-running tests.  118 

A high-speed camera, Phantom Miro 310, mounted on another linear micrometre stage with a 119 

50 mm travel range was positioned in front of the permeameter cell to record images with a spatial 120 

resolution of 1280 × 800 pixels at 200 frames/s. During each test, the position of the camera in the 121 

z-direction was adjusted in accordance with the laser sheet position to retain a sharp image focus. 122 

A Nikon AF Nikkor lens 85 mm was used with up to 34 mm of extension rings placed between 123 

the lens and the camera sensor. All images were recorded using an aperture f-stop number of 4, 124 

which was selected according to its influence on the tracer magnification, as discussed later. 125 

2.3. Tested materials 126 

Table 1 shows the physical and optical properties of the two model soils. The first sample 127 

consisted of 7.5 ± 0.03 mm diameter spherical beads made of borosilicate glass purchased from 128 

SiliBeads. The second sample consisted of angular particles made from Duran® glass with size 129 

ranging from 6.7 to 9.5 mm (Sanvitale & Bowman, 2012).  130 
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The particle size was chosen based on a trade-off between different aspects related to the 131 

optical technique, practical considerations and standard guidelines. As general rule, the size of the 132 

particles must be large enough to ensure the tracers can flow easily through the pores without 133 

blocking the channels. In addition, the procedure for Standard Test Method for Permeability of 134 

Granular Soils (ASTM D 2434-68, 2000) requires the maximum particle size of the specimen to 135 

be 8 to 12 times smaller than the diameter of the permeameter. Furthermore, in previous 136 

experimental work (Sanvitale & Bowman, 2012) the same refractive index matched material was 137 

used and it was observed that the presence of small particles produces a greater amount of scattered 138 

light in the granular system owing to the slight differences in refractive indices at the grain–liquid 139 

interfaces. It was found that better transparency even at the deepest illuminated sections, can be 140 

obtained when large particles are used. Finally, the availability in the laboratory of a sample of 141 

angular particles (that are not commercially available but hand-made, see Sanvitale & Bowman 142 

2012) with gradations comparable to those of the beads was taken into account, in order to carry 143 

out tests with grains of different shape but compatible drainage behaviour.  144 

Each sample was prepared using a ‘slurry’ placement method to avoid entrapment of air 145 

bubbles (Hunter & Bowman, 2018) to create a sample approximately 165 mm in height. In order 146 

to develop a uniform pressure and velocity conditions entering the sample, a 45 mm layer of 147 

‘dispersing’ filter material, comprising a mixture of spherical borosilicate beads of 15 mm and 10 148 

mm diameter, was placed at the bottom of the apparatus.  149 

A hydrocarbon immersion fluid (Cargille Laboratories) was chosen to match the refractive 150 

index of the glass particles (Sanvitale & Bowman, 2012; Wiederseiner et al., 2011). As well as a 151 

close optical match, the fluid and solid mixture needed to behave similarly to soil and water in 152 

terms of buoyancy. The effective specific gravity of the particles compared with the fluid was 2.64 153 
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– which is typical of soil in water. In order to achieve the best refractive index match during testing, 154 

different room temperatures were used, 23 °C for the beads and 26 °C for the angular particles. 155 

Figure 2(a) shows a typical outcome of refractive index matching under normal lighting conditions. 156 

A small amount of Nile Red fluorescent dye, added to the fluid phase, enabled the application of 157 

Planar Laser-Induced Fluorescence (PLIF) based imaging on identifying the solid particles with 158 

respect to the fluid phase. To characterize the pore topology, the saturated sample was illuminated 159 

by the laser sheet whose wavelength matched the absorption peak of the fluorescent dye within 160 

the fluid. The resulting fluorescence (where the dye emits light at a wavelength greater than that 161 

of the excitation wavelength) was recorded by the high-speed camera through a long-pass filter 162 

placed over the lens to transmit only the fluorescence signal and discard the green laser light: the 163 

particles show as dark on a bright fluid background. 164 

 165 

3. Particle Image Velocimetry (PIV) Analyses 166 

3.1. Calibration for image size and distortion 167 

Before each test, the image size and distortion were calibrated with fixed grid dots at 1 mm ± 168 

0.001 mm spacing inside the permeameter cell filled with the liquid phase at the locations of the 169 

26 vertical planes imaged in the experiment. The distortion error due to the optical assembly was 170 

corrected according to the procedure discussed in Gollin et al. (2017). The coordinates of the dots 171 

were estimated with sub-pixel accuracy and associated with an undistorted grid and then 172 

interpolated using a built-in MATLAB function Scattered-Interpolant (Brevis et al., 2011). This 173 

approach adopts a linear interpolation based on Delaunay triangulation. 174 
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3.2. Seed tracers 175 

The fluid flow field was imaged using reflective seed tracers dispersed in the liquid phase. 176 

These seeding particles should be neutrally buoyant and small enough to follow the flow accurately. 177 

Silver-coated hollow microspheres with a nominal size ranging between 5-30 µm were used at a 178 

concentration of 35 mg/l. These had a density of 0.75 g/cm3
, resulting in an effective specific 179 

gravity of 1.13 compared to the fluid, i.e. close to unity. To ensure that the inertia effects due to 180 

particle density were negligible so that the tracers would reliably follow the flow, the Stokes 181 

number was calculated as follows: 182 

𝑆𝑆𝑆𝑆𝑘𝑘𝑠𝑠 =
𝜌𝜌𝑠𝑠𝑑𝑑𝑠𝑠2𝑢𝑢𝑦𝑦
18𝜈𝜈𝜌𝜌𝜈𝜈 ≪ 1 

(Eq. 1) 

where ds and ρs are the seed diameter and density, respectively, D the bead diameter, v and ρ the 183 

fluid kinematic viscosity and density, respectively, and uy is the axial (y-direction) fluid velocity 184 

of the flow. For our set-up, the maximum Stokes number was calculated to be Stks= 2.59 x 10-6. 185 

The movement of the tracers was recorded by removing the long-pass filter in front of the camera 186 

lens to allow the light reflected from their surfaces to be captured. Figure 2(b) and (c) show how 187 

laser illumination enables internal visualization of a plane within both spherical bead and angular 188 

particle samples with the tracers. Two videos, V1 and V2 in the supplementary material, show the 189 

movement of tracers in both spherical bead and angular particle samples. Figure 2(d) shows the 190 

top view of the laser sheet illuminated plane with a finite thickness of around 1.5 mm. 191 

3.3. Image acquisition for 3D volumes 192 

The flow fields inside two 3D volumes were examined within each sample. The lower volumes 193 

were located between manometer ports P2 and P3 and denoted as sub-volumes Beads-L and Ang-194 
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L for the spherical sample and angular samples, respectively (Figure 1). The upper volumes were 195 

located between manometer ports P3 and P4 and denoted as sub-volumes Beads-U and Ang-U, 196 

respectively. The dimensions of sub-volumes varied slightly with the position of the high-speed 197 

camera, as shown in Table 2. In each sub-volume, the flow fields on 26 planes parallel to the flow 198 

directions were measured. These planes were evenly spaced at 1 mm ±0.001mm, centred in the 199 

mid-section of the permeameter cell with at least 32 mm distance from the lateral sidewalls. The 200 

choice of inter-plane spacing was made based on the laser sheet thickness of 1.5 mm. On each 201 

plane, a series of images were taken over 2 seconds at 200 frames/s, i.e. 400 images were taken 202 

per plane.  203 

3.4. PIV postprocessing 204 

An open-source software, PIVlab (Thielicke & Stamhuis, 2014), was used for image 205 

processing to determine the flow velocities. PIVlab gives an Eulerian description of the 206 

investigated velocity field, estimating the displacement for groups of tracers by determining the 207 

peak of the cross-correlation of many small interrogation areas. This software uses a multi-pass 208 

cross-correlation algorithm coupled with a window deformation technique to obtain the velocity 209 

vectors (Thielicke, 2014). The 2-step correlation algorithm with decreasing window size (DI) was 210 

used to evaluate the recorded images with a final size of 32 × 32 pixels (approximately 1 × 1 mm2 211 

area), set to minimize the loss of in-plane particle pairs ensuring that the x and y displacements 212 

were smaller than DI/4. The loss of particle pairs between corresponding interrogation windows 213 

due to out-of-plane motion was limited due to the fact that the 𝑧𝑧 displacement of the tracer particles, 214 

which  can be assumed to be of the same magnitude as the tracer particle displacement in the 𝑥𝑥-215 
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direction, was less than a quarter of the light sheet thickness (Atkins, 2016; Keane & Adrian, 1993). 216 

The overlap of the interrogation windows was 50% for all steps.  217 

The velocity fields for each plane position were calculated by averaging over 2 s of recorded 218 

images, and the ‘instantaneous velocities’ were estimated on two successive frames separated by 219 

a time steps Δt. The frame rate was 200 fps for all of the experiments. The influence of the time 220 

step on the fluid velocities was studied by setting Δt equal to 5, 10, 20 and 40 ms, equivalent to 1, 221 

2, 4 and 8 frames (Figure S1 is provided as supplemental material). Decreasing Δt from 40 to 10 222 

ms caused an increase in the time-averaged uy and ux values. Further decreasing Δt from 10 to 5 223 

ms led to little variation in either uy or ux, meaning the true maxima of velocity were captured at a 224 

time step of around 10 ms. Therefore, a time step Δt of 10 ms was chosen for the PIV analyses to 225 

avoid positional errors associated with reducing the time step to very low values (Gollin et al., 226 

2017).  227 

The seeding density was approximately five tracers inside an interrogation window for both 228 

tests (as shown in Figure S2 in the supplemental material) which is within the optimal range to 229 

achieve a successful correlation and minimum random error (Thielicke, 2014). The seed image 230 

size dτ was estimated as the width of the autocorrelation peak of a typical set of interrogation 231 

windows (Michaelis et al., 2016; Patil & Liburdy, 2013). The autocorrelation peak width was 232 

calculated using the e−2 width. The resulting widths were 3.57±0.72 pixels for the test with the 233 

spherical beads and 3.27±0.81 pixels for the test with angular particles (Figure S3). Both sizes lie 234 

in the range of the tracer image diameter to achieve optimal measurements using the window 235 

deformation algorithms in PIVlab (Thielicke, 2014). 236 
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3.5. Boundary flow field on a single plane 237 

Figure 3 shows a typical flow field across the whole permeameter for a sample of beads, 238 

considering three sub-volumes in the left, middle and right, respectively. The PIV analyses 239 

performed here show how the rigid lateral boundaries of the permeameter can disrupt the particle 240 

packing, leading to some areas of large flow velocity in comparison to the mean, for example with 241 

the high flow at the left boundary of Figure 3(a) compared to (b) and (c). In this preliminary 242 

examination of the flow, an image mask was manually applied to the particle positions to exclude 243 

them from the fluid flow analysis. In contrast, for the following analyses focused on volumes at 244 

the centre of the permeameter, the masks were automatically determined from image processing. 245 

 246 

4. Image Processing  247 

4.1. Image segmentation 248 

Figure 4(a) shows a typical grey-scale image of a plane from sample Beads-U, illuminated by 249 

the laser. As shown in the schematic diagram at the top of the image, the finite laser thickness 250 

leads to non-uniform grey values because particles can partially fill the laser beam. This is similar 251 

to the partial volume effect associated with microCT images and consequences for image quality 252 

are related to the laser thickness. The histogram of grey values of the image as shown in Figure 253 

4(b) indicates there is no clear separation between the grey values for the particles and the pore-254 

space. The distance between the scanning planes determines the image resolution in the z-direction, 255 

i.e. the effective voxel length in the z-direction is 1 mm. Furthermore, the laser sheet creates linear 256 

streaks or shadows in the direction of the laser, with grey values that can be similar to that of 257 

particles. In previous studies, the 3D pore space was reconstructed by identifying the centre and 258 
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radius of each spherical particle from 2D slices (Huang et al., 2008; Thaker et al., 2019) rather 259 

than considering the 3D dataset directly. This shape-matching approach cannot be used for samples 260 

with irregular-shaped particles. 261 

Image segmentation of granular materials classifies each pixel as being either within a particle 262 

or within the pore-space. We explored three approaches to segment the images, and Figure 5 263 

presents the results of each of these methods applied to three representative slices. The first 264 

approach is threshold segmentation which classifies all pixels with a grey value lower than a 265 

specified threshold as being in the particle phase and the remaining in the pore phase. The threshold 266 

can be automatically determined by Otsu’s algorithm based on the grey value histogram, as shown 267 

in Figure 4(b) (Otsu, 1979). The Otsu-threshold segmentation method incorrectly classified some 268 

linear shadows created by the laser as being in the particle phase. 269 

The other two methods considered, namely the trainable Weka (Waikato Environment for 270 

Knowledge Analysis, Arganda-Carreras et al., 2017) and the U-Net (Ronneberger et al., 2015), are 271 

based on artificial intelligence. Artificial intelligence segmentation approaches learn from 272 

manually segmented images to define a pixel-wise classifier which labels each pixel as being in 273 

either the particle or pore phase. The trainable Weka algorithm was developed in the open-source 274 

software platform Fiji (Schindelin et al., 2012). When compared with the Otsu threshold, this 275 

method improved the segmentation quality to some extent, but it could not completely remove the 276 

laser-induced linear shadows. Finally, the U-Net algorithm proved to be more robust in 277 

segmentation, producing smooth particle-pore interfaces and no linear shadows, in contrast with 278 

the other two methods. The segmented results from U-Net have smooth particle surfaces, no 279 

internal voids in the particles and eliminate all linear artefacts induced by the laser, which is 280 

important for constructing CFD models. U-Net performs segmentation based on both grey values 281 
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and morphological patterns, e.g., edges, curvatures, and spheres. The U-Net package was 282 

implemented in Tensorflow and Keras following the U-Net architecture proposed by Ronneberger 283 

et al. (2015). 284 

The U-Net segmentation procedure can be divided into three major steps: (a) data preparation 285 

for training; (b) U-Net training; and (c) new image segmentation (Figure 6). The U-Net 286 

architecture requires an image dimension of 512×512. Therefore, the images were scaled from 287 

1280×800 pixels to 512×512 pixels and scaled back after segmentation. Initially, eight images 288 

were segmented by visual inspection. Data augmentation was performed to increase the diversity 289 

of training data by shifting and rotating each annotated image to produce four images. Thus a total 290 

of 32 images were obtained for training and validation. Then the U-Net algorithm was trained with 291 

32 annotated images to define the classifier. The trained U-Net classification led to an accuracy of 292 

about 93% for validation images and was used as a classifier to segment new images. The U-Net 293 

classification generated a grey-scale image in which the grey value of a pixel reflected the 294 

possibility of that pixel being in a particle. A target porosity was specified to generate an 295 

appropriate threshold grey-level value to binarize the output of the U-Net algorithm. This porosity 296 

was selected by considering the experimental whole-sample value. However, acknowledging the 297 

sample heterogeneity, a parametric study was carried out considering a range of reasonable local 298 

porosity values as discussed below. 299 

4.2. Three-dimensional pore structure reconstruction 300 

The slice-by-slice scanning method led to an in-plane pixel size of approximately 0.029 mm 301 

along the x- and y-axes, and an out-of-plane distance of 1 mm along the z-axis. Therefore, we 302 

applied a scaling to the output from U-Net to reconstruct a three-dimensional volume with an 303 
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identical voxel size of 0.1 mm along all directions. Figure 7 shows the effect of upscaling along 304 

the z-direction with three different interpolation methods. The scaling without interpolation results 305 

in a stepped particle surface, while both interpolation methods provide relatively smooth particle 306 

surfaces. The bilinear interpolation is adopted in this study. Finally, we binarized the scaled three-307 

dimensional images with a threshold value to reach the porosity value determined experimentally. 308 

The threshold value was determined from the linear relationship between the threshold value and 309 

the resulting porosity. Three levels of porosity were used to reconstruct the pore topology to 310 

investigate the influence of porosity on the CFD results. 311 

We performed marker-based watershed labelling to identify individual particles from three-312 

dimensional binary images. The image processing steps involved in labelling particles are: (a) 313 

construct a distance map representing the distance from a pixel to its closest particle surface; (b) 314 

use marker identification based on the H-Maximum algorithm (Soille, 2013) on the distance map; 315 

(c) implement marker-based watershed segmentation using the markers and distance map. A more 316 

detailed description of this marker-based watershed segmentation approach can be found in Zhao 317 

et al. (2015). Figure 8 illustrates the labelling results on typical 2D slices for beads and angular 318 

particles. The particles are less regular on x-z planes than on x-y planes. This is mainly due to the 319 

finite step distance during the slice-by-slice scanning along the z-axis. 320 

A marching cubes algorithm was used to generate triangular surface meshes from the voxel 321 

assembly representing individual particles (Lorensen & Cline, 1987). The surface meshes of 322 

individual particles were cleaned, simplified and smoothed with GMSH, an open-source mesh 323 

generator (Geuzaine & Remacle, 2009). Finally, the surface meshes of all particles were combined 324 

into a single file with individual particles represented by a unique label. Figure 9(a) and (b) show 325 
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the three-dimensional views of the particle packings in the scanning region for the samples with 326 

spherical beads and angular particles, respectively. 327 

 328 

5. Computed Fluid Dynamics (CFD) Simulation  329 

5.1. Governing equation and numerical method 330 

For the fully saturated conditions assumed here, flow through the pore space is governed by 331 

the incompressible Navier-Stokes equations formulated as: 332 

𝜌𝜌𝑓𝑓 �𝜕𝜕𝒖𝒖𝜕𝜕𝑆𝑆 + 𝒖𝒖 ∙ ∇𝒖𝒖� = −∇𝑝𝑝 + 𝜇𝜇∇2𝒖𝒖 
(Eq. 1) 

∇ ∙ 𝒖𝒖 = 0 
(Eq. 2) 

where 𝒖𝒖 is the velocity vector, and p is the pressure. In the steady-state, 𝜕𝜕𝒖𝒖/𝜕𝜕𝑆𝑆 = 0. Here the 333 

Navier-Stokes equations were solved using the Semi-Implicit Method of Pressure Linked 334 

Equations (SIMPLE) algorithm in the open-source CFD toolbox OpenFOAM (OpenFOAM 335 

Foundation, 2019). The SIMPLE algorithm is a steady-state solver for incompressible flow. The 336 

CFD analysis provides the velocity and pressure values at the centre of each CFD cell.  337 

The simulation domain was discretized by the mesh generation algorithms available in 338 

OpenFOAM, i.e., BlockMesh and SnappyHexMesh. BlockMesh decomposes the simulation 339 

domain into blocks, while SnappyHexMesh takes the surface mesh defining the pore structure and 340 

chisels it with the geometry defined by the combined surface mesh file. We applied localized 341 

refinement at the particle surface, which increased the mesh densities close to the particle-particle 342 

contacts in particular. This created CFD meshes with around 3.5 million cells. Figure 9(c) and (d) 343 

show typical CFD meshes of pore space for spherical beads and angular particles, respectively. 344 
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In all simulations, a constant pressure boundary condition was applied at both the inlet (17 Pa) 345 

and outlet boundaries (0 Pa). A ‘slip’ condition was applied to the four lateral boundaries so that 346 

the velocity component normal to each of these boundaries was set to be zero while the tangential 347 

velocities remained unconstrained. A ‘no-slip’ boundary condition was applied to the particle 348 

surfaces so that the velocities normal and tangential to the surface were set to zero. These boundary 349 

conditions are similar to those applied in the CFD analyses by Taylor et al. (2016). They do not 350 

capture the heterogeneity of the pressure and velocity distributions that exist on the boundaries of 351 

sub-volumes in experiments. However, the flow velocity data available from the experiments are 352 

restricted to 2D and limited to 26 discrete vertical planes. A valid CFD analysis requires 353 

conservation of mass (adherence to continuity) in the model in all three dimensions. Consequently, 354 

it was not possible to use the experimental data to apply non-uniform velocity fields along the 355 

boundary to the simulation domain. 356 

The normal and shear stresses on the particle surface were determined from the flow velocity 357 

and pressure fields. Each particle surface was discretized into surface elements. Then, the flow-358 

induced force and moment on individual particles were calculated by integrating normal pressure 359 

and viscous shear stresses over all elements on the particle surface: 360 

𝑭𝑭𝒑𝒑 = � 𝜌𝜌𝑝𝑝𝑖𝑖𝐴𝐴𝑖𝑖𝒏𝒏𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖=1  
(Eq. 3) 

𝑭𝑭𝒗𝒗 = � 𝜇𝜇𝑹𝑹𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖=1  

(Eq. 4) 

where Ne is the number of elements covering the particle surface, 𝜌𝜌 is the fluid density, 𝑝𝑝𝑖𝑖 is the 361 

kinematic normal pressure, 𝐴𝐴𝑖𝑖 and 𝒏𝒏𝑖𝑖 are the patch area and normal vector, 𝜇𝜇 is the fluid dynamic 362 
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viscosity, and 𝑹𝑹𝑑𝑑𝑑𝑑𝑑𝑑 is the deviatoric stress tensor. The integration was performed using the in-built 363 

function, ‘forces’, in OpenFOAM (OpenFOAM Foundation, 2019). 364 

5.2. Validation with regular packings 365 

The CFD simulation data are inherently dependant on the mesh density (cell size) (e.g. Knight 366 

et al. 2020). The sensitivity of the fluid-particle interaction forces obtained from the CFD 367 

modelling approach adopted here to the mesh density was examined by considering the data in 368 

Zick & Homsy (1982) for simple cubic (SC) and face-centred cubic (FCC) packings of uniformly 369 

sized spheres. Following Knight et al (2020), the models exploited geometric symmetry to reduce 370 

the calculation cost. As before, a specified pressure was applied at the inlet and outlet, while ‘cyclic’ 371 

boundary conditions were applied to the four lateral boundaries. The sphere centroids were placed 372 

on a fixed lattice, and the particle sizes were changed to reach different packing densities; e.g. the 373 

particle diameter was increased from 4.4 mm to 4.9 mm in the FCC packings to achieve porosity 374 

between 0.495 and 0.303. The fluid-particle interaction coefficient, 𝐹𝐹�𝑓𝑓→𝑠𝑠 , is the fluid-particle 375 

interaction force normalized by Stokes drag force 𝐹𝐹𝑓𝑓→𝑠𝑠𝑠𝑠 : 376 𝐹𝐹𝑓𝑓→𝑠𝑠𝑠𝑠 = 3𝜋𝜋𝜇𝜇𝜈𝜈|𝑢𝑢| (Eq. 5) 

𝐹𝐹�𝑓𝑓→𝑠𝑠 = 𝐹𝐹𝑓𝑓→𝑠𝑠/𝐹𝐹𝑓𝑓→𝑠𝑠𝑠𝑠  
(Eq. 6) 

where D is the particle diameter, u is the superficial flow velocity, and 𝐹𝐹𝑓𝑓→𝑠𝑠 is the fluid-particle 377 

interaction force, which includes both the pressure and viscous terms. 378 

The fluid-particle interaction coefficient increases with reduced packing porosity, as shown in 379 

Figure 10(a). The results from CFD simulations are consistent with the Zick and Homsy solutions 380 

and the results from Immersed Boundary Method (IBM) obtained by Knight et al. (2020). The 381 
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CFD results are mesh dependent. As shown in Figure 10(b) and (c), the agreement between the 382 

fluid-particle interactions obtained from these CFD simulations and the Zick and Homsy data, 383 �𝐹𝐹�𝑓𝑓→𝑠𝑠 − 𝐹𝐹�𝑓𝑓→𝑠𝑠𝑍𝑍𝑍𝑍 �/𝐹𝐹�𝑓𝑓→𝑠𝑠𝑍𝑍𝑍𝑍 , improves with increasing mesh density, D/dm, where D is the particle 384 

diameter, and dm is a characteristic mesh element size. At the same D/dm, the relative error 385 

increases with sample density. The relative errors for most samples were smaller than 5% at a D/dm 386 

of 40. The results obtained from the unstructured mesh CFD analyses by Knight et al. (2020) show 387 

a similar influence of mesh density on relative error for drag estimation. The average ratio between 388 

particle diameter and mesh element size was chosen to be 40 for the permeameter simulations. 389 

 390 

6. Results  391 

The 2D-PIV measurements can only provide the components of flow velocities in the plane of 392 

the laser, i.e. along the x- and y-directions. Within this plane, the distance between PIV data points 393 

is around 0.5 mm, which is much larger than the CFD mesh size. Therefore, the CFD velocity 394 

fields were interpolated to the centre of the PIV interrogation regions to allow a direct comparison 395 

between the PIV and CFD results. The Reynolds number in this study is around one, which 396 

indicates a laminar flow condition. We normalized the velocity values by the mean vertical 397 

velocity either on each vertical slice (𝑢𝑢�𝑠𝑠) or the mean value in each sub-volume (𝑢𝑢�𝑑𝑑). 398 

For each sub-volume, the PIV analysis was performed on 26 x-y planes at 1 mm intervals. The 399 

x-y planes were referred with their z coordinates from 0 mm to 25 mm. The CFD domain is slightly 400 

smaller than the PIV domain and has 24 x-y planes (z = 1 to 24 mm) to reduce the effects of 401 

upscaling on boundary slices (Figure 7). The sub-volume has about six particles along the x-402 

direction and four particles along the y-direction, and there are about 20 particles completely inside 403 

each sub-volume. 404 
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6.1. Permeability estimation 405 

Table 3 shows the experimental measurements for each sub-volume. Each sub-volume is 406 

named by the particle type, e.g. spherical (Beads) and angular (Ang), followed by the position, e.g. 407 

upper (U) and lower (L). The overall packing porosity, 𝑛𝑛, permeameter cross-section area, 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸, 408 

and flow rate, 𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸, were measured during each permeameter test. Local manometer readings were 409 

used to identify the hydraulic gradient for the experiments, and the two sub-volumes in the angular 410 

particle sample had slightly different hydraulic gradients 𝑖𝑖𝑑𝑑𝐸𝐸𝐸𝐸 due to the inhomogeneous packing. 411 

Seepage flow rates were determined from experimental measurements (𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
), PIV analysis (𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 ) 412 

and CFD simulations (𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 ). 413 

Figure 11 compares the permeability values estimated by the three types of seepage velocities. 414 

In general, the permeability values estimated by PIV analysis (𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃) are smaller than the values 415 

estimated from the experimental measurements (𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸). This is unsurprising as the PIV analysis 416 

was performed over central sub-volumes, while the pump injection rate measures the cross-section 417 

of the permeameter, including the larger voids commonly encountered at the side walls (Figure 3). 418 

In addition, the sub-volumes for Ang show smaller permeabilities than the sub-volumes for Beads. 419 

For 𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 the sub-volume Ang-U has a higher permeability than for Ang-L due to the different 420 

hydraulic gradient as measured using the manometers, while there was no evident difference in the 421 

sub-volumes of the Beads sample. In Figure 11(a) the 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 data were obtained using the overall 422 

experimental porosities, i.e. 𝑛𝑛= 0.38 and 0.36 in the CFD simulations for Beads and Ang samples, 423 

respectively. Perhaps surprisingly, the permeability values estimated by CFD simulations, 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 424 

(grey data points), are similar across the four sub-volumes, with only a slight decrease for the Ang 425 

sample compared to the Beads. This means that, while the permeabilities estimated for CFD and 426 
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PIV in the Beads sub-volumes are quite close, for the angular sample, 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 measurements are 427 

approximately twice that of 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃.  428 

The differences between experimental and numerical permeabilities could be caused by (a) 429 

local porosity variations, (b) CFD boundary effects, or (c) PIV velocity measurement errors. Figure 430 

11(b) illustrates the sensitivity of the  𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶  results to porosity by considering three limiting 431 

plausible porosity values. For Beads-U, 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 agrees with both 𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸and 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 if local porosity is 432 

changed from 0.38 to 0.40. For Ang-U, 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 agrees with 𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 if the local porosity is 433 

changed from 0.36 to 0.31 and 0.29, respectively. However, the segmented images seem to be 434 

inconsistent with the grey-value images due to the large porosity change (Figure S4 in the 435 

supplementary material). Furthermore, the variation in porosity had only a limited influence on the 436 

flow field distributions. Potential PIV velocity measurement errors were also investigated by 437 

changing the framerate. However, this did not lead to a noticeable change. A definitive, precise 438 

explanation for the inconsistency in the permeability values could not be determined. 439 

6.2. Flow fields – contour plots 440 

The normalized flow fields obtained from PIV and CFD analysis within a typical x-y plane for 441 

the Beads-U sub-volume are in good agreement, as shown by the normalized horizontal velocity 442 𝑢𝑢�𝐸𝐸𝑠𝑠  and vertical velocity 𝑢𝑢�𝑦𝑦𝑠𝑠  in Figure 12. The heterogeneity in the packing leads to concentrated 443 

flow paths for vertical flow at some large voids, e.g. close to the left bottom corner. The horizontal 444 

velocity is determined by the local pore alignment relative to the macro-scale flow direction. The 445 

lateral boundaries assumed in the CFD models prohibit horizontal flow, so the flow patterns at the 446 

side boundaries differ. For example, the physical test data indicate a relatively large horizontal 447 

flow close the left boundary in Figure 12(a) which is not captured in the CFD model in Figure 448 
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12(b). The difference in the boundary conditions also influences the vertical velocity values in this 449 

region. The vector plots of flow fields on three x-y planes are shown in Figure 13 to further 450 

demonstrate the similar patterns revealed by PIV and CFD estimations. Again, the lateral boundary 451 

conditions inhibit horizontal flow in the CFD model. 452 

The flow velocities on four x-y planes in the Beads-U sub-volume were analysed statistically, 453 

as shown in Figure 14. The horizontal normalised velocity 𝑢𝑢�𝐸𝐸𝑠𝑠  tends to form a Laplace distribution 454 

with a mean velocity around zero (Figure 14(a)). While the distributions obtained from the PIV 455 

analyses are similar for the four planes considered, the two CFD distributions with z= 1 mm and 456 

24 mm tend to have a higher proportion of data points with a velocity close to zero, due to the 457 

lateral boundary effect experienced at the front (z = 1 mm) and back (z = 24 mm) of the studied 458 

volume. The vertical normalised velocity 𝑢𝑢�𝑦𝑦𝑠𝑠  tends to form a half Laplace distribution (Figure 459 

14(b)). Similarly, the planes close to the front or back lateral boundary in the CFD simulation (z= 460 

1 mm and 24 mm) have a higher proportion of velocity close to zero. The cumulative distributions 461 

in Figure 14(c) and (d) show a good agreement between PIV and CFD results. 462 

The pore topology is intrinsically correlated with particle morphology and granular material 463 

packing/fabric. The flow fields on three x-y planes of the Ang-L sub-volume show the flow 464 

patterns that are distinct from those developed in the Beads-U sub-volume (comparison between 465 

Figure 15 and Figure 13). Some flow channels are straight rather than converging-diverging due 466 

to the flat surfaces of angular particles, as indicated by arrows. The difference seems to be more 467 

obvious for the angular particle sample than for the beads sample. However, the overall 468 

distribution of flow velocity in the angular particles sample is very similar to that of the beads 469 

sample, as shown in Figure 16. Previous studies have indicated that the flow velocity distribution 470 
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depends on packing density (Rong et al., 2013). Further tests are needed to investigate the influence 471 

of particle shape on the flow velocity distribution. 472 

The mapping of the CFD data onto the PIV grid allows spatial variation of the difference 473 

between the two datasets to be examined, as shown in Figure 17(a) and (b). While the data in 474 

Figure 12 showed the similarity of the flow patterns, there are large differences between the 475 

normalized velocity intensities. Figure 17(c) and (d) show the cumulative distributions of the 476 

velocity difference values for five x-y planes. The difference mainly lies between ±50% and 477 

±100%  of the mean seepage velocity on each slice for horizontal and vertical velocity, 478 

respectively. Perhaps unsurprisingly, the planes closest to the lateral boundaries (z= 1 or 24 mm) 479 

have a higher velocity difference. 480 

6.3. Mean flow rate on slices 481 

Here, the mean velocity on each x-y plane is normalized by the seepage velocity in each sub-482 

volume. The normalized vertical velocity on each plane varies between 0.5 and 1.5, as shown by 483 

Figure 18(a). The PIV and CFD data exhibit similar patterns of variation in 〈𝑢𝑢�𝑦𝑦𝑑𝑑〉 along the z-axis. 484 

In the CFD analyses, the lateral boundaries prohibit out-of-plane flow and lead to low velocity 485 

values along z, as shown by the shaded area in Figure 18(b). However, 〈𝑢𝑢�𝑧𝑧𝑑𝑑〉 increases to the 486 

expected level after about 3 mm (~D/2) from the lateral boundary. The heterogeneity of the pore 487 

structure and relatively small sub-volume leads to a large variance of the plane-based porosity 488 

(Figure 18(c)). For example, the plane-based porosity for the Beads-U sub-volume (𝑛𝑛= 0.38) varies 489 

from 0.25 to 0.5. 490 

The CFD analyses provide 3D data, enabling analysis of the velocity distribution in horizontal 491 

x-z planes perpendicular to the flow direction. As expected, the variance of the mean vertical 492 
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velocity 〈𝑢𝑢�𝑦𝑦𝑑𝑑〉 on x-z planes is inversely correlated to the plane porosity due to the fluid continuity 493 

(Figure 19(a) and (b)). Where the porosity in the x-z plane is lower, 〈𝑢𝑢�𝑦𝑦𝑑𝑑〉 is higher so that overall 494 

flow rate is the same for each x-z plane in line with the principle of mass conservation. The pressure 495 

dissipation is higher at the lower porosity plane, as shown in Figure 19(c). 496 

6.4. Fluid-particle interactions 497 

Each sub-volume contains around twenty particles that do not intersect the boundaries. Figure 498 

20 shows the vector plots of the fluid-particle interaction coefficients 𝐹𝐹�𝑓𝑓→𝑠𝑠 (Equation 6) projected 499 

onto x-y planes for four sub-volumes. The magnitudes of 𝐹𝐹�𝑓𝑓→𝑠𝑠 have a large variance, especially 500 

for angular particles. The directions of 𝐹𝐹�𝑓𝑓→𝑠𝑠 slightly deviate from the flow direction – the mean 501 

deviation angle equals 16°. The variance of 𝐹𝐹�𝑓𝑓→𝑠𝑠 arises mainly from the heterogeneous flow fields, 502 

resulting from local packing and irregular particle morphologies. 503 

Figure 21(a) shows the distribution of the fluid-particle interaction coefficient, which varies 504 

approximately from 50 to 140 for beads and from 50 to 240 for angular particles. The mean value 505 

of 𝐹𝐹�𝑓𝑓→𝑠𝑠 is influenced by the different packing densities, with the angular particle sample having a 506 

slightly higher packing density than the beads sample. Figure 21(b) shows the fluid-particle 507 

interaction coefficients normalized by their mean values. Clearly, the sample with angular particles 508 

has a higher variance than the spherical beads sample. This variance may arise from packing 509 

density or particle shape difference. 510 

The fluid-particle interaction is contributed by two components, i.e. a viscous component due 511 

to skin friction and a pressure component due to the pressure gradient. In dense packings, the 512 

pressure component of fluid-particle interactions dominates the fluid-particle interaction, while the 513 

viscous component accounts for about 20% on average, as shown in Figure 22(a). Spherical beads 514 
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tend to experience a slightly higher ratio of the viscous component to pressure component than 515 

angular particles. Figure 22(b) shows the deviation angle of fluid-particle interactions from the 516 

flow direction, i.e. 𝜃𝜃𝑑𝑑 = arctan�𝐹𝐹�𝑓𝑓→𝑠𝑠,𝐸𝐸𝑧𝑧/𝐹𝐹�𝑓𝑓→𝑠𝑠,𝑦𝑦�. Most particles have a deviation angle between 0° 517 

and 30°. 518 

 519 

7. Conclusions 520 

This study investigated pore-scale seepage in granular packings with the combined 521 

experimental and numerical methods. Permeameter tests were performed with transparent soils 522 

consisting of spherical and angular particles. PIV analysis quantified 2D flow fields inside granular 523 

packings on multiple planes. We adopted a series of image processing techniques to reconstruct 524 

the 3D pore topologies from the slice-by-slice scanning images. Pore-scale CFD analysis was 525 

performed on reconstructed volumes to obtain both flow fields and fluid-particle interactions. The 526 

fluid-particle interactions obtained by CFD simulations were validated with existing results on 527 

regular particle packings. The conclusions are summarised as follows. 528 

PIV analysis can quantify the flow field for two-dimensional planes. The random packing of 529 

particles leads to preferential flow paths at larger voids (e.g. close to boundary wall). Spherical 530 

particles tend to form converging and diverging flow paths, while angular particles with flat 531 

surfaces form straight channels. The interplays between local particle arrangement, particle shape 532 

and pressure gradient determine the heterogeneous pore-scale flow fields.  533 

The slice-by-slice images containing pore structure information were obtained by illuminating 534 

the transparent soils at multiple locations with a sheet laser. An artificial intelligence algorithm 535 

provided good image segmentation results for the images with poor contrast and artefacts. The 536 

flow fields obtained from CFD analysis on the reconstructed pore structure show a good agreement 537 
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with PIV results. Similar patterns were obtained for the contour plots of flow fields, flow vector 538 

plots and velocity magnitude histograms. This agreement demonstrates the successful 539 

implementation of the three-dimensional pore structure reconstruction methods. However, while 540 

there is good agreement between the average flow fields, the local differences in flow field data 541 

are more significant.  542 

This work supports the development of systems with thinner lasers (including the requisite 543 

safety considerations) and exploiting recent advances in automated systems for macro photography 544 

to reduce the observed partial volume effects and improve the resolution orthogonal to the 545 

scanning planes (i.e. in the z-direction considered here). 546 

The CFD results have a higher resolution in comparison with the PIV results and produce 547 

three-dimensional velocity values. However, the analyses tend to have side boundary effects. The 548 

comparison between CFD and PIV results indicate the side boundary effects are usually 549 

constrained within a half particle diameter region. The point-by-point comparison of CFD and PIV 550 

results was performed after downscaling the CFD results. The normalized velocity difference 551 

remains large, even though the overall distribution of CFD and PIV flow fields are similar. 552 

The fluid-particle interactions obtained from fully resolved CFD analysis are consistent with 553 

previous numerical solutions. The fluid-particle interactions obtained the permeameter model tests 554 

have a large variance, especially for angular particles. For relatively dense packings, viscous drag 555 

contributes to a small fraction of the total fluid-particle interaction. The fluid-particle interaction 556 

slightly deviates from the injection direction. However, for this study, the number of particles in 557 

each CFD model was relatively small (around twenty), and the beads and angular particles samples 558 

have slightly different packing density. Therefore, the fluid-particle interaction results should be 559 

further investigated to elaborate on the particle shape effects. 560 
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List of Figure and Table Captions 561 

Figure 1. Schematic of the experimental set up. 562 

Figure 2. Images of experimental setup: (a) Permeameter cell partially filled with oil; (b) Beads 563 

sample illuminated by laser sheet; (c) Angular particles sample illuminated by laser sheet; (d) 564 

top view of the laser sheet. 565 

Figure 3. Flow fields in the (a) left, (b) middle and (c) right for the permeameter with beads. 566 

Figure 4. (a) Typical grey-scale image in Beads-U sub-volume, z = 0 mm. (b) Histogram of grey 567 

values. Inset in (a) shows that the non-uniform intensity is a consequence of the finite laser 568 

width. 569 

Figure 5. Segmentation results for three typical slices in Beads-U sub-volume using three different 570 

segmentation methods: threshold segmentation with Otsu’s threshold, trainable Weka 571 

segmentation, and U-Net segmentation. Note: red dashed circles indicate the artifacts produced 572 

by inaccurate segmentation. 573 

Figure 6. U-Net segmentation procedure for Beads-U sub-volume: (a) Step-1: prepare training and 574 

validating data sets; (b) Step-2: train U-Net algorithm; (c) Step-3: apply trained U-Net as a 575 

classifier for segmenting new images. 576 

Figure 7. Upscaling along z-direction on the U-Net classified image for Beads-U sub-volume: (a) 577 

Unscaled image data; (b) Image obtained by scaling without interpolation; (c) Image obtained 578 

by scaling with bilinear interpolation; (d) Image obtained by scaling with bicubic interpolation. 579 

Figure 8. Labelled images with particles represented by different colours for Beads-U sub-volume 580 

on (a) x-y plane and (b) x-z plane and Ang-U sub-volume on (c) x-y plane and (d) x-z plane. 581 

Figure 9. Three-dimensional views of the combined surface meshes for (a) Beads-U sub-volume 582 

and (b) Ang-U sub-volume. Note: colour is used to distinguish the surfaces of individual 583 
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particles. Hexahedron meshes which discretize pore structure for CFD simulation for (c) 584 

Beads-U sub-volume and (d) Ang-U sub-volume. 585 

Figure 10. Verification of CFD modelling approach: (a) Confirmation of ability to capture the 586 

influence of porosity on the fluid-particle interaction coefficient 𝐹𝐹�𝒇𝒇→𝒔𝒔 , dashed lines indicate a 587 

curve fit to the Zick & Homsy (1982) data; (b) Mesh dependence of 𝐹𝐹�𝒇𝒇→𝒔𝒔  for SC packings; (c) 588 

Mesh dependence of 𝐹𝐹�𝒇𝒇→𝒔𝒔  for FCC packings. The results predicted by the Immersed Boundary 589 

Method (IBM) with a regular grid and from fully resolved CFD using an unstructured meshes 590 

from Knight et al. (2020) are included in (a) and (c), respectively.  591 

Figure 11. (a) Hydraulic permeability values predicted by experiments, PIV and CFD 592 

measurements. (b) Influence of porosity on hydraulic permeability as estimated by CFD 593 

modelling for Beads-U and Ang-U sub-volumes. The prediction results from Kozeny-Carman 594 

Equation (KC Eq.) is included in (b). 595 

Figure 12. Comparison of the PIV and CFD flow fields in Beads-U sub-volume on the vertical 596 

slice with z = 16 mm. 597 

Figure 13. Comparison of the PIV and CFD flow fields in Beads-U sub-volume on three slices 598 

with z = 1, 8 and 16 mm. Velocity vector length is normalized by seepage velocity. 599 

Figure 14. Cumulative distributions of flow velocity at four vertical planes in Beads-U sub-volume 600 

obtained from PIV and CFD results. 601 

Figure 15. Comparison of the PIV and CFD flow fields in Ang-L sub-volume on three slices with 602 

z = 1, 8 and 16 mm. Velocity vector length is normalized by seepage velocity. Arrows indicate 603 

narrow flow paths. 604 

Figure 16. Cumulative distributions of flow velocity at four vertical planes in Ang-L sub-volume 605 

obtained from PIV and CFD results. 606 
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Figure 17. Difference between PIV and CFD flow fields for the vertical slice with z = 16 mm in 607 

Beads-U sub-volume: (a) horizontal velocity; (b) vertical velocity. The cumulative 608 

distributions of PIV and CFD difference for (c) horizontal velocity and (d) vertical velocity on 609 

five typical slices in Beads-U sub-volume. 610 

Figure 18. Variation of the mean velocity values obtained from PIV and CFD results and the slice 611 

porosity on x-y planes parallel to flow direction.  612 

Figure 19. Variation of mean vertical velocity, porosity and hydraulic gradient on x-z planes 613 

perpendicular to flow direction predicted by CFD simulations.  614 

Figure 20. Projection views of drag force vectors for the particles that are not intersecting with 615 

boundary walls. 616 

Figure 21. Cumulative distributions of (a) fluid-particle interaction coefficients for beads and 617 

angular particles and (b) the normalized fluid-particle interaction coefficients. 618 

Figure 22. Distributions of (a) the ratio between pressure and viscous drag components, and (b) 619 

the angle between fluid-particle interaction and flow direction. 620 

Table 1. Particle and fluid properties 621 

Table 2. Sub-volume dimensions 622 

Table 3. Experimental and numerical measurements for each sub-volume 623 

Figure S1. Example of the effect of time resolution of PIV analysis on the estimate of the time 624 

averaged component (a) ux and (b) uy. The velocities are estimated along the yellow dashed 625 

lined shown in the inset of (a). 626 

Figure S2. Distribution of the number of tracers for a subsets of interrogation windows (32 x 32 627 

pixels) for (a) beads and (b) angular particles. 628 

29 

 



Figure S3. Autocorrelation function for a subsets of interrogation windows (32 x 32 pixels) for (a) 629 

beads and (b) angular particles. Histogram of autocorrelation peak width for (c) beads and (d) 630 

angular particles. 631 

V1. Video of an illuminated section in the bead sample showing the movement of tracers 632 

V2. Video of an illuminated section in the angular sample showing the movement of tracers 633 
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Nomenclature 𝑨𝑨𝑬𝑬𝑬𝑬𝒑𝒑 permeameter cross section area 𝑨𝑨𝒊𝒊 area of CFD mesh element 𝒅𝒅𝒎𝒎 characteristic mesh size 𝒅𝒅𝒔𝒔 seed particle diameter  𝑫𝑫 diameter of beads and angular particles 𝑫𝑫𝑰𝑰 interrogation window size 𝑭𝑭𝒇𝒇→𝒔𝒔𝒔𝒔  stokes drag force 𝑭𝑭�𝒇𝒇→𝒔𝒔 fluid-particle interaction coefficient 

𝑭𝑭�𝒇𝒇→𝒔𝒔,𝑬𝑬𝒙𝒙 projection of fluid-particle interaction coefficient on x-z plane 

𝑭𝑭�𝒇𝒇→𝒔𝒔,𝒚𝒚 projection of fluid-particle interaction coefficient on flow direction – y axis 𝑭𝑭�𝒇𝒇→𝒔𝒔𝒁𝒁𝒁𝒁  fluid-particle interaction coefficient from Zick and Homsy solutions 𝑭𝑭𝒑𝒑 pressure component of fluid-particle interaction force 𝑭𝑭𝒗𝒗 viscous component of fluid-particle interaction force 𝒌𝒌𝑪𝑪𝑭𝑭𝑫𝑫 hydraulic permeability determined through CFD analysis 𝒌𝒌𝑬𝑬𝑬𝑬𝒑𝒑 hydraulic permeability determined through experimental measurements 𝒌𝒌𝑷𝑷𝑰𝑰𝑷𝑷 hydraulic permeability determined through PIV analysis 𝒏𝒏 packing porosity 𝒏𝒏𝒊𝒊 normal vector of CFD mesh element 𝑵𝑵𝒆𝒆 number of CFD mesh element on particle surface 𝒑𝒑 fluid pressure 𝒑𝒑𝒊𝒊 kinematic normal pressure on CFD mesh element 
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𝑸𝑸𝑬𝑬𝑬𝑬𝒑𝒑 permeameter flow rate 𝑹𝑹𝒅𝒅𝒆𝒆𝒗𝒗 deviatoric stress tensor 𝑺𝑺𝑺𝑺𝒌𝒌𝒔𝒔 Stokes number for seed particles 𝚫𝚫𝑺𝑺 time step used for PIV analysis 𝒖𝒖 fluid velocity vector 𝒖𝒖𝑬𝑬 component of fluid velocity in the x-direction 𝒖𝒖𝒚𝒚 component of fluid velocity in the y-direction 𝒖𝒖𝒙𝒙 component of fluid velocity in the z-direction 𝒖𝒖𝒔𝒔  velocity magnitude normalized by mean seepage velocity on each slice 𝒖𝒖𝒗𝒗  velocity magnitude normalized by mean seepage velocity in each sub-volume 〈𝒖𝒖𝒗𝒗 〉 mean velocity on slice normalized by mean seepage velocity in each sub-volume 𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑬𝑬𝑬𝑬𝒑𝒑
 seepage velocity determined through experimental measurements 𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑷𝑷𝑰𝑰𝑷𝑷  seepage velocity determined through PIV analysis 𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑪𝑪𝑭𝑭𝑫𝑫  seepage velocity determined through CFD simulations 𝒗𝒗𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑 seepage flow velocity 

μ fluid dynamic viscosity 𝝆𝝆 fluid density 𝝆𝝆𝒔𝒔 seed particle density 𝒗𝒗 fluid kinematic viscosity 𝜽𝜽𝒅𝒅 deviation angle of fluid-particle interaction from the fluid injection direction 
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Table 1. Particle and fluid properties 756 

 
Particle 

diameter 

[mm] 

Density 

[g/cm3] 

Refractive 

index 

Viscosity 

Kinematic 

[mm2/s] 

Dynamic 

[Pa·s] 

SiLibeads Glass beads 

Type P Borosilicate 
7.5 ± 0.03 2.23 1.46 (*)  -   

Duran® angular 

particles  
6.7 – 9.5 2.23 1.47 (at 21°C)  -   

Cargille immersion 

fluid 
- 0.846 1.47 (at 25°C) 16 (at 25 °C) 0.0135 

Microsphere fluid 

seeding particles 
0.005 – 0.030 0.750 - -  

(*) The measurement temperature for the refractive index value was not given on the material certificate. 757 

A sensitivity analysis to temperature was conducted to achieve the optimum optical transparency with the 758 

immersion fluid. 759 

 760 

 761 

 762 

Table 2. Sub-volume dimensions 763 

Sub-volume Dimensions, x × y × z [mm3] 

Beads-U  37.4 × 23.4 × 25 

Beads-L 40.4 × 25.3 × 25 

Ang-U 38.5 × 24.0 × 25 

Ang-L 38.5 × 24.0 × 25 

 764 

 765 

 766 
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 768 

Table 3. Experimental and numerical measurements for each sub-volume 769 

Sub-volume n 𝒊𝒊𝑬𝑬𝑬𝑬𝒑𝒑 
AExp 

[cm2] 

QExp 

[ml/s] 
𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑬𝑬𝑬𝑬𝒑𝒑

 

[mm/s] 

𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑷𝑷𝑰𝑰𝑷𝑷  

[mm/s] 

𝒖𝒖𝒔𝒔𝒆𝒆𝒆𝒆𝒑𝒑𝑪𝑪𝑭𝑭𝑫𝑫  

[mm/s] 

Beads-U 0.38 0.086 100 30.3 8.0 7.1 6.8 

Beads-L 0.38 0.086 100 30.3 8.0 5.7 6.2 

Ang-U 0.36 0.143 100 28.5 7.9 4.5 6.0 

Ang-L 0.36 0.114 100 28.5 7.9 4.5 5.9 
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Figure 1. Schematic of the experimental set up.



Figure 2. Images of experimental setup: (a) Permeameter cell partially filled with oil; (b) Beads sample illuminated by laser

sheet; (c) Angular particles sample illuminated by laser sheet; (d) top view of the laser sheet.
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Figure 3. Flow fields in the (a) left, (b) middle and (c) right for the permeameter with beads.
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Figure 4. (a) Typical grey-scale image in Beads-U sub-volume, z = 0 mm. (b) Histogram of grey values. Inset in (a) shows

that the non-uniform intensity is a consequence of the finite laser width.
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Figure 5. Segmentation results for three typical slices in Beads-U sub-volume using three different segmentation methods:

threshold segmentation with Otsu’s threshold, trainable Weka segmentation, and U-Net segmentation. Note: dashed circles

indicate the artifacts produced by inaccurate segmentation.
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Figure 6. U-Net segmentation procedure for Beads-U sub-volume: (a) Step-1: prepare training and validating data sets; (b)

Step-2: train U-Net algorithm; (c) Step-3: apply trained U-Net as a classifier for segmenting new images.
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Figure 7. Upscaling along z-direction on the U-Net classified image for Beads-U sub-volume: (a) Unscaled image data; (b)

Image obtained by scaling without interpolation; (c) Image obtained by scaling with bilinear interpolation; (d) Image obtained

by scaling with bicubic interpolation.
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Figure 8. Labelled images with particles represented by different colours for Beads-U sub-volume on (a) x-y plane and (b) x-z

plane and Ang-U sub-volume on (c) x-y plane and (d) x-z plane.
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Figure 9. Three-dimensional views of the combined surface meshes for (a) Beads-U sub-volume and (b) Ang-U sub-volume.

Note: colour is used to distinguish the surfaces of individual particles. Hexahedron meshes which discretize pore structure for

CFD simulation for (c) Beads-U sub-volume and (d) Ang-U sub-volume.
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Figure 10. Verification of CFD modelling approach: (a) Confirmation of ability to capture the influence of porosity on the fluid-

particle interaction coefficient !"!→# , dashed lines indicate a curve fit to the Zick & Homsy (1982) data; (b) Mesh dependence

of !"!→# for SC packings; (c) Mesh dependence of !"!→# for FCC packings. The results predicted by the Immersed Boundary

Method (IBM) with a regular grid and from fully resolved CFD using an unstructured meshes from Knight et al. (2020) are

included in (a) and (c), respectively.
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Figure 11. (a) Hydraulic permeability values predicted by experiments, PIV and CFD measurements. (b) Influence of porosity

on hydraulic permeability as estimated by CFD modelling for Beads-U and Ang-U sub-volumes. The prediction results from

Kozeny-Carman Equation (KC Eq.) is included in (b).
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Figure 12. Comparison of the PIV and CFD flow fields in Beads-U sub-volume on the vertical slice with z = 16 mm.
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Figure 13. Comparison of the PIV and CFD flow fields in Beads-U sub-volume on three slices with z= 1, 8 and 16 mm.

Velocity vector length is normalized by seepage velocity.
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Figure 14. Cumulative distributions of flow velocity at four vertical planes in Beads-U sub-volume obtained from PIV and CFD

results.
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Figure 15. Comparison of the PIV and CFD flow fields in Ang-L sub-volume on three slices with z = 1, 8 and 16 mm. Velocity

vector length is normalized by seepage velocity. Arrows indicate narrow flow paths.
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Figure 16. Cumulative distributions of flow velocity at four vertical planes in Ang-L sub-volume obtained from PIV and CFD

results.
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Figure 17. Difference between PIV and CFD flow fields for the vertical slice with z = 16 mm in Beads-U sub-volume: (a)

horizontal velocity; (b) vertical velocity. The cumulative distributions of PIV and CFD difference for (c) horizontal velocity and

(d) vertical velocity on five typical slices in Beads-U sub-volume.



Figure 18. Variation of the mean velocity values obtained from PIV and CFD results and the slice porosity on x-y planes

parallel to flow direction.
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Figure 19. Variation of mean vertical velocity, porosity and hydraulic gradient on x-z planes perpendicular to flow direction

predicted by CFD simulations.
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Figure 20. Projection views of drag force vectors for the particles that are not intersecting with boundary walls.
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Figure 21. Cumulative distributions of (a) fluid-particle interaction coefficients for beads and angular particles and (b) the

normalized fluid-particle interaction coefficients.

(a) (b)



Figure 22. Distributions of (a) the ratio between pressure and viscous drag components, and (b) the angle between fluid-

particle interaction and flow direction.
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Figure S1. Example of the effect of time resolution of PIV analysis on the estimate of the time averaged component (a) ux and

(b) uy. The velocities are estimated along the yellow dashed lined shown in the inset of (a).
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Figure S2. Distribution of the number of tracers for a subsets of interrogation windows (32 x 32 pixels) for (a) beads and (b)

angular particles.

(b)(a)



Figure S3. Autocorrelation function for a subsets of interrogation windows (32 x 32 pixels) for (a) beads and (b) angular

particles. Histogram of autocorrelation peak width for (c) beads and (d) angular particles.
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Figure S4. (a) Typical slice of Ang-U processed by U-Net, and the binarization results at different porosity values (b) 0.31, (c)

0.29, and (d) 0.27.
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