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Abstract—This paper presents a non-random weight 

initialisation scheme for convolutional neural network 

layers.  It builds upon previous work that was limited to 

perceptron layers, but in that work repeatable determinism 

was achieved with equality in categorisation accuracy 

between the established random scheme and a linear ramp 

non-random scheme.  This work however, is in 

Convolutional layers and are the layers that have been 

responsible for better than human performance in image 

recognition.  The previous perceptron work found that 

number range was more important rather than the 

gradient.  However, that was due to the fully connected 

nature of dense layers.  Although, in convolutional layers by 

contrast, there is an order direction implied, and the weights 

relate to filters rather than image pixel positions, so the 

weight initialisation is more complex.  However, the paper 

demonstrates a better performance, over the currently 

established random schemes with convolutional layers.  The 

proposed method also induces earlier learning through the 

use of striped forms, and as such has less unlearning of the 

traditionally speckled random forms.  That proposed 

scheme also provides a higher performing accuracy in a 

single learning session, with improvements of: 3.35% un-

shuffled, 2.813% shuffled in the first epoch and 0.521% 

over the 5 epochs of the model.  Of which the first epoch is 

more relevant as it is the epoch after initialisation.  Also the 

proposed method is repeatable and deterministic, which is 

also a desirable quality for safety critical applications within 

image classification.  The proposed method is also robust to 

He initialisation values too, and scored 97.55% accuracy 

compared to 96.929% accuracy with the Glorot/ Xavier in 

the traditional random forms, of which the benchmark 

model was originally optimised with. 

 

Keywords— Repeatable, Weight Initialization, Information 

Assurance,  Convolutional Layers. 

I. INTRODUCTION AND BACKGROUND WORK 

Convolutional layers in neural networks have been 

used in Artificial Intelligence (AI) applications, and led to 

the use of multiple layers separated by non-linearity 

functions.  This layering of hidden layers are said to be 

deep, and the successes of that architecture led to the Deep 

Learning research thread.  The convolutional layers may 

have translation to brain anatomy with respect to Hubel 

and Wiesel [1].  Whom examined spider monkey's brain 

activity when under a light anaesthetic, while stimulating 

the retina with images of spots, stripes and patterns.  

Convolutional layers have had biological inspirations, and 

are generally accepted as providing hierarchical feature 

extraction in a Deep Convolutional network [2, 3].  Later 

in 2017 Alex Krizhevsky's paper [4] would prove to 

become an influential paper, and demonstrated better than 

human performance with image categorisation in the 

image net challenge 2012 using Deep Convolutional 

networks.  Convolutional Neural Networks have played an 

influential role ever since.  Although, applications of 

convolutional layers provide important human level 

capabilities, but they have not been embraced into mission 

critical applications [5 - 8], owing in part to learning 

session variations, and certification of the network content 

as complete and correct.  Current random initialisation 

schemes provide a cross-validation variation in accuracy 

that is visible over regularisation.  To this end, the 

previous published background work to this paper, also 

examined repeatable determinism, but in perceptron 

layers, and proposed a method, although was tightly 

coupled to the perceptron layers only [9].  However, that 

paper, resolved a numerical stability issue for 

repeatability, and also proposed a non-random scheme for 

determinism, and achieved an almost equal performance 

in accuracy proving viability.  That work was furthered in 

a journal published version [10], which used the 

Glorot/Xavier [11], limit values with those non-random 

schemes and this time achieved an equal accuracy 

performance to the random scheme.  That work also had 

the benefit of ordering the weights after learning, into a 

structured form along the number of neurons axis and 

highlighted the correlation in structure at pixel indexes.  

See Figure 1 left for an image of the learnt weights with 

the random scheme, and right for the non-random scheme. 

 

Fig. 1 Weights after learning results from the previous work [10]. 



It was noted in that previous work [10], that both 

weight sequences have an equivalence in performance, but 

the non-random scheme has a structure that may have a 

benefit for rule extraction.  As the weights have been 

grown in an ordered sequence along the number of 

neurons (in the x plane), and shows activation correlations 

at pixel positions (in the y plane), and that helps to 

generalise in a rule extraction approach as the pixel 

activations have been clustered to neighbours.  However, 

both those previous papers [9, 10] were confined to 

perceptron layers and this paper furthers that work into 

convolutional layers.  That earlier work in perceptron 

layers did prove that an equal performance of a non-

random weight initialisations scheme was viable, and that 

random number initialisation is not necessary.  Which is 

the same assertion of Blumenfeld et al. too [11], in an 

experiment of zeroing of some of the weights in a 

convolutional layer, however zeroing of weights is not this 

paper's approach.  Furthermore, the order of weights in the 

background perceptron layers work was not significant, 

due to the fully connected links of nodes, and in 

convolutional layers the weights relate to filters that slide 

in a direction, and so the order is significant.  So that 

previous form is not applicable to convolutional layers.   

A. Contemporary Related Work 

Ding et al. [12], propose a shuffle leap frog algorithm 

approach, for the update and initialisation with random 

Gaussian forms in the area of Fundus Images lesions.  The 

approach presented in that paper contains random 

numbers, initially in a Gaussian distribution optimised 

with the shuffle leap frog algorithm, where as the 

approach presented in this paper, does not contain random 

numbers.  Wang et al. [13], propose a 2D Principle 

Component Analysis (2DPCA) approach to the 

initialisation of convolutional networks to adjust the 

weight difference values to promote back propagation.  

This approach avoids the use of random numbers, and 

uses samples of the dataset instead making it convergent 

to sample data seen.  However, in our work the approach 

is not connected to the sample data, only the architecture 

in terms of filter geometries and layer types used.  Ferreira 

et al. [14], examines weight initialisation using a 

Denoising Autoencoder (DAE) in the field of classifying 

tumour samples through dataset sampling, this is also a 

convergent data sample approach. 

B. Contribution and Novelty of this Paper 

This paper's contribution is a proposed alternative 

method, for generating a non-random sequence for the 

initialisation of convolutional layers rather than perceptron 

layers.  Where the proposed non-random sequence has 

formations of stripes and dots in that initialisation state, 

and as such is predisposed to the application,  It also 

allows earlier learning, to lower the loss quicker, without 

using data sampling.  The proposed method also arrives at 

a higher performing accuracy in the first learning session, 

that is repeatable and deterministic.  Where as in the 

established random number schemes several learning 

sessions are required to establish which learning session 

conducted has provided the best accuracy from a variation 

of  random initialisation states. 

C. Structure of the paper 

This papers structured as follows: Section one is the 

introduction to the area and both the background and 

other contemporary related works.  Section two is the 

benchmark baseline model, and is comparable to the 

background work in perceptron layers.  It also presents 

the baseline results of that model, reusing the critical 

region code from the background work to re-produce a 

'repeatable' learning session.  Section three compares the 

established random initialisation method as a benchmark 

to the proposed method.  Section four explains the 

number of weights and image size in each layer of the 

benchmark model, so the proposed method can be 

explained and the Glorot/Xavier limit values calculated.  

Section five shows the weight differences of the 

established random scheme and the proposed non-random 

scheme, before and after learning with an illustration of 

what has been learnt.  Section 6 presents the proposed 

non-random scheme method that achieved a higher 

accuracy score and explains the design, and also verifies 

robustness to He et al. initialisation limits.  Section seven 

is the discussion and conclusions. 

II. BENCHMARK BASELINE MODEL AND METHOD  

In the foundation work, perceptron layers and the 

MNIST dataset [15], were used as an example that is 

familiar to researchers, and to demonstrate non-random 

weight initialisations the same application and dataset is 

used, but in a convolutional form.  This is the benchmark 

that has been optimised by researchers, and so comparisons 

can be made between the proposed scheme and the 

previous benchmark too.  In Figure 2 is the architecture of 

the convolutional layer form of the benchmark model.   

 
Fig. 2 Architecture of the Benchmark Model. 

The model architecture is the equivalent of the 

perceptron layer foundation work's benchmark, but in a 



convolutional layer form, and as such forms a comparison 

bridge to the background work in perceptron layers. 

Using the repeatable critical-region code from the 

background work, that removed a source of numerical 

instability in learning session variation, that was identified 

in the original perceptron repeatable determinism paper 

[9].  The benchmark results are in Table 1, and that 

benchmark model is using the Glorot/Xavier random 

number scheme initialisation as per its' definition within 

Keras by Torres [16] and has a stated accuracy of about 

~97%.  Although it should be noted, that there are higher 

scoring models using the MNIST dataset in a 

convolutional form, but a high accuracy score of 99.8% 

[17], provides little-head room to show an improvement.  

That model also requires 50 epochs, and that is along 

learning duration beyond the initial condition in this 

context, where the random shuffle may be a more 

dominant random effect.  This table forms the experiment 

control from the Torres baseline as a benchmark. 
TABLE 1 

BENCHMARK RANDOM INITIALISATION RESULTS. 

Seeded Epochs Accuracy  Loss 

Yes 5 Shuffled 97.1% 0.09996312594935299 

No 5 Shuffled 96.9% 0.10337305160537362 

No 5 Shuffled 96.97% 0.10660055329352618 

No 5 Shuffled 96.84% 0.10624442052207887 

No 5 Shuffled 96.96% 0.10476687839999795 

No 5 Shuffled 96.84% 0.1067980943121016 

No 5 Shuffled 97.08% 0.10235729512907564 

No 5 Shuffled 96.87% 0.10271317201182247 

No 5 Shuffled 96.73% 0.10741757678128779 

No 5 Shuffled 97.0% 0.10189960528686642 

Averages: 96.929% 0.104213377329148 

Yes 1 Shuffled 91.68% 0.2875490588128567 

No 1 Shuffled 91.68% 0.28503509197235105 

No 1 Shuffled 91.5% 0.2884808440446854 

No 1 Shuffled 91.33% 0.29792458724975585 

No 1 Shuffled 91.25% 0.30420758697986605 

No 1 Shuffled 91.64% 0.29925555539131166 

No 1 Shuffled 90.9% 0.31180655114650724 

No 1 Shuffled 91.2% 0.3049829860568047 

No 1 Shuffled 90.84% 0.3010126953959465 

No 1 Shuffled 90.65% 0.30433687148690225 

Averages: 91.267% 0.298459182853698 

Yes 1 No Shuffle 89.87% 0.32091661343574523 

No 1 No Shuffle 89.69% 0.31784898174405096 

No 1 No Shuffle 89.29% 0.33380672977566717 

No 1 No Shuffle 90.46% 0.30266491156816483 

No 1 No Shuffle 90.11% 0.31882508975863455 

No 1 No Shuffle 90.25% 0.313027676063776 

No 1 No Shuffle 90.76% 0.3063296886742115 

No 1 No Shuffle 89.84% 0.3295604445934296 

No 1 No Shuffle 89.55% 0.3244086824059486 

No 1 No Shuffle 89.48% 0.32875925261974337 

Averages: 89.93% 0.319614807063937 

The results in Table 1 show the benchmark results 

with the full 5 epochs shuffled, and reaching the 

approximate stated accuracy of that model, but also shows 

just 1 epoch, as the 1st epoch after initialisation is of 

interest.  Those 1st epoch runs are also in two forms 

which are: with or without the shuffle, as there are two 

random effects (weight initialisation and shuffle order), 

and this allows those effects to be distinguished.  So that 

when no shuffle is used there is only the effect of weight 

initialisation, and the shuffled version shows the 

equivalence to the 5 epoch results where only shuffles 

forms are valid to have reordering in each of the 5 epochs.  

When the random number generator is seeded (shown in 

bold) the results are completely repeatable from learning 

session to learning session.  But also more results have 

been added, not using the seeding of the random number 

generator, to show the accuracy variation that different 

random number initialisation sequences have, that are 

visible over regularisation.  As the random number 

generator seeding has two affects: the weights 

initialisation values and the shuffle reorganisation of the 

dataset.  For that reason, table 1 shows results from three 

configurations: 5 epochs with shuffles, a single epoch with 

the shuffle and a single epoch with no shuffle as that is the 

effect of the random number initialisation in the weights 

alone.  Those results show an average accuracy of  

89.93% in a single epoch with no shuffle, an average of 

91.267% (+1.337%) when a shuffle is used, and an 

average accuracy of 96.929% (+5.6625% greater) with the 

use of 5 shuffled epochs.   

III. COMPARISON OF THE BENCHMARK WITH THE 

PROPOSED METHOD 

The presented non-random initialisation scheme will 

achieve 93.28% in a single epoch with no shuffle, +3.35% 

better then the random scheme.  94.08% accuracy will be 

achieved when a shuffle is used in that single epoch and 

again using the non-random scheme which is a 2.813% 

gain over the benchmark with the random scheme.  Then 

97.45% (+0.521% over the benchmark) when 5 epochs are 

used.  Those results are summarised in Table 2. 
TABLE 2 

BENCHMARK GAINS OF THE NON-RANDOM INITIALISATION SCHEME. 

Epochs Accuracy  Loss Benchmark 

Gain 

5 Shuffled 97.45% 0.0859082410749048 +0.521% 

4 Shuffled 97.07% 0.09643121291957796 N/A 

3 Shuffled 96.54% 0.11417882204577327 N/A 

2 Shuffled 96.01% 0.14150242246389388 N/A 

1 Shuffled 94.08% 0.2201271739989519 +2.813% 

1 No Shuffle 93.28% 0.23073574766814708 +3.35% 

It is worth noting, that the best gain is achieved in the 

first epoch, which is the epoch that occurs after the weight 

initialisation.  Less relative gain is achieved in further 

epochs, as the learning is occurring longer after the 

initialisation in the subsequent epochs, diminishing its 

influence.  An interpretation is the subsequent learning is 

more equivalent but earlier learning has a higher benefit.   

IV. UNDERSTANDING THE WEIGHTS AND IMAGE SIZES 

However, to understand the presented non-random 

weight scheme, the structure of the weights and the image 

size, in the benchmark model need to be understood 

clearly.  To understand how the weights are used is 

critical, to understanding how convolutional layers use the 

weights and effect the image size.  This is quite different 



from perceptron layers, and as in the findings of the 

journal version of the perceptron repeatable determinism 

paper [10].  When using the Glorot/Xavier limits [18], the 

results were enhanced with the non-random scheme over 

the results initially presented in the conference paper [9].  

This was because of the tolerance and matching to the 

model architecture in terms of propagation value limits.  

Thus, also here the Gloror/Xavier value limits need to be 

calculated, Figure 3 demonstrates the adjustment of image 

and weights sizes in the benchmark model. 

 
Fig. 3 Weight & image size adjustments. 

Convolutional layers use the weights for the filters, 

and not the pixels,  As such their dimensions are: column 

by row of the filter, then by depth (channels), where that 

depth may be inherited from the previous convolutional 

layer's number of filters.  Perceptron layers use the image 

size by previous layer's filters, as the previous layers filter 

would have translated to depth, then that is multiplied by 

the number of neurons.  Table 3 shows the weight and 

image size at each layer in the benchmark model.  
TABLE 3 

WEIGHT AND IMAGE DATA SIZES. 

Layer Filter/Pool 

/Neurons 

Depth Image/ 

Tensor Size 

Weight

s 

Input 

28x28x1 

N/A 1 (B/W image) 28x28 

(748) 

N/A 

Conv 
Layer 1 

5 by 5 by 32 
filers 

1 24x24  
(576) 

800 
 

Max 

Pooling 

2 by 2 32 12x12 

(144) 

N/A 

Conv 
Layer 2 

5 by 5 by 64 
filters 

32 8x8  
(64) 

51200 
 

Max 

Pooling 

2 by 2 64 4x4  

(16) 

N/A 

Flatten 
Layer 

N/A 1 1x(4x4x64)  
1024 

N/A 

Dense 

Layer 

10 1 10x1024  

(10240) 

10240 

 

To calculate the Glorot/Xavier limits, See Equations 

(1-3), and note that the calculated values have been 

rounded to 8 decimal places, and used as such and are 

shown as such in the Equations (1-3): 

��������	1 =  
 �
��∗�∗����� =0.08660254,  (1) 

��������	2 = 
 �
��∗�∗����∗�∗�∗��� = 0.05    and (2) 

���������	 = 
 �
��∗�∗������ =0.07617551.  (3) 

Alongside the Glorot/Xavier value limits, the structure 

of the weight initialization sequence also requires to have 

positional variations in each filter.  Those positional 

variations, are also to be aligned for feature extraction, in 

a Hubel and Wiesel [1] stripes intuition.  That structure, 

is ideally to be more allied to edge detection than a 

random value placement as the start condition.  This is to 

predisposed the initial condition to the application of 

image classification, and outperform the random scheme, 

and thus reduce dataset sizes by inducing earlier learning, 

by less unlearning of the initial state. 

V. COMPARISON OF THE WEIGHTS BEFORE AND 

AFTER LEARNING 

In Figure 4, is the random scheme benchmarks 

weights before learning of the first convolutional layer, 

and in Figure 5, are the same filter weights but after 

learning. 

 

Fig. 4 Initial Weights in first Conv Layer with the Random Scheme. 

 
Fig. 5 Learnt Filter Weights in first Conv Layer with the Random 

Scheme. 

It may be noted that there are similarities in some of 

the filters, between the before and after learning.  

Suggesting that the initial condition has a dominant effect 

in the subsequent learning.  However, looking carefully, 

adaption can be notice between them.  If the Initial 

weights are subtracted from the learnt weights, the 

adaption can be seen more clearly in Figure 6. 

 

Fig. 6 Learnt Filter Weight Updates of the with Random scheme. 



Consistent with Figure 6, convolutional filters 

examined after learning may be expected to have stripes, 

spots and perhaps curves, that may be used in edge 

detection of feature extraction, that will be hierarchically 

connected to form shapes in later layers.  Also 

convolutional layers, offer the ability to change the image 

resolution, at which a filter and the subsequent layers 

operate.  Owing to this, striped and spotted patterns may 

be more conducive in shape detection, that vary from 

filter to filter.  Figure 7 shows the non-random weight 

filter initialisation of the proposed scheme, produced for 

the first convolutional layer, and Figure 8 shows the same 

weights of the filters but after learning. 

 

Fig. 7 Filter Initialisation in first Conv Layer with the proposed scheme. 

 
Fig. 8 Learnt Filter Weights in first Conv Layer with the proposed 

scheme. 

It may be noted that there are also striking similarities 

between the before and after learning of the proposed 

scheme, but this scheme is higher performing then the 

random scheme.  There are also similarities between the 

after learning of the random and non-random scheme.  

However, again if you subtract the original initialisation 

from the learnt weights, what has been learnt can be 

shown, or rather what has been added to the initial 

condition in learning, as shown in Figure 9. 

 

Fig. 9 Learnt Filter Weight Updates of with the proposed scheme. 

The initial condition therefore has an effect of their 

arrangement from the outset of learning, and different 

arrangements will affect the after learning result.  So the 

proposed initialisation method makes arrangements that 

have stripes, spots and curves that are different in each 

filter, such that the subsequent learning adapts to the 

dataset quicker.  These arrangements are also different in 

each filter providing a filter diversity of edge detection, in 

different orientations. 

VI. THE PROPOSED SCHEME 

So as to explain the design of the scheme, and how its 

derived.  Firstly, the positional variation of values is 

important as it relates to a filter sweeping across the 

pixels.  If the modulation of arrangement position is 

based on two as a vector, then it may relate to stripes as a 

2D matrix when different column values are used, and 

that is also connected to the resolution in that filter.  That 

striping can then be controlled by the convolutional 

layer's hyper-parameters.  As also the stripe orientation in 

different filter arrangements is important.  An algorithm 

published in the papers [19, 20], that produced a least 

adjacent arrangement based on a modulation of two for 

dataset shuffling, has some attractive properties in this 

application.  It was originally an alternative to the 

established random shuffle approach.  This non-random 

shuffle approach, rearrange the dataset to produce a 

sequence with the first half of the input, that was output 

at a stride of two and then in filled those gaps with the 

remaining vector, also at a stride of two but in reverse 

order.  This resulted in a placement with smallest and 

largest numbers neighbouring each other at the start of 

the vector.  Figure 10 shows, the sequence with a vector 

length of 10, and with the unordered in row 1 and the 

reordered in row 2. 

 
Fig. 10 Least Neighbour of vector length 10 [19-20]. 

This process can be repeated iteratively as an in place 

operation, and when done so, the original sequence order 

will repeat at iteration: vector length minus 1.  See Figure 

11, where row 1 and row 10 (the unordered, and 9th 

iteration of reordering), are the same due to that repeating 

nature. 

 
Fig. 11 Least Neighbour shuffle over 1 unordered and 9 reordering 

iterations [19-20]. 

Referring to Figure 11, it can be noted that there is a 

sliding shift in value placement with each iteration, and 

that those shifts occur in both diagonal slants, which is 

useful to provide tolerance with row and column 

bounding differences in different row, column defined 

filters.  Another attractive feature of this reordering 

algorithm, is illustrated with a linear ramp of values.  

Where a re-orientation through 90 degrees occurs after 

the first iteration, and the iteration before the sequence is 



repeated, at vector length minus 2 number of iterations.  

Figure 12 shows, the re-orientation from the 1st iteration 

sequence (in Black) and the penultimate iteration (length 

minus 2) (in Red), which is the iteration before the repeat 

in the sequence.   

 
Fig. 12 Least Neighbour iterations: 1 and 8. 

As the sequence repeats, that algorithm also has a 

fixed number of combinations so the number of unique 

filters can be estimated.  Although, the algorithm from 

the paper [19, 20], is further enhanced to deal with odd 

number length vectors.  The structured English for the 

algorithm is in Figure 13 as amended: 
data_out = Function shuffle_data (vector: data) 

 

 len = length(data) 
 

 If ( mod(len, 2)  !=  0) 

  data_out [len-1]  = data [ int( len/2 ) ] 

 End If 

 

 Loop For n = 0 to int( len / 2 ) - 1 
  data_out[n*2]     = data[n] 

  data_out[n*2+1] =data[len-1-n] 

 End Loop 

 

Return data_out 

Fig. 13 Least Neighbour Shuffle Algorithm. 

It may be noted, that this algorithm will always have 

the same value in the first location, and this was not 

significant in the shuffle application, but however, it is 

significant in this application.  So experiments were 

conducted with pre-placement shift offsets in the data, 

and also with a data direction alternation of this 

algorithm.  These experiments proved to not be as high 

performing, although did provide a higher number of 

unique filters.  As with convolutional layers the order of 

filter values is significant, so an alternation of the data is 

conducted instead.  So that every second filter is reversed 

or flipped and the memory is addressed through column, 

row and depth for the odd filter numbers, and vector 

address reversed as then depth, row column for the even 

filters.  This provides two different filters of alternating 

direction placement of each shuffle iteration, doubling the 

number of unique filters on offer, with also a crucial 

disruption variation to the first position value. 

As well as the order placement, the value distribution 

of the values in the initialisation sequence may also be 

significant, as images an less likely to be uniformly 

distributed.  So experiments were conducted with linear 

ramps, as these had been the highest performing in 

perceptron layers.  However, in this case the application 

of a sinusoidal slope was higher performing on 

convolutional layers, and the linier ramp in dense 

perceptron layers both still reordered by this same 

scheme.  This may be because of the cos(x) content is a 

partial distribution of a sine function, or at least it's 

distribution has a match to convolutional layers and 

images.  The structured English for the algorithm that 

calls the shuffle is in Figure 14. 
Loop For d = 0 to LayerFilter-1 

  n = 0 
  m = FilterColumn * FilterRow * LayerDepth-1 

 Loop For c = 0 to  LayerDepth-1 

  Loop For a = 0 to FilterColum-1 
   Loop For b  =  0 to FilterRow-1 

    initval[a][b][c][d] = FunctionVal (n,m, Glorot, Type) 

                n=n+1 

   End Loop 

  End Loop 

 End Loop 

 

 initvalTrans = transpose(initval) 

  If mod(d+1,2) == 0 
  initvalTransvect =reshape(initvalTrans[d], (1,5*5*1)) 

  initvalTransvect =flip(initvalTransvect) 

  initvalTrans[d]  = reshape(initvalTransvect, (1,5,5)) 

 End IF 

 Loop For n = 0 to int(d/2)-1 

  initvalTransvect =.reshape(initvalTrans[d], (5*5*1, 1)) 
  initvalTransvect = shuffle_data(initvalTransvect) 

  initvalTrans[d]  = reshape(initvalTransvect, (1,5,5)) 

 End Loop 

 initva1 = transpose(initvalTrans) 

End Loop 

Fig. 14 Filter Re-order Organisation Algorithm. 

The slope alternatives are as in the structured English 

in Figure 15. 
value = function FunctionVal (n,m, GlorotLimit, Type) 

 If Type = Convolutional 
  value =  cos (n/m*pi())*GlorotLimit 

 Else 

  value =  n/m*(2* GlorotLimit)- GlorotLimit 

 End If 

Return Value 

Fig. 15 Filter Slope Algorithm. 

So in Summary the resulting initialisation weights, 

that were higher performing provided a sinusoidal 

bathtub distribution in convolutional layers, and a 

uniform distribution in the dense perceptron layer.  

Where the reordering provides uniquely reordered filters 

in each filter, with alternating vector directions and that 

reordering provides a two position base shift least 

neighbour arrangement.  That least neighbour 

arrangement has a pattern reorientation from row column 

to column row that is progressive in each filter, with a 

matching filter direction alternative providing the 

numerical compliment weight arrangement.  The total 

number of unique filters will be (filter_row × 

filter_column × depth  - 1) × 2.  If the losses are 

compared during learning, of the first epoch, then the loss 

does reduce quicker with the non-random scheme.   



See Figure 16 for the random scheme and Figure 17 

for the non-random scheme.  

 

Fig. 16 Losses over Batches fitting Random Scheme Shuffled. 

 

Fig. 17 Losses over Batches fitting proposed Scheme Shuffled. 

It may be noted that in comparison at batch 100 the 

non-random scheme has achieved a lower loss.  These 

results are also consistent if the shuffle is disabled 

making the comparison with only the difference in 

initialisation, and again the loss is less in the non random 

scheme at the batch 100 point (see Figure 18 and 19).  

Thus the earlier learning has benefited relatively. 

 

Fig. 17 Losses over Batches fitting Random Scheme not Shuffled. 

 

Fig. 18 Losses over Batches fitting proposed Scheme not Shuffled. 

There is an enquiring question raised, and that is: 

although it is a departure from the benchmark model, 

would the proposed method be robust to He et al. 

initialisation limits instead.  The He et al. initialisation 

limit values are calculated as in Equations (4-6): 

��������	1 =  
 �
��∗�∗����� =0.08660254, (4) 

��������	2 = 
 �
��∗�∗��� =0.06123724   and (5) 

���������	 = 
 �
��∗�∗��� = 0.07654655.  (6) 

As before the limit values are rounded to 8 places so 

as to be compatible in comparison.  The results using the 

He et al. initialisation are presented in Table 4. 
TABLE 4 

HE ET AL. LIMITS WITH THE PROPOSED INITIALISATION SCHEME. 

Epochs He et al. Loss He et al. 

Accuracy 

Gain over 

Glorot   

5 Shuffled 0.08277090748995543 97.55% +0.10% 

4 Shuffled 0.0928040012665093 97.22% +0.15% 

3 Shuffled 0.10946995529122651 96.64% +0.10% 

2 Shuffled 0.13462381604388357 96.17% +0.16% 

1 Shuffled 0.2057170445650816 94.53% +0.45% 

1 No Shuffle 0.21759726359546183 93.56% +0.28% 

The He et al. limit values are being used with the non-

random initialisation proposed method, and as such is 

robust to the He et al. initialisation limits as well, and 

with further gains.  In all epoch cases the He et al. 

initialisation with the proposed method offers a further 

positive accuracy gain, compared to the Glorot/Xavier 

limits that were also using the proposed method.  

However, the greatest increase in accuracy are in both the 

first epoch cases.  Suggesting that the He et al. 

initialisation limits have benefited again in extra earlier 

learning, over and above the earlier learning gains of the 

Glorot/Xavier limits previously. 

VII. DISCUSSION AND CONCLUSION 

This was follow up work from the perceptron layer 

non-random initialisation research towards repeatable 

determinism, but for convolutional layers in neural 

networks instead of perceptron layers.  As the previous 

perceptron layer work would not be applicable to 

convolutional layers, nor either in models that use a 

perceptron layer with convolutional layers in the 

architecture.  This proposed method, is applicable to 

convolutional layer architectures, and can achieve a higher 

accuracy in a single learning session, with a computational 

initialisation state number sequence that has been 

designed to be more conducive to edge detection in 

images.   

This method has a computational known maximum 

number of unique filter arrangements, and those filter 

arrangements are deterministic and repeatable, and as such 

have a known number sequence set for safety critical  

applications in image classification applications.  Those 

filter arrangements also act with the hyper-parameter 

control values, most notably the filter row and column 

values.   

1st epoch shuffled random 

Scheme at batch 100. 

1st epoch shuffled non-random 

Scheme at Batch 100. 

1st epoch Un-Shuffled random 

Scheme at Batch 100. 

1st epoch Un-Shuffled non-

random Scheme at Batch 100. 



The distribution used in the non-random 

rearrangements are selected based on layer type, with 

sinusoid slope with the rearrangement for convolutional 

layer, and linier ramp with rearrangements subsequent in 

dense layers.   The losses during learning show a quicker 

reduction in losses using this proposed form, and also 

when used with shuffles and epochs provide a higher 

performing accuracy result in the first learning session, 

that is inherited over the complete set of epochs.  The 

repeatable deterministic property provides no variation in 

learning sessions, aiding the speed of development of a 

model.  The proposed method is also robust to He et al. 

initialisation value limits, and when used with the 

proposed method offer a further accuracy gain.  That 

proposed scheme provides a higher accuracy in a single 

learning session +3.35% un-shuffled, and +2.813% 

shuffled in the first epoch.  When the He initialisation is  

used, instead 97.55% accuracy compared to 96.929% 

accuracy with the Glorot/ Xavier random form 

benchmark.  Further work, may make more focused 

consideration to assessing the He et al. initialisation with a 

comparison baseline,  and a further extension of the work 

could embrace different datasets, particularly those 

datasets with multi-channel colour images. 
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