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CONGRUENCE RFRS TOWERS

by Ian AGOL & Matthew STOVER (*)

With an appendix by Mehmet Haluk ŞENGÜN

Abstract. — We describe a criterion for a real or complex hyperbolic lattice
to admit a residually Ąnite rational solvable (RFRS) tower that consists entirely of
congruence subgroups. We use this to show that certain Bianchi groups PSL2(Od)
are virtually Ąbered on congruence subgroups, and also exhibit the Ąrst examples
of RFRS Kähler groups that are not a subgroup of a product of surface groups and
abelian groups.

Résumé. — Nous donnons un critère pour quŠun réseau réel ou complexe hy-
perbolique admette une tour résiduellement Ąnie rationnelle soluble (RFRS) qui se
compose entièrement de sous-groupes de congruence. Nous lŠutilisons pour mon-
trer que certains groupes de Bianchi PSL2(Od) sont virtuellement Ąbrés sur des
sous-groupes de congruence, et donnons aussi les premiers exemples de groupes de
Kähler RFSR qui ne sont pas des sous-groupes dŠun produit de groupes de surface
et de groupes abéliens.

1. Introduction

Let Γ be a Ąnitely generated group. The Ąrst author introduced the no-

tion of Γ being virtually RFRS to prove that certain hyperbolic 3-manifolds

are virtually Ąbered [1], and eventually this was used to prove that all Ąnite-

volume hyperbolic 3-manifolds virtually Ąber [2, 16, 29]. Finding such a

cover effectively remains an open problem.

In this paper, we study Ąnding RFRS towers arising from congruence

covers of arithmetic manifolds. For example, we will prove:

Keywords: RFRS towers, Bianchi groups, congruence subgroups, real and complex hy-
perbolic lattices, virtual Ąbering, Kähler groups.
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Theorem 1.1. — The Bianchi groups PSL2(Od) with d ̸≡ −1 (mod 8)

and d square-free contain a RFRS tower consisting entirely of congruence

subgroups. In particular, these Bianchi orbifolds virtually fiber on a con-

gruence cover.

We achieve this using the fact that these Bianchi groups virtually embed

in the group O(4, 1;Z). We then apply a very general idea to the congru-

ence subgroup of level 4 in O(4, 1;Z) to show that it is virtually RFRS with

tower ¶Γj♢ for which each Γj contains the congruence subgroup of level 2nj

for some nj . This example also allows us to Ąnd inĄnitely many commen-

surability classes of cocompact arithmetic Kleinian groups that virtually

Ąber on a congruence cover; see [3, Lem. 4.6] for examples. We will also

show:

Theorem 1.2. — There is a torsion-free cocompact lattice in PU(2, 1)

that is RFRS. Therefore, there is a RFRS Kähler group that is not iso-

morphic to a subgroup of the direct product of surface groups and abelian

groups.

This addresses a question raised by recent work of Friedl and Vidussi;

see the discussion immediately following [15, Thm. E]. Our example is

a congruence subgroup of a particular DeligneŰMostow lattice [12]. Note

that nonuniform lattices in PU(n, 1) cannot be RFRS, since their cusp

groups are two-step nilpotent groups, which themselves are not RFRS. In

particular, the methods of this paper cannot apply to nonuniform complex

hyperbolic lattices. See Remark 3.17.

We brieĆy describe the method of constructing these towers. Suppose

that k is a number Ąeld and G is a k-algebraic group such that G(k) ⊗Q R

modulo compact factors is isomorphic to SO(n, 1) or SU(n, 1). Let Ok be

the ring of integers of k and p a prime ideal of Ok with residue characteristic

p. Suppose that Γ(p) is the congruence subgroup of level p in the arithmetic

lattice G(Ok), and that Γ < Γ(p) is a Ąnite index subgroup such that

H1(Γ;Z) has no p-torsion.

Using the fact that G(k) is closely related to the commensurator of Γ,

we Ąnd a sequence ¶gn♢ in G(k) such that

∞
⋂

n=0

gnΓg−1
n

is a RFRS tower for Γ. The key is to Ąnd an initial g1 ∈ G(k) so that

Γ/(Γ ∩ g1Γg−1
1 )

ANNALES DE L’INSTITUT FOURIER
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is an elementary abelian p-group. One then inductively deĄnes each gn in

a manner most succinctly described using the p-adic BruhatŰTits building

for G(kp), where kp is the local Ąeld associated with p. Note that the above

implicitly assumes that H1(Γ;Z) is inĄnite, hence our results can only apply

for lattices in SO(n, 1) and SU(n, 1).

We close by brieĆy recalling the connection between RFRS and various

notions of Ąbering. When ¶Γj♢ is a RFRS tower with Γj = π1(Mj) the

fundamental group of an irreducible 3-manifold, the Ąrst author proved

that there is some j0 so that Mj Ąbers over S1 for all j ⩾ j0 [1, Thm. 5.1]

(the statement of the theorem does not explicitly say that the Ąbered man-

ifold comes from the RFRS tower, but it is implicit in the proof). It is

a famous theorem of Stallings that this is equivalent to Γj admitting a

homomorphism onto Z with Ąnitely generated kernel for all j ⩾ j0. Such

a homomorphism is called an algebraic fibration, and recent work shows

that being virtually RFRS is closely related to being virtually algebraically

Ąbered.

For example, Friedl and Vidussi [15, Thm. E] showed that virtually RFRS

Kähler groups are either virtually algebraically Ąbered or virtually surface

groups, and Kielak proved that an inĄnite Ąnitely generated virtually RFRS

group is virtually algebraically Ąbered if and only if its Ąrst l(2) betti num-

ber is zero [18, Thm. 5.3]. Both proofs provide a group in the RFRS tower

that algebraically Ąbers. See [26] and [17] for more about algebraic Ąbra-

tions of lattices in Lie groups and Coxeter groups. In particular, in [26] the

second author showed that all arithmetic subgroups of SU(n, 1) of “simplest

typeŤ virtually algebraically Ąber on a congruence subgroup; this includes

the example used to prove Theorem 1.2 above. On the other hand, there

are known examples of arithmetic lattices Γ in SU(n, 1) so that Λab is Ąnite

for all congruence subgroups Λ ⩽ Γ [23, Thm. 15.3.1], hence Γ cannot vir-

tually algebraically Ąber on a congruence subgroup. It is unknown whether

all lattices in SU(n, 1) (arithmetic or not) virtually algebraically Ąber. We

rephrase our results in this language in Corollaries 3.6 and 3.16, and see

Section 4 for further discussion.

In the Appendix, Mehmet Haluk Şengün shows that the methods devel-

oped in this paper can be used to construct congruence RFRS towers for

many prime-level congruence subgroups of Bianchi groups. SpeciĄcally, for

d = −1,−2,−3,−7,−11 and p a prime ideal of residue characteristic p with

relatively small norm, Şengün shows that the abelianization of the level p

congruence subgroup of PSL(Od) is p-torsion-free roughly twice as often as

not. As we show in Section 3.1, having no p-torsion in the abelianization

TOME 73 (2023), FASCICULE 1



310 Ian AGOL & Matthew STOVER

of the level p congruence subgroup allows one to construct a RFRS tower

in the tower of p-congruence subgroups of PSL(Od).

This paper is organized as follows. In Section 2 we describe some basic

preliminary results on RFRS towers and congruence towers. In Section 3

we give three examples that describe our general method for producing

congruence towers that are RFRS. These examples suffice to prove the

theorems stated above. Finally, in Section 4 we make closing comments

and raise some questions.

Acknowledgments

We thank Alan Reid and Steven Tschantz for helpful conversations and

the referee for pointing us to [30].

2. Preliminaries on towers

In this section, we discuss two types of towers of Ąnite index subgroups

of a group: RFRS towers, and p-congruence towers.

2.1. RFRS towers

Let Γ be a Ąnitely generated group with commutator subgroup denoted

by Γ(1) = [Γ,Γ] and abelianization

Γab = Γ/Γ(1) ∼= H1(Γ;Z).

We then deĄne the rational abelianization Γrab to be the image of Γab in

Γab ⊗Z Q ∼= H1(Γ;Z) ⊗Z Q ∼= H1(Γ;Q)

under the natural homomorphism and the rational commutator subgroup

Γ(1)
r = ker

(

Γ → Γrab
)

.

Clearly Γ(1) ⩽ Γ
(1)
r is Ąnite index and Γrab ∼= H1(Γ;Z)/Torsion.

Given a group Γ, let ¶Γj♢ be a coĄnal tower of Ąnite index subgroups of

Γ with Γ0 = Γ. In other words,

(1)
⋂

Γj = ¶1♢;

(2) Γj is a Ąnite index subgroup of Γ;

(3) Γj+1 ⩽ Γj for all j.

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 311

We say that ¶Γj♢ is a RFRS tower if, in addition,

(⋆) (Γj)(1)
r ⩽ Γj+1 for all j ⩾ 0.

Remark 2.1. — The original deĄnition of RFRS [1, Def. 2.1] also required

that Γj be normal in Γ. However, it is also pointed out in [1] that if there

is a RFRS tower, then there is also a normal RFRS tower by passing to

core subgroups (i.e., the largest normal reĄnement).

We say that Γ is RFRS if it admits such a tower and that it is virtually

RFRS if it contains a Ąnite index subgroup that is RFRS. We note that

RFRS is short for “residually Ąnite Q-solvableŤ, and refer to [1] for further

details and examples.

We brieĆy recall that if G is a group and Γ ⩽ G a subgroup, the com-

mensurator of Γ in G is the group consisting of those g ∈ G such that

Γ∩(gΓg−1) has Ąnite index in both Γ and gΓg−1. Our key technical lemma

is the following:

Lemma 2.2. — Let G be a group and Γ ⩽ G a finitely generated sub-

group such that Γab has no p-torsion. Suppose that ¶g0 = Id, g1, g2, . . . ♢
is a sequence in G such that each gi is in the commensurator of Γ in G.

Define

∆i = giΓg
−1
i

Γn =

n
⋂

i=0

∆i.

Finally, suppose:

(1) The sequence ¶Γn♢ is a cofinal tower of subgroups.

(2) For each n, there exists some 0 ⩽ i ⩽ n− 1 such that ∆i/(∆i ∩ ∆n)

is an abelian p-group.

Then ¶Γn♢ is a RFRS sequence for Γ.

Proof. — Note that ∆0 = Γ0 = Γ and

∆0/(∆0 ∩ ∆1) = Γ0/Γ1

is an abelian p-group. Since Γab
0 = Γab has no p-torsion, the projection from

Γ0 onto Γ0/Γ1 must factor through Γrab
0 , i.e., (Γ0)

(1)
r ⩽ Γ1.

We now show that (Γn+1)
(1)
r ⩽ Γn+2 for all n ⩾ 0. Since Γn+2 equals

Γn+1 ∩ ∆n+2, to prove that ¶Γn♢ is a RFRS sequence, we must show that

(Γn+1)
(1)
r ⩽ ∆n+2.

Fix 0 ⩽ i ⩽ n+ 1 such that ∆i/(∆i ∩ ∆n+2) is an abelian p-group. Since

∆i
∼= Γ, we see that ∆ab

i has no p-torsion, and hence (∆i)
(1)
r ⩽ (∆i ∩∆n+2).

TOME 73 (2023), FASCICULE 1



312 Ian AGOL & Matthew STOVER

Then Γn+1 ⩽ ∆i by construction, and the natural map Γab
n+1 → ∆rab

i

induced by the inclusion must factor through the map from Γn+1 to Γrab
n+1.

Indeed, ∆rab
i is torsion-free, so Γn+2 → ∆rab

i factors through Γrab
n+1. It

follows that

(Γn+1)(1)
r ⩽ (∆i)

(1)
r ⩽ (∆i ∩ ∆n+2).

This gives that (Γn+1)
(1)
r ⩽ ∆n+2, as desired. Since ¶Γn♢ satisĄes the other

hypotheses to be a RFRS sequence by assumption, this completes the proof

of the lemma. □

Our goal will be to apply Lemma 2.2 to certain p-congruence towers in

arithmetic lattices. We now introduce these towers.

2.2. p-congruence towers

We refer the reader to [20, Ch. I and II] for terminology and results from

algebraic number theory used in this section and elsewhere in the paper.

Let k be a number Ąeld with integer ring Ok, G ⊆ GLn(k) be a k-algebraic

matrix group, and Γ = G(Ok). Given a prime ideal p of Ok and j ⩾ 1,

let Γ(pj) be the level pj congruence subgroup of Γ, i.e., all those elements

that are congruent to the identity modulo pj . The collection ¶Γ(pj)♢ is the

p-congruence tower for Γ. This is a coĄnal tower of normal subgroups of Γ.

We record some elementary facts. Let p be a rational prime. Recall that

in a p-group every element has order a power of p, and in an elementary

p-group every element has order p.

Lemma 2.3. — Suppose k is a number field with ring of integers Ok,

G ⊆ GLn(k) is a k-algebraic matrix group, and Γ = G(Ok). Let p be a

prime ideal of Ok and p the characteristic of the finite field Ok/p. Then:

(1) For all j ⩾ 1, Γ(pj)/Γ(pj+1) is an elementary abelian p-group.

(2) For all k > j ⩾ 1, Γ(pj)/Γ(pk) is a p-group.

(3) For all j ⩾ 2, Γ(pj)/Γ(pk) is abelian for every k ⩽ 2j. In particular,

Γ(pj)/Γ(pj+2) is abelian.

Proof. — Let Op be the integral closure of Ok in the completion kp of k

with respect to its p-adic norm. Fix a uniformizing element π for Op. Then

we have that Ok/p ∼= Op/(π)Op and p is the characteristic of this Ąnite

Ąeld.

If α ∈ Γ(pj), then we can write

α = Id +πjM

ANNALES DE L’INSTITUT FOURIER
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for some M ∈ Mn(Op). Then

αp =

p
∑

k=0



p

k



πjkMk,

which is visibly congruent to the identity modulo πj+1. This proves that

every element of Γ(pj)/Γ(pj+1) has order p.

Now, suppose that

α = Id +πjM

β = Id +πjN

for α, β ∈ Γ(pj). Then:

αβ = (Id +πjM)(Id +πjN)

= Id +πj(M +N) + π2jMN

βα = (Id +πjN)(Id +πjM)

= Id +πj(N +M) + π2jNM

We see that α and β commute modulo πk for all k ⩽ 2j. Since 2j ⩾ j + 1

for j ⩾ 1, w, this proves the Ąrst and third assertions of the lemma. The

second statement is an immediate consequence of the Ąrst. □

Remark 2.4. — Replacing Ok with Op in the proof of Lemma 2.3 is only

necessary when p is not a principal ideal. When it is principal, one can

implement the proof in Ok instead with π a generator for p.

3. Examples

We now describe the examples that suffice to prove the main results

stated in the introduction. Our techniques work in much greater generality,

and the reader will hopefully Ąnd these examples illustrative enough to

apply our methods in other settings.

3.1. The magic manifold

It goes back to Thurston that the fundamental group Γ of the magic man-

ifold arises from the congruence subgroup Γ(1+
√

−7
2 ) inside PGL2(Q(

√
−7)).

It is homeomorphic to the complement in S3 of the 3-chain link 63
1 (see Fig-

ure 3.1 and [27, Ex. 6.8.2]).

TOME 73 (2023), FASCICULE 1
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Figure 3.1. The magic manifold is the complement of the 3-chain link.

Note that p = ( 1+
√

−7
2 ) is a prime ideal dividing 2. We will show that

the magic manifold admits a 2-congruence tower that is RFRS. Note that

the magic manifold is itself Ąbered, so the fact that PSL2(Od) Ąbers on a

congruence subgroup is not new in this case.

Since p has norm 2, the completion of Q(
√

−7) at p is Q2, and hence we

obtain an embedding of Γ into PGL2(Q2). Consider the action of PGL2(Q2)

on its BruhatŰTits tree T , which is a 3-regular tree (see Figure 3.2).

Figure 3.2. The Bruhat–Tits tree T for PGL2(Q2).

We brieĆy recall that vertices of T are homothety classes of Z2-lattices

in Q2
2, and two vertices [L1] and [L2] are adjacent if and only if there are

representatives in the homothety classes such that L2 ⊆ L1 with L1/L2

isomorphic to the Ąnite Ąeld F2 with two elements. See [25, ğII.1] for details.

Then Γ ⩽ PGL2(Z2) naturally stabilizes the vertex v0 associated with

the standard lattice Z2
2. Notice that PGL2(Q(

√
−7)) acts transitively on

T , and the element

g1 =



0 2

1 0
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exchanges v0 with a neighbor v1. One then checks that

Γ(p2) ⩽ Γ ∩ g1Γg−1
1 ⩽ Γ,

and it follows from Lemma 2.3 that Γ/(Γ∩g1Γg−1
1 ) is an elementary abelian

2-group.

We now deĄne gn ∈ PGL2(Q(
√

−7)) and vn = gn(v0) ∈ T by choosing

some vi for 0 ⩽ i ⩽ n − 1 for which not all neighbors of vi are contained

in ¶v0, . . . , vn−1♢, letting vn be one such neighbor of vi, and taking gn to

be the conjugate of g1 in PGL2(Q(
√

−7)) that swaps vi and vn. DeĄne

∆n = gnΓg−1
n . Then

∆n/(∆n ∩ ∆i)

is an elementary abelian 2-group by the same reasoning that we applied to

∆0/(∆1 ∩ ∆0).

Let vn range over all vertices of T . DeĄning

Γn =

n
⋂

i=0

Γi,

we have that
⋂

Γn lies in the stabilizer in PGL2(Q2) of every homothety

class of lattices in Q2
2, which is clearly trivial. Therefore ¶Γn♢ is coĄnal. In

particular, Lemma 2.2 applies to show that this tower is RFRS.

Remark 3.1. — This idea applies to any principal congruence arithmetic

link. In [5] it is shown that there are principal congruence links for discrim-

inant d = 1, 2, 3, 5, 7, 11, 15, 19, 23, 31, 47, 71. This includes discriminants

d = 7, 15, 23, 31, 47, 71 that are congruent to −1 mod 8; these values of d

are not handled by the next section. More generally, this construction works

for congruence subgroups of arithmetic Kleinian groups with no p-torsion

in their 1st homology for the appropriate p; see Appendix A by Şengün for

further examples.

3.2. Bianchi groups and O(4, 1;Z)

Consider the quadratic form q0 in 5 variables with matrix

Q0 = diag(1, 1, 1, 1,−1),

and let O(4, 1;Z) be the group of integral automorphisms of q0. Then

O(4, 1;Z) determines a nonuniform arithmetic lattice in O(4, 1). For an

integer N ⩾ 1, let Γ(N) denote the congruence subgroup of O(4, 1;Z) of

level N .

TOME 73 (2023), FASCICULE 1
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It is known that O(4, 1;Z) is the group generated by reĆections in the

simplex in hyperbolic 4-space with Coxeter diagram given in Figure 3.3.

Moreover, the congruence subgroup Γ(2) of level two is the right-angled

Coxeter group generated by reĆections in the sides of a polyhedron obtained

from 120 copies of the simplex for O(4, 1;Z). See [22].

3 3 4

3

Figure 3.3. The Coxeter diagram for O(4, 1;Z).

It will be convenient to change coordinates. The matrix

α =













1 1 0 0 0

0 −1 0 0 1

0 0 1 0 0

0 0 0 1 0

1 1 0 0 −1













∈ SL5(Z)

conjugates O(4, 1;Z) to O(q;Z), where q is the quadratic form with matrix

Q =













0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0













,

i.e., Q = tαQ0α. Since α is integral of determinant one, it preserves all

congruence subgroups of SL5(Z). Thus αΓ(N)α−1 is the level N congruence

subgroup of O(q;Z) for all N ⩾ 1, and we continue calling it just Γ(N).

We will also need the BruhatŰTits building associated with O(q;Q2),

which is a (5, 3)-regular tree T . See [28, ğ2.7] and Figure 3.4. Considering

O(q;Q2) as a subgroup of GL5(Q2), we obtain an injection of buildings

T →֒ X, where X is the building associated with PGL5(Q2). We brieĆy

describe T using this embedding. While we do not need details of the

Ąner structure of T , for the readerŠs convenience in what follows we give a

complete argument that T is a (3, 5)-regular tree.

As in the 2-dimensional case, vertices of X are in one-to-one correspon-

dence with homothety classes of Z2-lattices in Q5
2, where vertices x and y

are adjacent if there are representatives Lx and Ly for the two homothety

ANNALES DE L’INSTITUT FOURIER
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Figure 3.4. The Bruhat–Tits tree T for O(q;Q2).

classes so that 2Lx ⊂ Ly ⊂ Lx. See [25, Exer. II.1.4]. We Ąx the base vertex

x0 = [⟨e1, . . . , e5⟩],
where ¶ei♢ is the basis for which q has the given matrix and ⟨ − ⟩ denotes

the Z2-span. The stabilizer of x0 in GL5(Q2) is generated by GL5(Z2) and

the scalar matrices. Then O(q;Z2) stabilizes x0, which implies that we can

realize T as the convex hull of the O(q;Q2)-orbit in X of x0.

The apartment A of X associated with the Q2-split torus of diagonal

matrices in GL5(Q2) (e.g., see [28, ğ1]) can be identiĄed with the set of

homothety classes

¶[⟨2r1e1, . . . , 2
r5e5⟩]♢ri∈Z ,

i.e., the orbit of x0 under the diagonal subgroup. The Q2-split torus of

diagonal matrices in the rank one group O(q;Q2) is

S =











λ 0 0

0 Id 0

0 0 λ−1



 : λ ∈ Q∗
2







,

where Id is the 3 × 3 identity matrix, and the convex hull of the S-orbit of

x0 is then the apartment A0 of T associated with S. The S-orbit of x0 is

xr = [⟨2re1, e2, . . . , e4, 2
−re5⟩]

for r ∈ Z, and its convex hull also includes the vertices

xr+ 1
2

= [⟨2r+1e1, e2, . . . , e4, 2
−re5⟩].

We see that A0 is a line with vertex set ¶xα : α ∈ 1
2Z♢, where xα is

adjacent to xβ if and only if ♣α− β♣ = 1
2 .

Since O(q;Q2) acts transitively on apartments of T [28, ğ2], the vertex

set of T is the O(q;Q2)-orbit of ¶x0, x 1
2
♢. In particular, to prove that T is

a (5, 3)-regular tree we need to prove the following two lemmas.

Lemma 3.2. — The vertex x0 ∈ T has valence 5.

TOME 73 (2023), FASCICULE 1
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Lemma 3.3. — The vertex x 1
2

∈ T has valence 3.

Proof of Lemma 3.2. — We must compute the O(q;Z2)-orbit of x 1
2
. We

deĄne L0 = ⟨e1, . . . , e5⟩ and L 1
2

= ⟨2e1, e2, . . . , e5⟩. Neighbors of x0 in X

are in one-to-one correspondence with proper nonzero subspaces of

V0 = L0/2L0
∼= F5

2.

Let ¶ei♢ be the basis for V0 induced by ¶ei♢.

If q0 denotes the quadratic form on V0 induced by the restriction of q to

L0, then we see that the image of L 1
2

in V0 is the q0-orthogonal complement

e⊥
5 of e5, which we note is a codimension one subspace that contains the

isotropic vector e5. To prove the lemma it then suffices to compute the

orbit of e⊥
5 under the image G0 of O(q;Z2) under reduction modulo 2 (e.g.,

see [28, ğ3.5.4]).

Since v⊥ = e⊥
5 if and only if v = e5, it moreover suffices to compute the

G0-orbit of e5. One checks that this orbit is

¶e5 , e1 , e1 + e2 + e3 + e5 , e1 + e2 + e4 + e5 , e1 + e3 + e4 + e5♢.

This proves the lemma. □

Proof of Lemma 3.3. — The proof is very similar to the proof of

Lemma 3.2, so we sketch the argument and leave it to the reader to verify

the details. With notation as in that proof, we consider

2L 1
2

⊂ 2L0 ⊂ L 1
2

= ⟨f1, . . . , f5⟩.

Then V 1
2

= L 1
2
/2L 1

2 is a vector space with basis ¶f i♢ with respect to

which the quadratic form q 1
2

contains a two-dimensional totally degenerate

subspace spanned by f1 and f5.

Since the image of 2L0 in V 1
2

is the line spanned by f1, we must compute

its orbit under the reduction modulo 2 of the stabilizer in O(q;Q2) of L 1
2
.

One shows that this orbit consists of the lines spanned by f1, f5, and

f1 + f5, and the lemma follows. □

Remark 3.4. — The neighbors of x0 in A0 are x 1
2

and x− 1
2
. The other

neighbors have representatives:

⟨2e1 , e1 + e2 , e1 + e3 , e4 , e1 + e2 + e3 + e5⟩
⟨2e1 , e1 + e2 , e3 , e1 + e4 , e1 + e2 + e4 + e5⟩
⟨2e1 , e2 , e1 + e3 , e1 + e4 , e1 + e3 + e4 + e5⟩
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Similarly, x 1
2

has neighbors x0 and x1 along with the vertex with represen-

tative
〈

e1 +
1

2
e5 , e2 , e3 , e4 , e5



,

which is the image of L0 under the matrix













1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− 1
2 −1 0 0 1













∈ SO(q;Q2)

that stabilizes L 1
2
.

We now prove the main result of this section. Recall that the Bianchi

groups PSL2(Od) with d ̸≡ −1 (mod 8) are all commensurable with sub-

groups of O(4, 1;Z), and one can choose the subgroup of PSL2(Od) con-

tained in O(4, 1;Z) to be a congruence subgroup of each. We can then use

the following to prove Theorem 1.1.

Proposition 3.5. — The congruence subgroup Γ(4) of level 4 in

O(4, 1;Z) admits a congruence RFRS tower.

Proof. — Recall that the congruence subgroup Γ(2) of level 2 in O(n,1;Z)

is a right-angled Coxeter group [22, Thm. 7]. One computes that Γ(2)/Γ(4)

and Γ(2)/Γ(2)(1) are elementary abelian 2-groups of the same order, hence

Γ(4) = Γ(2)(1). We then see that Γ(4) has torsion-free abelianization by [10,

ğ4.5], as the abelianization of the commutator subgroup of any right-angled

Coxeter group is isomorphic to the reduced degree zero homology of a

certain complex, hence it is necessarily torsion-free. Alternately, using the

presentation for O(4, 1;Z) as a Coxeter group with diagram as in Figure 3.3,

one can easily check using a computer algebra program like Magma [9] that

in fact Γ(4)ab ∼= Z55. In particular, Γ(4)ab has no 2-torsion.

Consider the matrix

g1 =













0 0 0 0 2

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0
1
2 0 0 0 0













∈ SO(q;Q) < SO(q;Q2)

that exchanges the vertices x0, x1 ∈ T and Ąxes the intermediate vertex x 1
2
.
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We now set Γ0 = Γ(4) and Γ1 = g1Γ0g
−1
1 . We claim that

Γ(16) ⩽ Γ0 ∩ Γ1 ⩽ Γ0.

To see this, one Ąrst notices that

g1













1 + 16a5 −32e2 −32e3 −32e4 64e1

−8b5 1 + 16b2 16b3 16b4 −32b1

−8c5 16c2 1 + 16c3 16c4 −32c1

−8d5 16d2 16d3 1 + 16d4 −32d1

4a1 −8a2 −8a3 −8a4 1 + 16a1













g−1
1

=













1 + 16a1 16a2 16a3 16a4 16a5

16b1 1 + 16b2 16b3 16b4 16b5

16c1 16c2 1 + 16c3 16c4 16c5

16d5 16d2 16d3 1 + 16d4 16d5

16e1 16e2 16e3 16e4 1 + 16e5













for a1, . . . , e5 ∈ Z. Also, since g1 ∈ SO(q,Q), the matrix on the right-hand

side preserves q if and only if the matrix being conjugated on the left-hand

side does. This proves the claim.

Lemma 2.3 implies that Γ(4)/Γ(16) is an abelian 2-group, hence so is

Γ0/Γ1. We now deĄne gn inductively as follows. Let xn be a vertex of T
in the SO(q;Q2)-orbit of x0 that is distance 2 in T from some vertex xi in

¶x0, . . . , xn−1♢. Since SO(q;Q) is dense in SO(q;Q2), there exists an hn in

SO(q;Q) so that hn(x0) = xi and hn(x1) = xn. We deĄne gn = hng1h
−1
n .

Choose the sequence ¶xn♢ to exhaust the SO(q;Q2)-orbit of x0. Then it is

easy to see that the sequence ¶gn♢ satisĄes all the conditions of Lemma 2.2.

In particular, if ∆n = gnΓ0g
−1
n and

Γn =

n
⋂

i=0

∆n,

then ¶Γn♢ is coĄnal, and the elements gn satisfy the requisite assumptions

by construction. Therefore there is a RFRS tower for Γ(4). □

Corollary 3.6. — The group SO(4, 1;Z) has a congruence subgroup

that is algebraically fibered.

Proof. — Since SO(4, 1;Z) has b
(2)
1 = 0 (see [21, Lem. 1]), a result of

Dawid Kielak [18, Thm. 5.3] implies that some level 2k congruence subgroup

is algebraically Ąbered. □

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 321

Remark 3.7. — The proof of Proposition 3.5 would work without alter-

ation for the level 4 congruence subgroup of SO(n, 1;Z) for any n ⩾ 2, as

long as it has no 2-torsion in its abelianization. This holds for n = 2, 3, 4,

however Steven Tschantz computed that H1(Γ(4);Z) ∼= Z256 × Z/2 for

Γ = SO(5, 1;Z).

Remark 3.8. — For n = 2, . . . , 7, the congruence subgroup Γ(2) of level

2 in O(n, 1;Z) is a right-angled Coxeter group [22, Thm. 7]. As noted in

the proof of Proposition 3.5, the commutator subgroup Γ(2)(1) then has

torsion-free abelianization by [10, ğ4.5]. For n ⩽ 4, Γ(2)(1) equals Γ(4). For

n > 4, we have that Γ(2)(1) is a proper Ąnite index subgroup of Γ(4). It

is possible that H1(Γ(4)) is torsion-free for n > 5 in spite of TschantzŠs

computation for n = 5.

Proof of Theorem 1.1. — For d ̸≡ −1 (mod 8), there is a Ąnite index

subgroup ∆ of PSL2(Od) that is isomorphic to a subgroup of the group Γ(4)

in Proposition 3.5. For d square-free, the quadratic form qd = ⟨1, 1, 1,−d⟩ is

isotropic if and only if d ̸≡ −1 (mod 8); [3, Thm. 6.2] and the subsequent

discussion. In this case, PO(qd;Z) is commensurable with PSL2(Od) [3,

Thm. 2.3], hence one can embed PO(qd;Z) into PO(4, 1;Z) up to commen-

surability by [3, Lem. 6.3] and as in the proof of [3, Lem. 4.6(i)]. The proof

that such a ∆ exists in fact produces a congruence subgroup of PSL2(Od).

Intersecting this with the RFRS tower given in Proposition 3.5 produces

the desired RFRS tower for ∆. This proves the theorem. □

Remark 3.9. — The above gives an explicit congruence subgroup of

PSL2(Od) that begins a congruence RFRS tower. We sketch the argument

bounding the index of this subgroup when d ≡ 1 (mod 4) is a sum of two

squares (equivalently, no prime dividing d is congruent to 3 modulo 4). In

this case, PSL2(Od) can be realized as the subgroup of SO(qd;Z) for

qd =



















0
1

2
0 0 0

1

2
0 0 0 0

0 0 1 0 0

0 0 0 d 0

0 0 0 0 d



















that preserves the upper left 4 × 4 block (e.g., see [11, ğ3.1]). Then qd is

equivalent to the standard quadratic form ⟨−1, 1, 1, 1, 1⟩ under the change
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of variables with matrix

hd =



















1 1 0 0 0

−1 1 0 0 0

0 0 1 0 0

0 0 0
a

d

b

d

0 0 0 − b

d

a

d



















where d = a2 + b2.

Thus if γ ∈ PSL2(Od) ⩽ SO(qd;Z), then h−1
d γhd preserves the standard

quadratic form. If γ ∈ SO(qd;Z) is congruent to the identity modulo 8d,

then h−1
d γhd ∈ SO(4, 1;Z) is congruent to the identity modulo 4. Follow-

ing [11, Eq. (3.1)], one sees that the congruence subgroup of PSL2(Od)

of level 8d maps into the congruence subgroup of SO(qd;Z) of level 8d.

Computing the index of this congruence subgroup, we see that PSL2(Od)

contains a RFRS subgroup of index at most

∣

∣ PSL2

(

Od/(8d)Od

)∣

∣ = (8d)6
∏

p | (8d)Od



1 − 1

N(p)2



.

However, one can likely improve upon this.

Remark 3.10. — Methods analogous to work of Michelle Chu [11] on ef-

fectively embedding subgroups of Bianchi groups in SO(6, 1;Z) could allow

one to prove that the above Bianchi groups contain a congruence RFRS

tower of uniformly bounded index.

Remark 3.11. — If the congruence subgroup of level 4 in SO(6, 1;Z) has

no 2-torsion in its Ąrst homology, then Theorem 1.1 holds for all Bianchi

groups. See [3, Lem. 4.4]. More generally, one only needs to Ąnd a prime p

so that the congruence subgroup of level p in SO(6, 1;Z) has no p-torsion in

its abelianization, which seems likely but very difficult to verify computa-

tionally. If this holds, then all Bianchi groups contain a congruence RFRS

tower and hence Ąber on a congruence subgroup.

3.3. A complex hyperbolic example

Our example will come from a congruence cover of a DeligneŰMostow

orbifold [12]. We recall that for certain (n+ 3)-tuples µ of integers (called

weights) satisfying a condition called INT, Deligne and Mostow constructed

lattices Γµ ⊴ ΓΣµ in PU(n, 1), where Σ is the symmetry group of the
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weights and ΓΣµ/Γµ
∼= Σ. Let B2 denote complex hyperbolic 2-space in

what follows.

The example we consider here is µ = (2, 2, 2, 2, 2), hence Σ = S5. Follow-

ing [19], the underlying analytic space for the orbifold B2/Γµ is the blowup

of the complex projective plane P2 at the four vertices of the complete

quadrangle, and each divisor has orbifold weight 5. See Figure 3.5. (Note

that the convention in [19] is to divide the elements of µ by their gcd, so

µ is listed as (1, 1, 1, 1, 1).) Then S5 acts on this blowup of P2 in a natural

way with quotient the underlying analytic space for B2/ΓΣµ.

Figure 3.5. The orbifold B2/Γµ. Each line or circle represents a P1

in the orbifold locus, and each has orbifold weight 5. Local orbifold

groups at intersection points are all (Z/5)2.

It is known that these lattices are arithmetic. More speciĄcally, let E

be Q(ζ5), where ζ5 is a primitive 5th root of unity, and F = Q(α) with

α2 = 5 be its totally real quadratic subĄeld. DeĄne ϕ = 1−α
2 and consider

the hermitian form on E3 with matrix

h =





ϕ 1 0

1 ϕ 1

0 1 ϕ



 .

Then h has signature (1, 2) at one complex place of E and signature (3, 0) at

the other complex place. Since −h then has signature (2, 1) the appropriate

place, and because similar hermitian forms have isomorphic unitary groups,

it follows that PU(h,OE) is a cocompact arithmetic lattice in PU(2, 1),

where OE = Z[ζ5] is the ring of integers of E. Let π = ζ5 −1 and p5 = πOE

be the unique prime ideal of OE dividing 5OE . Note that OE/p5
∼= F5,
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p2
5 = αOE , and p4

5 = 5OE . We then have the following, which was proved

by Yamazaki and Yoshida.

Proposition 3.12 ([30, Prop. 4.3]). — With notation as above, we have

ΓΣµ
∼= PU(h,OE) and Γµ is the congruence subgroup ΓΣµ(p5) of level p5

in ΓΣµ.

The lattice of interest to us is supplied by the following lemma.

Lemma 3.13. — With notation as above, the congruence subgroup of

level p2
5 = αOE in ΓΣµ is the commutator subgroup of Γµ and its abelian-

ization is isomorphic to Z60.

Proof. — The Ąrst statement was proved by Yamazaki and Yoshida [30,

Thm. 1]. Using a presentation for Γµ (e.g., see [30, Prop. 2.1]) one then com-

putes the abelianization of the commutator subgroup of Γµ in Magma [9]

to complete the proof of the lemma. □

Remark 3.14. — We note the following analogy between O(4, 1;Z) and

ΓΣµ. Recall that O(4, 1;Z) is a Coxeter group whose congruence subgroup

of level 2 is a right-angled Coxeter group, and the commutator subgroup of

the right-angled group is the congruence subgroup of level 4 in O(4, 1;Z).

Analogously, ΓΣµ is a complex hyperbolic reĆection group whose congru-

ence subgroup of level p5 is the complex hyperbolic reĆection group Γµ,

and the commutator subgroup of Γµ is the congruence subgroup of ΓΣµ of

level p2
5.

We now describe the building used to apply our methods to prove that

ΓΣµ(p2
5) admits a congruence RFRS tower. Let E5 be the completion of E

with respect to the valuation associated with p5. Then E5 = Q5(ζ5) is a

degree four totally ramiĄed extension of Q5 with intermediate quadratic

subĄeld F5 = Q5(α) and π is a uniformizer for E5. The group SU(h,E3) is

the unique special unitary group in 3 variables with respect to E5/F5, and

the associated BruhatŰTits building is a tree [28, ğ2.10].

As in Section 3.2, a change of coordinates will be convenient for describ-

ing this building. One can Ąnd a change of coordinates with entries in the

ring of integers O5 of E5 so that h has matrix −h0 for

h0 =





0 0 1

0 1 0

1 0 0



 .
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For example,

c =







1 −δ−1 −1+α
8

−1 + δ δ−1 (1−α)(1+δ)
8

−1 − α+ ϵ 0 − 2+δ
4







suffices, where δ is a square root of 1 + α and ϵ is a square root of 4 + 2α.

Critically, δ, ϵ ∈ O∗
5 (one can see this by showing that the prime αOF of

OF dividing 5 splits in both F (δ) and F (ϵ), and δ, ϵ are invertible in O∗
5

since 1 + α and 4 + 2α have norm −4). Since this conjugation is integral

over E5 with determinant 1, and because similar hermitian forms have the

same unitary group, we have that ΓΣµ is isomorphic to the intersection of

the F -points of SU(h0) with SU(h0,O5).

Following [28, ğ2.10], the building for SU(h0, E5) has vertices the set of

additive norms ϕ on E3
5 so that

ν(h0(x, y)) ⩾ ϕ(x) + ϕ(y)

for all pairs x, y ∈ E3
5 , where ν is the extension to E5 of the normalized

valuation on F5 (i.e., with value group 1
2Z). There is an obvious action of

SU(h0) on the set of norms, and the norm stabilized by SU(h0,O5) is the

vertex v0 associated with the norm

ϕ0(x1, x2, x3) = inf¶ν(xj) : 1 ⩽ j ⩽ 3♢.
In particular, ΓΣµ stabilizes this vertex.

The matrix

g0 =





0 0 π

0 ζ4
5 0

π−1 0 0



 ∈ SU(h)

(where π is the conjugate of π for the Gal(E5/F5)-action) acts on the tree

by sending v0 to the vertex v1 associated with the norm

ϕ1(x1, x2, x3) = inf

{

ν(x1) − 1

2
, ν(x2), ν(x3) +

1

2

}

,

since ν(π) = 1
2 . It also Ąxes the intermediate vertex associated with

ψ(x1, x2, x3) = inf

{

ν(x1) − 1

4
, ν(x2), ν(x3) +

1

4

}

.

Then one checks by a direct matrix computation that the intersection of

g0ΓΣµ(p2
5)g−1

0 with ΓΣµ(p2
5) contains Γ(p4

5). Indeed, note that p4
5 = 5OE

and if

γ=





1 + 5c3 −(ζ2
5 + 2ζ5 + 1)π5c2 −(ζ3

5 + 2ζ2
5 + ζ5)π6c1

(ζ3
5 + ζ2

5 − 1)π3b3 1 + 5b2 −(ζ3
5 + 2ζ2

5 + 2ζ5 + 1)π5b1

(ζ3
5 + 2ζ2

5 + 2ζ5 + 1)π2a3 (ζ3
5 + 2ζ2

5 + ζ5)π3a2 1 + 5a1



,
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then γ ∈ ΓΣµ(p2
5) and

g0γg
−1
0 =





1 + 5a1 5a2 5a3

5b1 1 + 5b2 5b3

5c1 5c2 1 + 5c3



 ∈ ΓΣµ(p4
5).

From here, one applies the techniques developed in the previous examples

to prove Theorem 1.2.

Remark 3.15. — Analogous to our realization of the building for PO(q;Q2)

inside the building for PGL5(Q2) in Section 3.2, we can realize the building

for PU(h,E5) inside the building for PGL3(E5) by taking the vertex asso-

ciated with an additive norm ϕ to be the homothety class of the OE lattice

on which ϕ takes nonnegative values. In the above notation and recalling

that ν is normalized to have value group 1
2Z, this gives:

ϕ0 7→ [⟨e1, e2, e3⟩]
ϕ1 7→ [⟨πe1, e2, π

−1e3⟩]
ψ 7→ [⟨πe1, e2, e3⟩]

One can proceed as in Section 3.2 to compute the fundamental apartment

associated with the standard Q5-split torus and compute the valence of

each vertex of the tree.

Combining Theorem 1.2 and [15, Thm. E], one obtains a new proof of

the following (which was known by [26, Thm. 3] without knowing which

congruence tower contains the Ąbration).

Corollary 3.16. — The group ΓΣµ virtually algebraically fibers on a

congruence subgroup of level dividing 5.

Remark 3.17. — We note that nonuniform lattices in PU(n, 1) cannot be

virtually RFRS for n ⩾ 2. This is because their cusp subgroups are virtually

two-step nilpotent groups, but two-step nilpotent groups are not virtually

RFRS and being RFRS descends to subgroups. However, if Γ < PU(n, 1)

was a nonuniform arithmetic lattice contained in the congruence subgroup

of level p for which Γab contains no p-torsion, where p is a prime of residue

characteristic p, then the methods of this paper would produce a congruence

RFRS tower, which is impossible. In particular, we conclude that Γab must

have p-torsion.

One way to Ąnd this p-torsion is as follows. Since Γ is contained in a con-

gruence subgroup, away from some small exceptions the associated com-

plex hyperbolic manifold Bn/Γ admits a smooth toroidal compactification
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in the sense of [4]. One often sees that the cusp cross-sections of Bn/Γ

are nil-manifolds with p-torsion in their homology. For example, for Γ(p)

the center of any peripheral subgroup generates p-torsion in the homol-

ogy of the associated nil-manifold. Careful consideration of the standard

MayerŰVietoris sequence for the toroidal compactiĄcation (cf. [13, ğ4]) al-

lows one to then conclude that this p-torsion in the homology of the cusp

cross-section must in fact induce p-torsion in the homology of Bn/Γ.

In particular, peripheral subgroups of Γ can force Γab to have p-torsion

when Γ is contained in the congruence subgroup of level p. Thus the ob-

struction to Γ containing a RFRS tower is also an obstruction to Γab having

no p-torsion.

4. Conclusion

There are many natural questions that arise from the results and methods

of this paper.

We recall that a group Γ is said to algebraically fiber if it has a homo-

morphism onto Z with Ąnitely generated kernel. This is an algebraic gen-

eralization of the well-known Stallings criterion for a compact 3-manifold

to Ąber over S1.

Question 4.1. — Which commensurability classes of rank 1 arithmetic

lattices contain a congruence subgroup that is algebraically fibered?

This question was originally posed by Baker and Reid in personal com-

munication. A 4-dimensional lattice that virtually algebraically Ąbers was

given in [17, Rem. 5.3], though we do not know if the example Ąbers on a

congruence subgroup. An obvious obstruction to having a virtual algebraic

Ąbration on a congruence subgroup is if every congruence lattice in the

commensurability class has trivial 1st betti number. For example, Bergeron

and Clozel proved that the Ąrst betti number vanishes for all congruence

arithmetic lattices in PO(7, 1) deĄned via triality [8, Thm. 1.1]. For all

other arithmetic lattices in PO(n, 1), n ̸= 3, one can Ąnd a congruence sub-

group with nontrivial 1st betti number [7, Cor. 1.8] (the n = 3 case is open

Ű see [24] for a discussion of what is known). There are also classes of arith-

metic lattices in PU(n, 1) where each kind of behavior occurs. See [6] for

more on what is known for cohomological vanishing for congruence arith-

metic lattices in PU(n, 1) and [26] for more on algebraic Ąbrations in that

setting.
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Question 4.2. — Given a congruence arithmetic group, how often does

a principal congruence subgroup at a prime ideal p have no p-torsion in H1,

where p♣p? Is there some arithmetic significance to this phenomenon?

See Appendix A by Şengün for data indicating that vanishing of p-torsion

is quite frequent for congruence subgroups of Bianchi groups, but by no

means ubiquitous.

Question 4.3. — For each n > 1, is there a prime p so that the congru-

ence subgroup Γ(p) of level p in SO(n, 1;Z) has no p-torsion in its abelian-

ization?

If true, this would give a positive answer to Question 4.1 for arithmetic

hyperbolic groups of simplest type (i.e., those deĄned by a quadratic form),

since one can embed a congruence subgroup of these groups into SO(n, 1;Z)

by restriction of scalars.

Question 4.4. — When does Γ(pn), n ∈ N, form a RFRS sequence? Is

the sequence RFRS whenever it is at the first stage, i.e., Γ(p)
(1)
r ⩽ Γ(p2)?

This is roughly a version of another question posed by Baker and Reid

in private communication. In this paper, we only show that an interlac-

ing of this sequence is RFRS if H1(Γ(p);Z) has no p-torsion. Also recall

Remark 3.17.

Question 4.5. — When does this strategy work for nonarithmetic hy-

perbolic lattices? When is there a congruence subgroup that fibers, or a

congruence RFRS tower?

Note that any lattice in PO(n, 1), n ⩾ 3, or PU(n, 1), n ⩾ 2, is a sub-

group of an S-arithmetic group by local rigidity. Indeed, the lattice can be

embedded in GLn(K) for K a number Ąeld, and hence lies in GLn(O) for O
some Ąnitely generated subring of K. Therefore, the notion of congruence

subgroup makes sense when one avoids the primes in S, where S denotes

the primes that are inverted in O. Despite the fact that methods of this

paper cannot apply to a nonarithmetic lattice (since its commensurator is

discrete) and moreover the ambient S-arithmetic group containing it can-

not admit a RFRS tower (since it has trivial virtual betti number), this

does not preclude a nonarithmetic lattice from nevertheless admitting a

congruence RFRS tower.

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 329

Appendix A. Torsion in the homology of principal
congruence subgroups of Bianchi groups

A.1. Introduction

Let K be an imaginary quadratic Ąeld with ring of integers ZK . An ideal

a of ZK determines a Ąnite-index normal subgroup Γ(J) of the Bianchi

group SL2(ZK), called the principal congruence subgroup of level a. If p

is a prime idea of ZK over the rational prime p, the question of whether

the abelian group H1(Γ(p),Z) has p-torsion arises naturally in the current

work of Ian Agol and Matthew Stover. In this appendix, we try to gain

insight into this question by producing numerical data.

A.2. Methodology

Let K be one of the Ąve imaginary quadratic Ąelds for which ZK is

Euclidean, namely K = Q(
√

−d) with d = 1, 2, 3, 7, 11. Let p be a prime

ideal of ZK . Our starting point is the basic fact that H1(Γ(p),Z) ≃ Γ(p)ab

where Γ(p)ab is the abelianization of Γ(p). To compute the abelianization

of Γ(p), we will need a presentation. We will obtain this presentation from

a presentation of SL2(ZK) using the standard functions in the Finitely

Presented Groups package of the computer algebra system Magma.

Presentations for Bianchi groups go back to the late 19th century. We

prefer to use those given in [14, p. 37]. The presentations given there are

for the projective Bianchi groups PSL2(ZK). To obtain a presentation for

SL2(ZK), we simply introduce another generator j =
( −1 0

0 −1

)

, modify the

existing relations accordingly and add new relations to ensure that j is

central. We present here the result for the case K = Q(
√

−1):

SL2(ZK) = ⟨a, b, u, j ♣ (ab)3 = j, b2 = j, j2 = 1, [a, u] = 1,

(bubu−1)3 = 1, j= (bu2bu−1)2, j= (aubau−1b)2, [a, j] = 1, [u, j] = 1⟩.

We have the matrix realizations a = ( 1 1
0 1 ), b =

(

0 −1
1 0

)

and u =
(

1
√

−1
0 1



.

The principal congruence subgroup Γ(p) is the kernel of the surjective

homomorphism

SL2(ZK) −→ SL2(ZK/p),



a b

c d



7→


a b

c d



where x → x is the reduction map ZK → ZK/p. We implement this

homomorphism in Magma and ask Magma to compute its kernel. Given

the presentation of SL2(ZK), Magma then can compute a presentation for
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Γ(p) using ReidemeisterŰSchreier type algorithms. Finally we ask Magma

to compute the abelianization. For the readersŠ convenience, we make our

code public on our homepage.(1)

A.3. Results

As mentioned above, we compute with prime ideals. As H1(Γ(p),Z) ≃
H1(Γ(p),Z), for prime ideals with p ̸= p (here), we computed with only

one of them. We list the norm of the prime ideal p, the rank of H1(Γ(p),Z)

and the size of the torsion subgroup of H1(Γ(p),Z). The size is given in its

prime factorisation.

Norm(p) rank size of torsion

K = Q(
√

−1)

2 0 25

5 6 1

9 20 1

13 42 1

17 72 1

29 238 31

37 342 1

41 420 262

49 825 76

53 702 3104

61 930 21242962

73 1332 3375741974

K = Q(
√

−2)

2 3 22

3 4 1

11 60 1

17 144 29

19 180 1

25 403 57

41 881 2855174012740

43 924 288342674212744

49 1724 7133

59 1740 229035811116315859236574360

67 2244 220031352396627166647667276838011664791768

73 2738 2369329619737311151174208974220517215095972

(1) https://sites.google.com/site/mhaluksengun/research
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Norm(p) rank size of torsion

K = Q(
√

−3)

3 0 33

4 5 21

7 8 1

13 28 1

19 60 1

25 117 1

31 160 1

37 228 319

43 308 244

61 620 362

67 748 268567

79 1040 2804178

K = Q(
√

−7)

2 3 21

7 24 1

9 40 31

11 60 1

23 264 222

25 376 57

29 420 515

37 684 3191938

43 924 58741446742

53 1404 232037525935285754

67 2244 2105636711678968131681376646368

71 2520 2288514029725970897031170937701931972

K = Q(
√

−11)

3 4 1

4 15 22

5 12 1

11 81 1

23 264 2112

31 480 29653029323130

37 722 1738193637568336

47 1151 313854717462313746974619146160948

53 1404 232051601127191045352431526835285954

59 1740 23483408558711611581712019583158595819958233605279602034158

67 2244 213631321713331686766197683316861366230968580768678296625618966
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