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The perpendicular shape anisotropy spin-transfer-torque magnetic random access memory (PSA-STT-MRAM) demonstrates a
high thermal stability with the size reduced down to 20 nm, which gives a new way to improve the integrity for electronic devices.
This long and narrow device also poses challenges in the device fabrication process, such as sample tilt and etching defect. In this
work, we have used a micromagnetic simulation method to investigate the relationship between those defects and device performance.
The coercivity and switching current density of the PSA-MRAM have been calculated and analyzed with micromagnetic simulation,
3D Stoner–Wohlfarth model and spin-filter theory. Our results demonstrate how those shape defects affect the performance of the
PSA-MRAM and provide guidelines for practical realization of the nano scale PSA-MRAM.

Index Terms—Micromagnetic simulation, MRAM, Spintronics

I. INTRODUCTION

THE discovery of giant magnetoresistance effect (GMR)

has led to tremendous progress in magnetic memory

technologies [1, 2]. Magnetization based information devices

have remarkable advantages such as non-volatility, high write

speed (3–30 ns), high density and low consumption (a few

tens of fJ/write). Among these techniques, magnetic random

access memory (MRAM) has great potential for further ap-

plications, which is based on the magnetic tunnel junction

(MTJ). The MRAM device requires the MTJ structure to

have a larger tunnel magnetic resistance (TMR) [3, 4]. The

magnetization in the ferromagnetic layers in MTJ can be

modulated by external field and spin transfer torque [7, 8].

Traditional MRAM cannot be scaled down to 20 nm because

of the weak thermal stability [9–12]. Recently, the concept

of perpendicular shape anisotropy STT-MRAM (PSA-STT-

MRAM) has been proposed [13–15]. In PSA-STT-MRAM,

the thickness of the storage layer is drastically increased to

values comparable to its diameter. The perpendicular shape

anisotropy (PSA) storage layer in the MRAM device can

enhance the thermal stability of the device.

Extensive research has shown that material defects in the

MTJ structure can influence the performance of MRAM device

[16, 17]. For the PSA-MRAM, the shape defect for the storage

layer is expected to play an important role in the device.

Considering the large thickness and small diameter of the free

layer, the fabrication will face serious challenges. The free

layer may tilt an angle θ to it’s easy axis as shown in Fig. 1(b)

which is different from the ideal shape in Fig. 1(a). Apart from

that, during the fabrication process of MRAM, the ion beam

etching method may create etching defects in the device. In

order to solve the redeposition problem, which is depicted in

the Fig. 1(c), the wafers are usually tilted and rotated as shown
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in Fig. 1(d). The redeposition metallic particles on tunnel

barrier are removed by ion beam etching. Due to this special

etching method, a new problem might emerge. As shown

in Fig. 1(d), the sample might have a cone shape after the

ion beam etching process. For the traditional MRAM, the tilt

problem and the etching damage may be rather limited as most

of the damages are induced in the non-magnetic capping layer.

However, as the PSA-MRAM has a very thick free layer of

around 20 nm to 80 nm, all these issues related to fabrication

process are urgently needed to be resolved.

Fig. 1. The defect in PSA-MRAM is induced by etching process. (a) The
PSA-MRAM with perfect shape without shape defects. (b) The PSA-MRAM
with shape defect which is induce by the easy axis tilt an angle θ away
from the z direction. (c)The redeposition problem induced by vertical etching
method. (d) The tilt etching process of MRAM induces a shape defect on the
edge of MRAM dots.

In this letter, we report how these fabrication-related struc-

ture effects influence the coercivity and switching current

density of the free layer in the PSA-MRAM. The micro-

magnetic simulation and macro spin simulation are used to

demonstrate the effects from these defects. It is found that

the coercivity and switching current density of the PSA free

layer with/without defects can be affected by the tilt angle.

The results show that the energy barrier of the PSA free layer

can be influenced by the shape defects. The shape defect of the

PSA layer will induce a reduction of coercivity and switching

current density of the device.

II. MODEL AND SIMULATIONS

The micromagnetic simulations are performed using the

Mumax3 simulation package [19], which stands on the
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Landau-Lifshitz-Gilbert equation. Furthermore, in order to

decide the shape parameter of our simulation, a macrospin

model is used to calculate the thermal stability factor ∆. The

equation is shown as below:

∆T =
πD2

kBT
[
1

4
µ0M

2

s d(1−
3

1 + 4ρ/
√
π
) +KS +Kud)]

(1)

In this work the PSA-dot is assumed to be made of Permalloy.

The corresponding parameters are listed as below. Where

kB denote Boltzmann constant µ0 denotes Permeability, T

denotes temperature, and D denotes the diameter of free layer.

Also, d is the thickness of the free layer, ρ = d/D is the

aspect ratio of the free layer, Ms = 0.86 × 106 A/m denotes

the saturation magnetization, Ks = 1.5 × 10−6 H/m is the

interfacial magnetic anisotropy density and Ku is the magneto-

crystalline anisotropy constant, considering the Permalloy is

a soft magnetic material and the high interfacial magnetic

anisotropy, the Ku is set to 0 to simplify our calculation.

The temperature in equation (1) is 300 K. The micromagnetic

model is focus on studying the shape defect of the device,

which exclude the thermal effect.

Fig. 3(a) is the phase diagram of the result, calculated by

equation (1). With a relative small diameter of 10 nm, both

the ferromagnetic layers with the thicknesses of 25 nm and

60 nm achieve a strong perpendicular shape anisotropy (∆
around 70 and 280). In the discussion below, these two sets of

ferromagnetic layer parameters(until otherwise specified) are

utilized.

The precessional processes of magnetic moments is com-

monly explained by the Landau-Lifshitz-Gilbert-Slonczewski

(LLGS) equation which given as below[19]:

d~m

dt
= −

γHeff

1 + α2
~mp × ~m+

αγHeff

1 + α2
~mp × ( ~mp × ~m)

−
JQh̄

Msed

ǫ− αǫ∗

1 + α2
) ~mp × ( ~mp × ~m) +

JQh̄

Msed

ǫ− αǫ∗

1 + α2
) ~mp × ~m

(2)

Fig. 2. (a) the magnetic moments variation in the relaxation process. (b) the
free layer shows curling magnetic moments at the edge.

In this equation γ, Heff, e, h̄ and α denotes the gyromagnetic

ratio, effective field, electron charge, reduced Planck Constant

and Gilbert damping constant respectively, ~m is the unit vector

of the free layer magnetic moment, ~mp is the unit vector of

the pined layer magnetic moment, JQ is the current density.

ǫ and ǫ∗ are the spin-torque parameters. Obvious,when the

magnetization direction of the free layer and pinned layer

are parallel(the tilt angle θ = 0), the LLGS equation(2)

equals to zero. Exclude the thermal fluctuation, there lack a

initial angle θ to trigger the precessional processes. In the

PSA-MRAM, there is something different to the traditional

MRAM model, the demag filed will curling the edge magnetic

order of the magnetic free layer and triggered the precessional

processes, as shown in the Fig. 2(a) . In the PSA-MRAM the

perpendicular shape anisotropy in other words the demag filed

play a dominant role in the magnetization switching process.

III. RESULTS AND DISCUSSION

A. The relationship between tilt angle (θ) and the perfor-

mance of MRAM device

The relationship between tilt angle (θ) and the performance

of MRAM device is carefully studied in the first place. For the

coherent switching mode, angular dependence of coercivity is

given by equation(2) [6, 21].

Hc
n(θ) = −

2[Ksh(Lnw) +Ku]
√

1− β2 + β4

µ0M2
s (1 + β2)

Ms (3)

where β = tan(θ)1/3, and θ is the angle between the applied

field and long axis of the free layer; Lnw represents the length

of the nanowire, and Ksh(Lnw) denotes the shape anisotropy

constant.

Fig. 3. (a)Thermal stability phase diagram of MTJ device versus the thickness
of free layer d and diameter D, at room temperature (300K). The tilt angle
dependent (b) coercivity and (c) switching current density of PSA nano dot.
The tilt angle θ is changed from 0 degree to 14 degrees, The diameter and
the thickness of the nano dot are set as 10 nm and 25 nm respectively.

From the simulation results shown in Fig. 3(b), the coer-

civity of the free layer is found to be dependent on the tilt

angle θ. When θ = 0, the free layer has a large coercivity

around 5000 Oe, which is comparable with previous reports

[21, 22]. This relatively high coercivity might be attributed

to the large energy barrier (EB = ∆ × kBT ) induced by

perpendicular shape anisotropy. With θ increased from 0 to 10

degree, the coercivity sharply drops to a value around 2000

Oe. The simulation results show that the magnetization of the

PSA-MRAM is relatively hard to switch by the external field.

On the other hand, the results demonstrate that the tilt angle

has a strong effect on the coercivity of PSA-MRAM.
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The relationship between the tilt angle θ and switching

current density Jc has also been studied. The small tilt angle θ
in the MRAM free layer will also bring a significant impact on

the switching current density. Deduced from the equation(3)

we can the the analytical solution between the tilt angle(θ)

and switching current density Jc:

Jc(τ) ∝ Jc0[1 +
(ln π

2θTilt

)

( τ
τ0
)

] (4)

In this equation Jc0 is the intrinsic current density required

for current driven magnetization reversal in a MTJ. τ0 ∼ 1ns
is the inverse of the attempt frequency, and τ is the current

pulse width. Then, the diameter and the thickness of the nano

dot are assumed to be 10 nm and 25 nm, respectively. The

current pulse duration is fixed at 3 ns. The switching current

density is shown in Fig. 3(c). With θ = 0, the switching current

density is 4.0× 1012 A/m2, which is obvious larger than the

tradition MRAM device [15]. The relatively large switching

current density is also origin from the high energy barrier

between PSA-MRAM’s two magnetic state. However, with a

small tilt angle θ, the switching current density drops half

to 2.0 × 1012 A/m2, similar to the previous research results

[15]. The results show that the larger tilt angle of the system,

will reduces the switching current density. The micromagnetic

simulation results is in good agreement with the analytical

solution (calculated by the equation 4) which is given in Fig. 3.

Besides, the tilt angle θ will increase the speed of magnetic

switching in PSA layer. As shown in the Fig. 4(a), when tilt

angle equal to 0 degree, the magnetization switching in PSA

layer is completed at around 3.0 ns. As shown in the Fig. 4(b),

when the tilt angle increased to 4 degree, the time for the

magnetization switching in PSA layer is around 1.5 ns. As

shown in the Fig. 4(c), when increase the tilt angle once more

to 12 degree, the time for the magnetization switching will

drop to around 1.3 ns.

Fig. 4. Magnetization profile under spin-torque effect for four different tilt
angles. The pulse width and current density were fixed to 3 ns and 4.0 ×

10
12A/m2, respectively. The free layer thickness is 25 nm.

Indicate to illustrate this phenomenon more clearly, we

adapt a sequence of increasing current density and show the

Time to Magnetization figures. The results in Fig. 5 all approve

the conclusion that the tilt angle θ accelerates the switching

switching in PSA layer.

Fig. 5. A sequence of magnetization profile under spin-torque effect for four
different tilt angles. The free layer thickness is 25 nm.

B. The relationship between etching defects and the perfor-

mance of MRAM device

The exchange length in the sample with large thickness,

is shorter than the physical thickness, which is insufficient

for supporting a coherent switching mode. For samples with

small thickness, the magnetization switching approximately

coherent. As shown in Fig. 6(a), for the thicker sample, the

free layer can be seen as a nanowire and there will have

magnetic domain wall nucleation at the edge of the free layer

[23, 24]. As shown Fig. 6(b), for the thicker sample, the whole

switching process can be divided in to two steps: domain

nucleation and domain wall propagation.

Fig. 6. Two different switching modes for magnetic free layer with different
thicknesses. (a) the 25 nm thickness sample is switched by current in a
coherent mode (b) the 60 nm thickness sample is switched by current in
a transverse wall mode.

The effect of the etching defect in PSA-MRAM with

different thicknesses has been studied by the micromagnetic

and Stoner-Wohlfarth model simultaneously. Here we define

defect “level” as a parameter to describe the ratio between the

top area and bottom area of the free layer. The detailed shape

defect levels of the nano dot are defined as Level 0 to 3, which

are exhibited in the insets Fig. 7(a). Level 0 is a defect free

case, and the Level 1-3 represent different extents of etching

defect.

The relationship between the device coercivity and etching

defects is given in Fig. 7. Two groups of samples with different

thicknesses (25 nm and 60 nm) are simulated. The diameters

are fixed at 10 nm. Besides, various tilt angles of applied field

are considered in the calculation. The results show that the

device coercivity is decreased with the etching defect. As

shown in Fig. 7(a), the simulation of defect-free nano dot
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(Level 0) with a thickness of 25 nm is in good agreement

with the Stoner-Wohlfarth model of the coherent mode [21].

For the etching defect samples with Level 1 to Level 3, the

geometric symmetry of the nano dot is broken which reduce

the coercivity. As shown in Fig. 7(b), for the structures with 60

nm, the coercivity trend deviates from the value calculated by

the coherent switching mode for the defect-free case (Level 0).

This is due to the fact that the transverse wall switching mode

lowers down the energy barrier between the parallel magnetic

state to anti-parallel state.

The relationship between switching current density and

etching defect level is studied by micromagnetic method and

macrospin model at the remainder of this article. For the nano

dots with thickness of 25 nm as shown in Fig. 7(c), the etching

defect demonstrates a significance influence on the switching

current density. For the defect-free samples (Level 0), the

simulation result is consistent with the analytical solution [25–

27]. However, for the structures with etching defects(Level 1-3

samples) the switching current density is smaller than defect-

free nano dot (Level 0), which indicating a significant impact

on the device demagnetization field and energy barrier caused

by the etching defect in the nano dot shown in the Fig. 7(e).

For the 60 nm nano dot, the switching process is dominated

by the domain wall motion. Thus the defect-free samples

(Level 0) show a huge deviation from the analytical solution

which is deduced by the coherent switching mode in Fig. 7(d).

The etching defect in the 60 nm dot does not bring significant

effect to switching current density. This is probably due to

the magnetic switching process in the 60 nm dots is totally

different from the 25 nm samples. The current induce domain

nucleation at the interface of the free layer is shown in

Fig. 6(b). The etching defect at interface is much smaller than

the defect in free layer. The gradient shape defects of the

free layer gives a weak influence on the domain nucleation

process. As shown in Fig. 7(d), the etching defect does not

have an obvious effect to the nucleation current density. It

is necessary to point out that the 60 nm structure cannot be

switched completely by a pure interface STT effect. This is

due to the fact that the Permalloy has a relative short exchange

length (Lex = 5.35 nm), and thus the interface STT effect

cannot take a dominant role in the long range magnetic order.

The motion of domain wall is induced by the Zhang-Li torque,

which drive the domain motion in the nanodot until saturation.

IV. CONCLUSION

In conclusion, we have found that IBE fabrication process

induced the etching defect and pillar tilt and patterning process

strongly influence the performance of the PSA-MRAM. The

micromagnetic simulation, 3D Stoner–Wohlfarth model and

spin-filter theory show that the tilt angle reduces the coercivity

of the free layer which affects the stability of the information

storage in PSA-MRAM. We have further demonstrated that

the magnetization switching mode in free layer depends on

its thickness. The different switching modes influence the

performance of PSA-MRAM device such as the magnetic

domain wall nucleation and the shape anisotropy gradient.

Our results provide useful insight into the designing and

Fig. 7. Angular dependence of coercivity for (a) 25 nm and (b) 60 nm nano
dots. The red solid line is the analytical solution of coherent switching mode
which is calculated by 3D Stoner–Wohlfarth model. (c) Angular dependence
of switching current density for 25 nm nano dots. (d) Angular dependence
of nucleation current density for 60 nm nano dots. The red solid line is the
analytical solution of coherent switching mode deduced by equations 3. (e)
The total energy evolution map in the magnetic moment switching process.
(f) Simulation result of the switching time with respect to the level of etching
defect for 25 nm sample. The lower extent of the etching defect the faster the
switching process.

development of the PSA-MRAM devices.

The data that support the findings of this study are available

from the corresponding authors upon reasonable request.
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