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Verifying Graph Programs with

Monadic Second-Order Logic

Gia S. Wulandari⋆1,2 and Detlef Plump1

1 Department of Computer Science, University of York, UK
2 School of Computing, Telkom University, Indonesia

Abstract. To verify graph programs in the language GP2, we present a
monadic second-order logic with counting and a Hoare-style proof calcu-
lus. The logic has quantifiers for GP2’s attributes and for sets of nodes
or edges. This allows to specify non-local graph properties such as con-
nectedness, k-colourability, etc. We show how to construct a strongest
liberal postcondition for a given graph transformation rule and a precon-
dition. The proof rules establish the total correctness of graph programs
and are shown to be sound. They allow to verify more programs than
is possible with previous approaches. In particular, many programs with
nested loops are covered by the calculus.

1 Introduction

GP2 is a programming language based on graph transformation rules which
aims to facilitate formal reasoning. Graphs and rules in GP2 can be attributed
with heterogeneous lists of integers and character strings. The language has a
simple formal semantics and is computationally complete [15].

The verification of graph programs with various Hoare-style calculi is studied
in [17,18,16,19] based on so-called E-conditions or M-conditions as assertions. E-
conditions are an extension of nested graph conditions [7,13] with attributes (list
expressions). They can express first-order properties of GP2 graphs, while M-
condition can express monadic second-order properties (without counting) of
non-attributed GP2 graphs. In both cases, verification is restricted to the class
of graph programs whose loop bodies and branching guards are rule-set calls.

In this paper, we introduce a monadic second-order logic (with counting)
for GP2. We define the formulas based on a standard logic for graphs enriched
with GP2 features such as list attributes, indegree and outdegree functions for
nodes, etc. We prefer to use standard logic because we believe it is easier to
comprehend by programmers that are not familiar with graph morphisms and
commuting diagrams. Another advantage of a standard logic is the potential for
using theorem proving environments such as Isabelle [10,11], Coq [12], or Z3 [1].

In [21] we show how to prove programs partially correct by using closed first-
order formulas as assertions. The class of graph programs that can be verified
with the calculi of [21] consists of the so-called control programs. These programs
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may contain certain nested loops and branching commands with arbitrary loop-
free programs as guards. Hence, the class of programs that can be handled is
considerably larger than the class of programs verifiable with [16].

Here, we continue that work and show how to prove total correctness of
control programs in the sense that programs are both partially correct and ter-
minating. Also, to generalise the program properties that can be verified, we
use closed monadic second-order formulas as assertions. This allows to prove
non-local properties such as connectedness or k-colourability. Our main techni-
cal result is the construction of a strongest liberal postcondition from a given
precondition and a GP2 transformation rule. This operation serves as the axiom
in the proof calculus of Section 5.

2 The Graph Programming Language GP2

GP2 programs transform input graphs into output graphs, where graphs are
directed and may contain parallel edges and loops. Formally, a graph G is a sys-
tem 〈VG, EG, sG, tG, lG,mG, pG〉 comprising two finite sets of vertices and edges,
source and target functions, a partial node labelling function, an edge labelling
function, and a partial root function. Nodes v for which lG(v) or pG(v) is unde-
fined may only exist in the interface of GP2 rules, but not in host graphs. Nodes
and edges are labelled with lists consisting of integers and character strings.
This includes the special case of items labelled with the empty list which may
be considered as “unlabelled”.

Main = link!

link(a, b, c, d, e : list)

a
1

b
2

c
3

d e
⇒

a
1

b
2

c
3

d e

where not edge(1, 3)

Fig. 1: Graph program transitive-closure [14]

The principal programming construct in GP2 are conditional graph transfor-
mation rules labelled with expressions. For example, the rule link in Fig. 1 has
five formal parameters of type list, a left-hand graph and a right-hand graph
which are specified graphically, and a textual condition starting with the key-
word where. Node identifiers are written below the nodes, and all other text in
the graphs consists of labels. Parameters are typed as list, atom, int, string,
or char, where atom stands for the union of integers and strings, and lists are
arbitrary sequences of atoms.

Besides carrying expressions, nodes and edges can be marked red, green or
blue. Also, nodes can be marked grey and edges can be dashed. An example with
red and grey nodes and a dashed edge can be seen in Fig. 5 of Section 6.

Rules are applied to host graphs in a two-stage process. First a rule is in-
stantiated by replacing all variables with values of the same type, evaluating
all expressions in the right-hand side of the rule, and checking the application
condition. This yields a standard rule in the so-called double-pushout approach
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with relabelling [8]. Next, the instantiated rule is applied to the host graph by
constructing two suitable natural pushouts [2].

A program consists of declarations of conditional rules and (non-recursive)
procedures, including a distinct procedure named Main. Next we briefly describe
GP2’s major control constructs.

A rule-set call {r1, . . . , rn} non-deterministically applies one of the applicable
rules to the host graph. The call fails if none of the rules is applicable to the
host graph.

The sequential composition of programs P and Q is written P ;Q.
The command if C then P else Q is executed on a host graph G by first

executing C on a copy of G. If this results in a graph, P is executed on the
original graph G; otherwise, if C fails, Q is executed on G. The command try

C then P else Q has a similar effect, except that P is executed on the result
of C’s execution.

The loop command P ! executes the body P repeatedly until it fails. When
this is the case, P ! terminates with the graph on which the body was entered
for the last time. The break command inside a loop terminates that loop and
transfers control to the command following the loop.

In general, the execution of a program P on a host graph G may result
in different graphs, fail, or diverge. This is formally defined by the operational
semantics of GP2 which assigns to P and G the set JP KG of all possible execution
outcomes. See, for example, [15].

3 Monadic Second-Order Formulas for Graph Programs

We define MSO formulas which specify classes of GP2 host graphs. The abstract
syntax of formulas is shown in Fig. 2, where type names, arithmetic operators,
and special operators such as edge, root, indeg, outdeg, etc. are inherited from
the GP2 syntax. The category Char is the set of all printable ASCII characters
except ‘”’, and Digit is the set {0, . . . , 9}. All variables are typed, with associated
domains as in Table 1.

Table 1: Variable types and their domain over a graph G
type Node Edge SetNode SetEdge List Atom Int String Char

domain VG EG 2VG 2EG (Z ∪ Char∗)∗ Z ∪ Char∗ Z Char∗ Char

The types for labels form a subtype hierarchy, given by list ⊃ atom ⊃
int, string and string ⊃ char, where atoms are considered as lists of length
one and characters are considered as strings of length one. Hence list variables
may have integer, string, or character values. Such restrictions can be enforced
by subtype predicates. For example, the list variable x can be constrained to
hold an integer value by the predicate int(x).

For brevity, we write c ⇒ d for ¬c ∨ d, c ⇔ d for (c ⇒ d) ∧ (d ⇒ c),
∀Vx(c) for ¬∃vx(¬c), and similarly with ∀ex(c), ∀lx(c), ∀VX(c), and ∀EX(c). We
also sometimes write ∃vx1, . . . , xn(c) for ∃vx1(∃vx2(...∃vxn(c) . . .)) (also for other
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Formula ::= true | false | Elem | Cond | Equal
| Formula (‘∧’ | ‘∨’) Formula | ‘¬’Formula | ‘(’Formula‘)’
| ‘∃v’ NodeVar ‘(’Formula‘)’ | ‘∃e’ EdgeVar ‘(’Formula‘)’
| ‘∃l’ (ListVar) ‘(’Formula‘)’
| ‘∃V’ SetNodeVar ‘(’Formula‘)’ | ‘∃E’ SetEdgeVar ‘(’Formula‘)’

Number ::= Digit {Digit}
Elem ::= Node (‘∈’ | ‘/∈’) SetNodeVar | EdgeVar (‘∈’ | ‘/∈’) SetEdgeVar
Cond ::= (int | char | string | atom) ‘(’Var‘)’

| Lst (‘=’ | ‘ 6=’) Lst
| Int (‘>’ | ‘>=’ | ‘<’ | ‘<=’) Int
| edge ‘(’ Node ‘,’ Node [‘,’ Label] [‘,’ EMark] ‘)’
| path ‘(’ Node ‘,’ Node [‘,’ SetEdgeVar] ‘)’
| root ‘(’ Node ‘)’

Var ::= ListVar | AtomVar | IntVar | StringVar | CharVar
Lst ::= empty | Atm | Lst ‘:’ Lst | ListVar | lV ‘(’Node‘)’ | lE ‘(’EdgeVar‘)’
Atm ::= Int | String | AtomVar
Int ::= [‘-’] Number | ‘(’Int‘)’ | IntVar

| Int (‘+’ | ‘-’ | ‘*’ | ‘/’) Int
| (indeg | outdeg) ‘(’Node‘)’
| length ‘(’AtomVar | StringVar | ListVar‘)’
| card‘(’(SetNodeVar | SetEdgeVar)‘)’

String ::= ‘ “ ’ Char ‘ ” ’ | CharVar | StringVar | String ‘.’ String
Node ::= NodeVar | (s | t) ‘(’ EdgeVar‘)’
EMark ::= none | red | green | blue | dashed | any | mE‘(

′EdgeVar‘)′

VMark ::= none | red | blue | green | grey | any | mV‘(
′Node‘)

Equal ::= Node (’=’ | ‘ 6=’) Node | EdgeVar (’=’ | ‘ 6=’) EdgeVar
| Lst (’=’ | ‘ 6=’) Lst | VMark (’=’ | ‘ 6=’) VMark
| EMark (’=’ | ‘ 6=’) EMark

Fig. 2: Abstract syntax of monadic second-order formulas

quantifiers). Terms in MSO formulas are defined as usual and may contain func-
tion symbols, constants and variables.

Example 1 (Monadic second-order formulas).
1) ∃VX(∀vx(x ∈ X⇒ mV(x) = none) ∧ card(X) ≥ 2) expresses “there exists at least
two unmarked nodes”.
2) ∃VX(∀Vx(mV(x) = grey⇔ x ∈ X) ∧ ∃ln(card(X) = 2 ∗ n)) expresses “the num-
ber of grey nodes is even”.

Note that the first-order formula ∃vx, y(mV(x) = none ∧mV(y) = none ∧ x 6= y)
is equivalent to the first formula. But it is unlikely that the second formula can
be expressed in the first-order fragment of our MSO logic because pure first-
order logic on graphs (without built-in functions and relations) cannot specify
that the number of nodes is even [6].

The truth value of an MSO formula over a graph is defined via assignments,
which are functions mapping free variables to their domains.

Definition 1 (Assignment). Consider an MSO formula c. Let A,B,C,D,E
be the set of free node, edge, list, node-set, and edge-set variables in c, respec-
tively. Given a free variable x, we write dom(x) for the domain of x as defined by
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Table 1. A formula assignment for c over a host graph G is a pair α = 〈αG, αL〉
where αG = 〈αV : A → VG, αE : B → EG, α2V : D → 2VG , α2E : E → 2EG)〉 and
αL : C → L, such that for each free variable x, α(x) ∈ dom(x). We denote by cα

the (first-order) formula resulting from c after replacing each term y with yα,
where yα is defined inductively as follows:

1. If y is a free variable, yα = α(y);
2. If y is a constant, yα = y;
3. If y = length(x) for some list variable x, yα equals to the number of characters

in xα if x is a string variable, 1 if x is an integer variable, or the number of
atoms in xα if x is a list variable;

4. If y = card(X) for some node-set or edge-set variable X, yα is the number of
elements in Xα;

5. If y is the functions s(x), t(x), lE(x),mE(x), lV(x),mV(x), indeg(x), or outdeg(x),
yα is sG(x

α), tG(x
α), lEG (xα),mE

G(xα), lVG (xα),mV
G (xα), indegree of xα in G

, or outdegree of xα in G, respectively;
6. If y = x1 ⊕ x2 for ⊕ ∈ {+,−, ∗, /} and integers x1

α, x2
α, yα = x1 ⊕Z x2;

7. If y = x1.x2 for some terms x1
α, x2

α, yα is string concatenation x1 and x2;
8. If y = x1 : x2 for some lists x1

α, x2
α, yα is list concatenation x1 and x2 ⊓⊔

A graph G satisfies a formula c, denoted by G |= c, if there exists an assign-
ment α for c over G such that cα is true. Table 2 shows how the truth value of
cα is determined.

Table 2: Truth value of cα in graph G
cα true iff

true true

false false

int(x) x ∈ Z

char(x) x ∈ Char

string(x) x ∈ Char∗

atom(x) x ∈ Z ∪ Char∗

root(x) pG(x) = 1

t1 ⊗ t2 t1 ⊗Z t2

X⊘ Y X⊘Z Y

x ∈ X x ∈Z X

cα true iff

edge(x, y, l,m) sG(e) = x and tG(e) = y for some e ∈ EG

where lEG(e) = l and mE
G(e) = m

path(x, y,E) for some e1, . . . , en ∈ EG − E,
sG(e1) = a, sG(en) = b,tG(ei) = sG(ei+1)
for every i = 1, . . . , n− 1

t1 ⊖ t2 if t1 (or t2) is any:
t2 (or t1) ⊖Bblue, red, green, gray, or dashed;
otherwise:
t1 ⊖B t2

cα true iff

¬b b is false in G

b1 ∨ b2 b1 is true in G or b2 is true in G

b1 ∧ b2 both b1 and b2 are true in G

∃vx(b) b[x 7→v] is true in G for some v ∈ VG

∃ex(b) b[x 7→e] is true in G for some e ∈ EG

∃lx(b) b[x 7→l] is true in G for some l ∈ L

∃VX(b) b[X 7→V] is true in G for some V ∈ 2VG

∃EX(b) b[X 7→E] is true in G for some E ∈ 2EG

In the table, ⊗ ∈ {>,>=, <,<=}, ⊖ ∈ {=, 6=}, ⊘ ∈ {=, 6=,⊂,⊆}, ⊗Z is the
integer operation represented by ⊗, and ⊖B (or ⊘B) is the Boolean operation
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represented by ⊖ (or ⊘). Also, given a Boolean expression b, a (set) variable x,
and a constant i, we denote by b[x 7→i] the expression obtained from b by changing
every occurrence of x to i.

4 Constructing a Strongest Liberal Postcondition

In this section, we present a construction that can be used to obtain a strongest
liberal postcondition from a given precondition and a rule schema. Here, we limit
the precondition to closed MSO formulas.

Definition 2 (Strongest liberal postcondition over a conditional rule
schema). An assertion d is a liberal postcondition w.r.t. a conditional rule
schema r and a precondition c, if for all host graphs G and H, G � c and G⇒r

H implies H � d. A strongest liberal postcondition w.r.t. c and r, denoted by
SLP(c, r), is a liberal postcondition w.r.t. c and r that implies every liberal
postcondition w.r.t. c and r. ⊓⊔

In [21], we show how to construct a strongest liberal postcondition over FO
formulas. Here, we use the same approach in the construction, that is, by obtain-
ing a left-application condition, which then be used to obtain a right-application
condition, so that finally we can obtain a strongest liberal postcondition.

copy(a : list)

a

1

⇒ a a

Fig. 3: GP2 conditional rule schema copy

As a running example, let us consider the rule schema copy of Fig. 3 and the
MSO formula e expressing “the number of grey nodes is even”:
e ≡ ∃VX(¬∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X)) ∧ ∃ln(card(X) = 2 ∗ n)).

Note that the interface of the rule copy is the empty graph. We intentionally
do not preserve the node 1 and have two new nodes instead to see the effect
of both removal and addition of an element in the construction of a strongest
liberal postcondition.

Remark 1. In the following subsections we explain the transformations involved
in the construction of a strongest liberal postcondition. For this purpose, we con-
sider a generalised form of MSO formulas called conditions, which may contain
node and edge constants. Also, we consider a generalised form of rule schemata
which have both a left and a right application condition, where the conditions
can be more expressive than the application conditions of GP2 rule schemata.

4.1 From Precondition to Left-Application Condition

We start with the transformation of a precondition to a left-application condition
with respect to a conditional rule schema r = 〈L← K → R,Γ 〉. Intuitively, the
transformation is done by:
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1. Expressing the dangling condition as a condition over L, denoted by Dang(r).
2. Finding all possibilities of variables in c representing nodes/edges in a match

of L and of forming a disjunction from all possibilities, denoted by Split(c, r).
3. Evaluating terms and Boolean expression we can evaluate in Split(c, r),

Dang(r), and Γ with respect to the left-hand graph of the given rule, then
form a conjunction from the result of evaluation, and simplify the conjunc-
tion.

4.1.1 Condition Dang
The dangling condition must be satisfied by an injective morphism g if G⇒r,g H
for some rule schema r = 〈L← K → R〉 and host graphs G,H. A graph G with
an injective morphism g : L → G satisfies the dangling condition if every node
v ∈ g(L−K) is not incident to any edge outside g(L). That is, all edges incident
to a deleted node must be in g(L). This means that the indegree and outdegree
of each deleted node g−1(v) ∈ L−K are the same as the indegree and outdegree
of v in G.

Definition 3 (Condition Dang). Consider a rule schema r = 〈L← K → R〉
where {v1, · · · , vn} is the set of nodes in L−K. Let indegL(v) and outdegL(v)
denote the indegree and outdegree of a node v in L. The condition Dang(r) is
defined as follows:

1. if VL − VK = ∅ then Dang(r) = true

2. if VL − VK 6= ∅ then
Dang(r) =

∧n

i=1
indeg(vi) = indegL(vi) ∧ outdeg(vi) = outdegL(vi) ⊓⊔

Example 2.
For the rule r = copy (see Fig. 3): Dang(r)= indeg(1) = 0 ∧ outdeg(1) = 0

4.1.2 Transformation Split
A node (or edge) variable x in c can represent any node (or edge) in an input
graph, in the sense that we can substitute any node (or edge) in G to check
the truth value of c in G (see point 5 and 6 of Definition 5). Also, a node (or
edge) set variable X in c can represent any set of nodes (or edges) in the input
graph, where each node (or edge) in the image of a match may or may not be
an element of the set (see point 8 and 9 of Definition 5).

To express that a set of nodes/edges in L is a subset of a set of nodes/edges
represented by a set variable, we define subset formulas.

Definition 4 (Subset Formula). Given a set of nodes N = {v1, . . . , vn},
a subset formula for N with respect to a node set variable X has the form
c1 ∧ c2 ∧ . . .∧ cn where for i = 1, . . . , n, ci = vi ∈ X or vi /∈ X. The formula true

is the only subset formula for the empty set with respect to any set variable. �

Definition 5 (Transformation Split). Let us consider a rule schema r = 〈L←
K → R,Γ 〉, where VL = {v1, . . . , vn} and EL = {e1, . . . , em}. Let {V1, . . . , V2n} be the
power set of VL, and d1, . . . , d2n be subset formulas of VL w.r.t. X where for every
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i = 1, . . . , 2n, di represents Vi. Similarly, let {E1, . . . , E2m} be the power set of EL,
and a1, . . . , a2m be subset formulas of EL w.r.t. X where for every i = 1, . . . , 2m, ai

represents Ei.
Let c be a condition over L sharing no variables with r (note that it is always

possible to replace the label variables in c with new variables that are distinct from
variables in r). We define the condition Split(c, r) over L inductively as follows, where
c1, c2 are conditions over L:

1) If c is either true, false, a predicate int(t), char(t), string(t), atom(t), root(t) for
some term t, in the form t1 ⊖ t2 for ⊖ ∈ {= . 6= . <,≤, >,≥} and some
terms t1, t2, or in the form x ∈ X or x /∈ X,

Split(c, r) = c
2) Split(c1 ∨ c2, r) = Split(c1, r) ∨ Split(c2, r),
3) Split(c1 ∧ c2, r) = Split(c1, r) ∧ Split(c2, r),
4) Split(¬c1, r) = ¬Split(c1, r),

5) Split(∃vx(c1), r) = (
∨n

i=1
Split(c

[x 7→vi]
1 , r)) ∨ ∃Vx(

∧n

i=1
x 6=vi ∧ Split(c1, r),

6) Split(∃ex(c1), r) = (
∨m

i=1
Split(c

[x 7→ei]
1 , r)) ∨ ∃ex(

∧m

i=1
x 6=ei ∧ inc(c1, r, x)),

where

inc(c1, r, x) =
∨n

i=1
(
∨n

j=1
s(x) = vi ∧ t(x) = vj ∧ Split(c

[s(x) 7→vi,t(x) 7→vj]

1 , r))

∨ (s(x) = vi ∧
∧n

j=1
t(x) 6= vj ∧ Split(c

[s(x) 7→vi]
1 , r))

∨ (
∧n

j=1
s(x) 6= vj ∧ t(x) = vi ∧ Split(c

[t(x) 7→vi]
1 , r))

∨ (
∧n

i=1
s(x) 6= vi ∧

∧n

j=1
t(x) 6= vj ∧ Split(c1, r))

7) Split(∃lx(c1), r) = ∃lx(Split(c1, r))

8) Split(∃VX(c1), r) = ∃VX(
∧2n

i=1 di ⇒ Split(c1, r))

9) Split(∃EX(c1), r) = ∃EX(
∧2m

i=1 ai ⇒ Split(c1, r))

where c[a 7→b] for a variable or function a and constant b represents the condition c after

the replacement of all occurrence of a with b. ⊓⊔

Intuitively, we only need to consider substituting nodes in L for each term
in c representing a node (a node variable or a source or target function), and
similarly, edges in L for all edge variables in c. In addition, we need to consider
all possible ways in which nodes/edges in L are elements of a set in c.

Example 3.
Consider again the precondition e from our running example:
∃VX(¬∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X)) ∧ ∃ln(card(X) = 2 ∗ n))

has the form of ∃VX(c1). From point 8 and 3 of Definition 5, for
d = ∃vx((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X)), we have
Split(e, r)= ∃VX((1 ∈ X⇒ Split(¬d, r) ∧ Split(∃ln(card(X) = 2 ∗ n), r))

∧ (1 /∈ X⇒ Split(¬d, r) ∧ Split(∃ln(card(X) = 2 ∗ n), r))).
We know that Split(∃ln(card(X) = 2 ∗ n), r) is equal to ∃ln(card(X) = 2 ∗ n) (see
point 7 of Definition 5), while Split(¬d, r) = ¬Split(d, r) (see point 4 of Defini-
tion 5). Then from point 5 of Definition 5, we have
Split(d, r) = (mV(1) = grey ∧ 1 /∈ X) ∨ (mV(1) 6= grey ∧ 1 ∈ X)

∨ ∃vx(x 6= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))
so that
Split(e, r) = ∃VX((1 ∈ X⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n))

∧ (1 /∈ X⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n)))
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4.1.3 Transformation Val
The condition resulting from transformation Split, the condition Dang, and the
rule schema condition Γ may contain node/edge identifiers of the given left-hand
graph. To simplify the conditions, we can check if there is a disjuntion with a true
disjunc or a conjunction with a false conjunct so that we can ruled out because
of its value in the left-hand graph. For a simple example, a conjunct condition
mV(1) = grey can be replaced with false if node 1 in the given left-hand graph is
not grey.

Let us consider a rule schema r = 〈L← K → R,Γ 〉, a condition c over L, a
host graph G, and a premorphism g : L → G. Let c share no variables with L.
To simplify c w.r.t. L, we apply the transformation Val(c, r) as follows:

1. Obtain c′ from c by replacing terms involving s, t, lV, lE,mV,mE, indeg and
outdeg, that do not have node/edge variables as arguments, with their values
in L. In addition, we also replace integer, string, and list operations with their
values if their arguments are only constants.
Note that the values of indeg and outdeg depend on the host graph, while here
we evaluate them in the left-hand graph. Hence, we use the terms incon(v)
and outcon(v) as constants representing the indegree resp. outdegree of g(v)
minus indegree resp. outdegree of v in L.

2. Obtain c′′ from c′ by evaluating Boolean operations =, 6=,≤,≥, root, if their
arguments only consists of constants, to their values in L.

3. Consider any implication of the form a ⇒ d for some subset formula a and
condition d to a⇒ dT . dT is obtained from d by changing every subcondition
of the form i ∈ X for i ∈ VL, i ∈ EL and set variable X to true if i ∈ X is
implied by a or false otherwise.

4. Simplify c′′′ by simplifying conjunct disjunct involving true or false. Also,
change the subconditions of the forms ¬ true,¬(¬ a), ¬(a ∨ b), ¬(a ∧ b), and
a⇒ false for some conditions a, b to false, a,¬a ∧ ¬b,¬a ∨ ¬b,¬a resp. ⊓⊔

The formal definition of Val(c, r) is rather long [22] because the expressions
we have in a condition may be nested. Hence, we do not present it in this paper.

Example 4. Let f = Split(e, r) from Example 3. That is,
f = ∃VX((1 ∈ X⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n))

∧ (1 /∈ X⇒ ¬Split(d, r) ∧ ∃ln(card(X) = 2∗n)))
where Split(d, r) = (mV(1) = grey ∧ 1 /∈ X) ∨ (mV(1) 6= grey ∧ 1 ∈ X)

∨ ∃vx(x 6= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))

Since node 1 in the left-hand graph of r is unmarked, then we can replace
mV(1) = grey with false, and mV(1) 6= grey with true.
We also replace 1 ∈ X and 1 /∈ X with true or false, based on the premise in the
conjunct of f . That is, replace 1 ∈ X and 1 /∈ X with true and false (resp.) for
the first conjunct of f , and with false and true (resp.) for the second conjunct.
Hence, we obtain the following condition
∃VX((1 ∈ X⇒ ¬((false ∧ false) ∨ (true ∧ true) ∨ b) ∧ ∃ln(card(X) = 2∗n))
∧ (1 /∈ X⇒ ¬((false ∧ true) ∨ (true ∧ false) ∨ b) ∧ ∃ln(card(X) = 2∗n)))

where b = ∃vx(x 6= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))).
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Finally, we simplify ¬((false ∧ false) ∨ (true ∧ true) ∨ b) ∧ ∃ln(card(X) = 2∗n) to
false. Also, ¬((false ∧ true) ∨ (true ∧ false) ∨ b) to ¬b. Hence, we finally obtain
Val(f, r)= ∃VX(1 /∈ X⇒ ¬b ∧ ∃ln(card(X) = 2∗n))

4.1.4 Transformation Lift
Finally, we define the transformation Lift, which takes a precondition and a rule
schema as an input and gives a left-application condition as an output.

Definition 6 (Transformation Lift). Let r = 〈L ← K →, Γ 〉 be a rule
schema, c be a precondition, and Lift(c, r) is a left application condition w.r.t. c
and r. Then, Lift(c, r) = Val(Split(c ∧ Γ, r) ∧Dang(r), r).

Example 5.
For the rule schema r = copy, Γ = true and Dang(r)= indeg(1) = 0 ∧ outdeg(1) = 0

such that Val(Dang(r), r) = true and Split(e ∧ Γ, r) =Split(e, r). Hence,
Lift(e, r∨) = Val(Split(e, r), r).

In [22], we show that by using the described construction, we can obtain a
left-application condition that is satisfied by every possible match of the given
rule schema.

Let us consider the transformation Split. From point 8 and 9 of Definition 5,
we know that Split may gives us conjunction of implications in specific form (i.e.
implications with subset formula as premise), and such form will still be exist
in the resulting condition of the transformation Lift. From now on, we say that
the obtained application condition (from Lift) is in ‘lifted form’.

4.2 From Left- to Right-Application Condition

To obtain a right-application condition from a left-application condition, we need
to consider what properties could be different in the initial and the result graphs.
Recall that in constructing a left-application condition, we evaluate all functions
with a node/edge constant argument and change them with constant.

4.2.1 Transformation Adj

Due to the deletion of nodes/edges by a rule schema, properties that hold in
the initial graph may not hold anymore in the output graph. Hence, we need to
adjust the obtained left application condition so that we can have a condition
that can be satisfied by a comatch.

For example, the Boolean value for x = i for any node/edge variable x and
node/edge constant i that gets deleted must be false in the resulting graph.
Analogously, x 6= i is always true. Also, all variables in the left-application con-
dition should not represent any new nodes and edges in the right-hand side. In
addition, we also need to consider the case where we have set variables.

In a lifted form, we may have subformulas of the form ∃VX(
∧2n

i=1 di ⇒
Split(c1, r)) (or similar for edges), where each di represent the condition where
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a subset of VL is a subset of the set represented by X. A node in VL may or
may not exist in the output graph. Hence, we need to do adjustment by use a
property in standard logic.

Definition 7 (Transformation Adj). Given a rule schema r = 〈L ← K →
R,Γ 〉 where VL = {v1, . . . , vn}, EL = {e1, . . . , em}, VK = {u1, . . . , uk}, VR =
{w1, . . . , wp}, and ER = {z1, . . . , zq}, where vi 6= wj (or ei 6= zj) for all vi and wj

(or ei and xj) not in K. Let {V1, . . . , V2n} be the power set of VL, and d1, . . . , d2n

be subset formulas of VL w.r.t. X where for every i = 1, . . . , 2n, di represents
Vi. Similarly, let {U1, . . . , U2k} be the power set of VK , and b1, . . . , b2k be subset
formulas of VK w.r.t. X where for every i = 1, . . . , 2k, bi represents Ui. Also, let
{E1, . . . , E2m} be the power set of EL, and a1, . . . , a2m be subset formulas of EL

w.r.t. X where for every i = 1, . . . , 2m, ai represents Ei.
For a condition c over L in lifted form, the adjusted condition of c w.r.t. r is

defined inductively as below, where c1, . . . , cs are conditions over L, for s ≥ 2m

and s ≥ 2n:

1. If c is the formulas true or false,
Adj(c, r) = c

2. If c is predicate int(x), char(x), string(x), or atom(x) for some list variable x,
Adj(c, r) = c

3. If c is a Boolean operation f1 = f2 or f1 6= f1 where each f1 and f2 are terms
representing a list and neither contains free node/edge variable,
Adj(c, r) = c

4. If c is a Boolean operation f1 = f2 or f1 6= f1 where each f1 and f2 are terms
representing a node (or edge) and neither contains free node/edge variable or
node/edge constant,
Adj(c, r) = c

5. If c is a Boolean operation f1 ⋄ f2 for ⋄ ∈ {=, 6=, <,≤, >,≥} and some terms f1
and f2 representing integers and neither contains free node/edge variable or any
set variables, Adj(c, r) =










false , if ⊖ ∈ {=} and x1 ∈ VL − VK ∪ EL or x2 ∈ VL − VK ∪ EL,

true , if ⊖ ∈ {6=} and x1 ∈ VL − VK ∪ EL or x2 ∈ VL − VK ∪ EL,

c′ , otherwise
6. If c is a Boolean operation x ∈ X for a bounded set variable X and bounded edge

variable x, or a bounded set variable X and a bounded node variable x, x = s(y)
or x = t(y) for some bounded edge variable y,
Adj(c, r) = c

7. If c = ∃lx(c1 for some condition c1 over L in lifted form,
Adj(c, r) = ∃lx(Adj(c1, r))

8. If c = ∃vx
(
∧n

i=1
, x 6= vi ∧ c1

)

for some condition c1 over L in lifted form,
Adj(c, r) = ∃vx(

∧p

i=1, x 6= wi ∧Adj(c1, r))
9. If c = ∃ex

(
∧m

i=1
, x 6= ei ∧ c1

)

for some condition c1 over L in lifted form,
Adj(c, r) = ∃ex(

∧q

i=1, x 6= zi ∧Adj(c1, r))

10. If c = ∃VX(
∧2n

i=1
di ⇒ ci) where each ci is a condition over L in lifted form or

contains card(X)

Adj(c, r) = ∃VX(
∧

v∈VR−VK
v /∈ X

∧2k

i=1(bi ⇒
∨

j∈Wi
c′j))

where c′j = Adj(cj , r)
[card(X) 7→card(X)+|(VL−VK)∩Vj|] and for i = 1, . . . , 2k,Wi is a subset

of {1, . . . , 2n} such that for all j ∈ {1, . . . , 2n}, j ∈Wi iff dj implies bi
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11. If c = ∃EX(
∧2m

i=1
ai ⇒ ci) where each ci is a condition over L in lifted form,

construction of Adj(c, r) is analogous to point 10
12. If c = c1 ∨ c2 for some conditions c1, c2 over L in lifted form,

Adj(c, r) = Adj(c1, r) ∨Adj(c2, r)
13. If c = c1 ∧ c2 for some conditions c1, c2 over L in lifted form,

Adj(c, r) = Adj(c1, r) ∧Adj(c2, r)
14. If c = ¬c1 for some condition c1 over L in lifted form,

Adj(c, r) = ¬Adj(c1, r)

Example 6. Let us consider Lift(e, r), r) from Example 5. That is, the condition
∃VX(1 /∈ X⇒ ¬b ∧ ∃ln(card(X) = 2∗n))

where b = ∃vx(x 6= 1 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))).
From point 10 of Definition 7, we get Adj(Lift(e, r)) is
∃VX(2 /∈ X ∧ 3 /∈ X ∧ (true⇒ ¬Adj(b, r) ∧ ∃ln(card(X) = 2∗n)))
where Adj(b, r) is
∃vx(x 6= 2x 6= 3 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))) (see point 5
and 8 of Definition 7. Hence,
Adj(b, r)=∃VX(2 /∈ X ∧ 3 /∈ X ∧ ∃ln(card(X) = 2∗n)

∧ ¬∃vx(x 6= 2x 6= 3 ∧ ((mV(x) = grey ∧ x /∈ X) ∨ (mV(x) 6= grey ∧ x ∈ X))))

4.2.2 Condition Spec and Transformation Shift
To have a right application condition that yield to strongest liberal postcondi-
tion, we need to have a condition that express properties of right-hand graph, in
addition to the condition that derived from the given precondition. Hence, we
need a condition that explicitly express the structure, labels, marks of the right-
hand graph. Also, the right-application condition should express the dangling
condition for any co-match.

To express the structure and properties of R, we use the condition Spec(R),
which specify the right-hand graph uniquely up to the node/edge IDs and name
of variables. Spec(R) is defined as the condition
∧k

i=1Type(xi) ∧
∧n

i=1 lV(vi) = l
V
R (vi) ∧ mV(vi) =m

V
R (vi) ∧ RootR(vi)

∧
∧m

i=1 s(ei) =sR(ei) ∧ t(ei) =tR(ei) ∧ lE(ei) = l
E
R (ei) ∧ mE(ei) =m

E
R (ei)

where Type(x) for x ∈ X is int(x), char(x), string(x), atom(x), or true if x is an
integer, char, string, atom, or list variable respectively, and RootL(v) for v ∈ VL

is a function such that RootL(v) = root(v) if pL(v) = 1, and RootL(v) = ¬root(v)
otherwise.

Definition 8 (Shifting). Consider a rule schema r = 〈L ← K → R,Γ 〉,
and a precondition c. The right-application condition w.r.t. c and r, denoted by
Shift(c, r), is defined as:

Shift(c, r) = Adj(Lift(c, r), r) ∧ Spec(R) ∧ Dang(r−1) �

Example 7.
Adj(Lift(c, r), r) has been obtained from Example 6, where Spec(R) is the con-
dition mV(2) = grey ∧mV(3) = grey ∧ lV(2) = a ∧ lV(3) = a.
Also, Dang(r−1)=indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0 (see
Definition 3). Hence, Shift(e, r) is
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∃VX(∃ln(card(X) = 2∗n) ∧ 2 /∈ X ∧ 3 /∈ X

∧ ¬∃vx(x 6= 2 ∧ x 6= 3 ∧ ((x /∈ X ∧mV(x) = grey) ∨ (mV(x) 6= grey ∧ x ∈ X))))
∧mV(2) = grey ∧mV(3) = grey ∧ lV(2) = a ∧ lV(3) = a

∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

4.3 From Right-Application Condition to Postcondition

The right-application condition we obtain from transformation Shift is strong
enough to express properties of the result graph, w.r.t the comatch. To turn the
condition c obtained from Shift to a postcondition, we only need to generalised
the condition by the transformation Var(c), which is obtained from c by sub-
stituting fresh variables to node/edge identifiers and adding a constraint that
different fresh variables represent different nodes/edges that there is no two new
variables express the same node/edge. Finally, we need to bind all free variables
to obtain a closed MSO formula.

Definition 9 (Slp). Given a rule r = 〈r, Γ 〉 for a rule schema r = 〈L ← K →
R〉 and a precondition c. A postcondition w.r.t. c and r, denoted by Slp(c, r), is
the MSO formula ∃vx1, . . . , xn(∃ey1, . . . , ym(∃lz1, . . . , zk(Var(Shift(c, r))))), where
{x1, . . . , xn}, {y1, . . . , ym}, and {z1, · · · , zk} denote the set of free node, edge,
and label (resp.) variables in Var(Shift(c, r)).

Example 8. First, we need to obtain Var(Shift(e, r)) by substituting fresh vari-
ables to node/edge identifiers in Shift(e, r) of Example 7. The condition Shift(e, r)
has two node variables, that are 2 and 3. We can then to y and z respectively
because we do not both variables in Shift(e, r). In addition, we also need to add
a constraint that y 6= z. Hence, we have
Var(Shift(e, r))= y 6= z

∧∃VX(∃ln(card(X) = 2∗n) ∧ y /∈ X ∧ z /∈ X

∧ ¬∃vx(x 6= y ∧ x 6= z ∧ ((x /∈ X ∧mV(x) = grey)
‘ ∨ (mV(x) 6= grey ∧ x ∈ X))))

∧mV(y) = grey ∧mV(z) = grey ∧ lV(y) = a ∧ lV(z) = a

∧ indeg(y) = 0 ∧ indeg(z) = 0 ∧ outdeg(y) = 0 ∧ outdeg(z) = 0

so that
Slp(e, r)=∃vy, z(∃la(Var(Shift(e,r))))

Theorem 1 (Strongest liberal postconditions). Given a precondition c
and a conditional rule schema r = 〈〈L ← K → R〉, Γ 〉. Then, Slp(c, r) is a
strongest liberal postcondition w.r.t. c and r.

In [22], we prove Theorem 1 by showing that Lift(c, r) and Shift(c, r) must
be satisfied by every match and comatch (resp.).

5 Proof Calculus

In this section, we define a syntactic proof calculus in the sense of total correct-
ness, called SYN.
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5.1 The Calculus

Our calculus is a total correctness calculus, which means that a Hoare triple
{c} P {d} is totally correct if the execution of P on G satisfying c either yields
a proper graph or fails (divergence is excluded).

Definition 10 (Partial and total correctness [17]). Consider a precondi-
tion c and a postcondition d. A graph program P is partially correct with respect
to c and d, denoted by �par {c} P {d}, if for every host graph G and every graph
H in JP KG, G |= c implies H |= d. The triple {c} P {d} is totally correct, de-
noted by �tot {c} P {d}, if it is partially correct and if for every host graph G
satisfying c, P does not diverge or get stuck.

A program can get stuck if it contains a command if/try C then P else Q
where C can diverge from a graph G, or it contains a loop B! whose body B can
diverge from a graph G. Hence, getting stuck is always a signal of divergence.
To prove that a program does not diverge, we use a termination function #
which assigns a natural number to every host graph. The proof rule for loops
will require that loop bodies decrease the #-value of graphs satisfying the loop
invariant. This concept was introduced in [18], but only for loop bodies that are
rule set calls.

Definition 11 (Termination function; #-decreasing). A termination func-
tion is a mapping #: G(L)→ N from host graphs to natural numbers. Given an
assertion c and a graph program P , we say that P is #-decreasing (under c) if
for all graphs G,H ∈ G(L) such that G � c,

〈P,G〉 →∗ H implies #G > #H.

To define a proof calculus, we need assertions that can express preconditions
of failing or successful executions. For this, we also use the assertion Success and
Fail as defined in [21] which can be defined if we consider the classes loop-free
programs and iteration commands. A loop-free program simply is a program
that has no loop, while an iteration command is inductively defined as: 1) every
loop-free program and non-failing command is an iteration command, and 2) a
command in the form C;P is an iteration command if C is a loop-free program
and P is an iteration command.

Theorem 2. For any loop-free program P and precondition c, there exists MSO
formula Success(P ) and Slp(c, P ) such that a graph G � Success(P ) if and
only if there exists a host graph H ∈ JP KG and G � Slp(c, P ) if and only
if G is a strongest liberal postcondition w.r.t c and P . Also, for any iteration
command S, there exists MSO formula Fail(P ) such that G � Fail(S) if and
only if fail ∈ JP KG.

Intuitively, MSO formulas Success(P ) and Fail(P ) are preconditions that as-
sert the existence of successful and failing (resp.) execution of P . In addition, we
consider the predicate Break(c, P, d) for graph command P and assertions c, d as

14



a predicate that is true if and only if for all derivations 〈P,G〉 →∗ 〈break, H〉, G �

c implies H � d.
From [21], we know that we have constructions for Slp, Success, and Fail

as mentioned in Theorem 2 if we have the construction of a strongest liberal
postcondition over a rule schema. Since we have it, we can can define the con-
structions of Slp(c, P ), Success(P ), and Fail(P ) to prove the theorem. As an ex-
ample, for Slp(c, P ), we can define it inductively as: (i) if P is a rule set call R =
{r1, . . . , rn} then Slp(c, P )=Slp(c, S) = Slp(c, r1) ∨ . . . ∨ Post(c, rn), (ii) if P =
Q or S for some programs Q,S then Slp(c, P )=Slp(c,Q) ∨ Slp(c, S), (iii) if P =
Q;S then Slp(c, p)=Slp(Slp(c,Q), S), (iv) if P = ifC then Q elseS for some
program C then Slp(c, P )=Slp(c ∧ Success(C), Q)∨ Slp(c ∧ Fail(C), S), and (v)
if P = tryC thenQ elseS then Slp(c, P )=Slp(c ∧ Success(C) , C;Q)∨ Slp(c ∧
Fail(C), S). The construction for Success and Fail can be seen in Appendix.

Definition 12 (Proof rules). The total correctness proof rules is defined in
Fig. 4, where c, d, and d′ are any conditions, r is any conditional rule schema, R
is any set of rule schemata, C is any loop-free program, P and Q are any control
commands, and S is any iteration command.

[ruleapp]slp
{c} r {Slp(c, r)}

[ruleset]
{c} r {d} for each r ∈ R

{c} R {d}

[comp]
{c} P {e} {e} P {d}

{c} P ;Q {d}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c ∧ Success(C)} P {d} {c ∧ Fail(C)} Q {d}

{c} if C then P else Q {d}

[try]
{c ∧ Success(C)} C;P {d} {c ∧ Fail(C)} Q {d}

{c} try C then P else Q {d}

[alap]
{c} P {c} P is #-decreasing under c Break(c, P, d)

{c} P ! {(c ∧ Fail(S)) ∨ d}

Fig. 4: Total correctness proof rules of calculus SYN

The proof rules are used to construct proof trees.

Definition 13 (Provability; proof tree[16]). A triple {c} P {d} is provable
in the calculus, denoted by ⊢ {c} P {d}, if one can construct a proof tree from
the axioms and inference rules of the calculus with that triple as the root. If
{c} P {d} is an instance of an axiom X then (X

{c} P {d}
) is a proof tree, and

⊢ {c} P {d}. If {c} P {d} can be instantiated from the conclusion of an inference
rule Y , and there are proof trees T1, . . . , Tn with conclusions that are instances

of the n premises of Y , then (Y
T1 . . . Tn

{c} P {d}
) is a proof tree, and ⊢ {c} P {d}.

5.2 Soundness

In [21], we show that our partial correctness calculus is sound. Now, we extend it
to total correctness calculus, which is also proven to be sound in [23]. We prove
the soundness by considering the induction on proof trees.
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Theorem 3 (Soundness of the calculus). Given graph program P and MSO
formulas c, d. Then, ⊢ {c} P {d} implies �tot {c} P {d}.

In the calculus, we use [ruleapp]slp as an axiom. Alternatively, we can change
the axiom to [ruleapp]wlp

{¬Slp(¬d, r−1)} r {d}
and we still have a sound proof

calculus [23].
However, relative completeness of the calculus is still an open problem. If we

consider FO Hoare-triples, there is a strong evidence that we may have a correct
FO Hoare-triple but we can not prove it by our FO proof calculus (see [21]) while
we can prove it if by MSO proof calculus, which shows that the expressiveness
of assertions play important role in relative completeness.

Courcelle [4,5] has proven that the following properties are not expressible in
MSO logic without counting (either with set of node or set of edges quantifier):
1. The graph has even number of nodes
2. The number of nodes in a graph is a prime number
3. The graph has the same number of red nodes and grey nodes

However, we can express the three properties by the following MSO formulas,
respectively:
1. ∃VX(∀vx(x ∈ X) ∧ ∃ln(card(x) = 2 ∗ n))
2. ∃VX(∀vx(x ∈ X) ∧ ¬∃ln,m(n 6= 1 ∧m 6= 1 ∧ card(x) = n ∗m))
3. ∃VX,Y(∀vx(mV(x) = red⇔ x ∈ X) ∧ ∀vx(mV(x) = grey⇔ x ∈ Y) ∧ card(X) = card(Y))

With the existence of function card, our formula can express more properties
if we compare it with counting MSO logic in [5] because we can compare car-
dinality between two sets with ours. However, what kind of properties can not
be expressed by our formulas is still an open problem in this paper. Hence, the
relative completeness of our MSO Hoare-triple is still unknown.

6 Case Study

In this section, we present the graph programs is-connected [3] and we verify
the graph program with respect to the given specifications. Due to page limita-
tion, we do not show the proof of implications in this paper. The proof can be
found in [22] and other examples can be found in [22].

Main = try init then (DFS!; Check)
DFS = forward!; try back else break

Check = if match then fail

init(a : list)
a

1

⇒ a

1

match(a : list)
a

1

⇒ a

1

forward(a, b, c : list)
a

1

b
2

c
⇒ a

1

b

2

c
back(a, b, c : list)
a

1

b
2

c
⇒ a

1

b

2

c

Fig. 5: Graph program is-connected
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Here we consider the graph program is-connected as seen in Fig. 5. The
program is executed by checking the existence of an unrooted node with no
marks and change it to a red rooted node. The program then execute depth
first-search procedure by finding unrooted node that is adjacent with the red
rooted node and change the node to red, swap the rootedness, and mark the
edge between them by dashed and repeat it as long as possible. The procedure
continue by searching a red node that adjacent to red unrooted node by dashed
edge and change the mark of the rooted node to grey while unmarking it, and
move the root to the other node, then reply the procedure. Finally, the program
checks if there still exists an unmarked node. If so, then the program yields fail.

For the specification, here we consider the case where the input graph is
connected. For the case with disconnected graph, please see [22].

Precondition:
All nodes and edges are unmarked, and all nodes are unrooted. Also, the graph is
connected, that is, for every nodes x, y, there exists an undirect path from x to y)

Postcondition:
Either the graph is empty, or there is a node that is marked with red and is rooted
while other nodes are grey and unrooted. All edges are unmarked, and the graph is
connected.

Now let us consider loops we have in the program is-connected. There are
two loops: forward! and DFS!. For the former, we can consider #-function that
count the number of unmarked nodes. By the application of the rule schema
forward, the number of unmarked nodes obviously decreasing. Hence forward

is #-decreasing. For DFS!, we can consider a #-function that count unmarked
nodes and red nodes. From the initial graph, the application of forward! will
not change the value of #, while try either will decrease the value of # by 1 or
make us reach break. Hence, DFS is #-decreasing as well.

The total correctness proof for this case study is given by the proof tree
of Fig. 6. We refer to [22] for the assertions in the proof tree, which we omit
here because of the lack of space. For the same reason, we omit #-decreasing
requirement in the premise of proof rule [alap].

From the proof tree we know the triple {pre} init {c} and {c} DFS! {post} are
totally correct so that by the proof rule [comp] we can conclude that {pre} init;
DFS! {post} is totally correct as well. Implication post ⇒ ¬Fail(match) must be
true because the postcondition assert that there is no unmarked node. Hence,
we can conclude that the execution of the program on a graph satisfying Pre-
condition cannot fail and must resulting a graph satisfying Postcondition.

7 Conclusion

Poskitt and Plump [17] have defined a calculus to verify graph programs by using
a so-called E-conditions [16] and M-conditions [19] as assertions. E-conditions are
only able to express FO properties of GP2 graph, while M-conditions can express
properties of MSO properties of non-attributed graph (not all GP2 graphs).
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Subtree A

[skip]
{ pre ∧ Fail(init)} skip {pre ∧ Fail(init)}

[cons]
{ pre ∧ Fail(init)} skip {post}

[try]
{ pre } try init then (DFS!; Check) { post }

where subtree A is:

[ruleapp]slp
{ pre } init { Slp(pre, init) }

[cons]
{ pre } init { c }

[ruleapp]slp
{ c } forward { Slp(c, forward) }

[cons]
{ c } forward { c }

[alap]
{ c } forward! { c ∧ Fail(forward) }

[cons]
{ c } forward! { d } Subtree A1

[comp]
{ c } DFS { c } Break(c, DFS, post)

[alap]
{ c } DFS! { (c ∧ Fail(DFS)) ∨ post }

[cons]
{ c } DFS! { post } Subtree A2

comp
{ pre } init; DFS!; Check { post }

[cons]
{ pre ∧ Success(init) } init; DFS!; Check { post }

for Subtree A1:

[ruleapp]slp
{ d ∧ Success(back) } back { Slp(d ∧ Success(back), back) }

[cons]
{ d ∧ Success(back) } back { c }

[break]
{ d ∧ Fail(back) } break { d ∧ Fail(back) }

[cons]
{ d ∧ Fail(back) } break { c }

[try]
{ d } try back else break { c }

and Subtree A2:

[fail]
{ false } fail { false }

[cons]
{ post ∧ Success(match) } fail { post }

[skip]
{ post ∧ Fail(match) } skip { post ∧ Fail(match) }

[cons]
{ post ∧ Fail(match) } skip { post }

[if]
{ post } if match then fail { post }

Fig. 6: Proof tree for is-connected
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However, there are only limited graph programs that can be verified by the
calculus (e.g. programs with no nested loop).

E-condition is an extension of nested graph conditions [7]. Pennemann [13]
shows how to obtain a weakest liberal precondition (wlp) w.r.t a graph condition
and a program and introduced a theorem prover to prove implication between a
precondition and the obtained wlp. However, graph conditions also only able to
express FO properties of a non-attributed graph. Habel and Radke [9] then intro-
duced HR∗ conditions, which extend the graph conditions by introducing graph
variables that represent graphs generated by hyperedge-replacement systems.
Radke [20] showed that HR∗ conditions is somewhere between node-counting
MSO graph formulas and SO graph formulas and showed how to construct a
wlp w.r.t the conditions. However, theorem prover for this condition is not avail-
able yet, and we believe that having a wlp alone is not enough for program
verifications.

In this paper, we have defined MSO formulas that can express local properties
of GP2 graphs, even properties that can not be expressed in counting MSO graph
formulas [6]. By using the MSO formulas as assertions, we show that we can
construct a strongest liberal postcondition (Slp) over a rule schema. Moreover, we
also can use the construction to obtain Slp over a loop-free program, precondition
Success(P ) (or Fail(P )) that asserts the existence of a proper graph (or path to
failure) in the execution of loop-free program P (or iteration command S). With
this result, we can define a proof calculus to verify total correctness of graph
programs with nested loops in certain forms.

As usual for Hoare calculi, our calculus does not cover implications between
assertions. Currently, we have started to experiment of the use of SMT solver
Z3 [1] to prove the implication.
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