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Strong synthetic magnetic fields have been successfully implemented in periodically driven optical
lattices. However, the interplay of the driving and interactions introduces detrimental heating, and
for this reason it is still challenging to reach a fractional quantum Hall state in cold-atom setup. By
performing a numerical study, we investigate stability of a bosonic Laughlin state in a small atomic
sample exposed to driving. We identify an optimal regime of microscopic parameters, in particular
interaction strength U and the driving frequency ω, such that the stroboscopic dynamics supports
the basic ν = 1/2 Laughlin state. Moreover, we explore slow ramping of a driving term and show
that the considered protocol allows for the preparation of the Laughlin state on experimentally
realistic time scales.

I. INTRODUCTION

Cold atoms in optical lattices provide a highly tunable
platform for quantum simulations of relevant many-body
Hamiltonians [1, 2]. Since early experiments with quan-
tum gases, there has been a strong interest in the real-
ization of fractional quantum Hall (FQH) states in these
setups [3–12]. Despite numerous experimental achieve-
ments and a variety of theoretical proposals, FQH physics
has still not been reached in cold-atom experiments.
A milestone in the field has been recently achieved by

the realization of artificial gauge potentials [13–23]. In
particular, the topological index of a resulting energy
band of an optical lattice featuring a strong synthetic
magnetic field has been directly probed [17]. At first
glance, both key requirements for the emergence of FQH
states - atomic interactions and strong synthetic mag-
netic fields - are now experimentally available. However,
there are several specific details in the implementation of
strong synthetic magnetic fields for cold atoms that make
the realization of FQH states still challenging.
The most advanced recent realizations of artificial

gauge potentials exploit periodically driven optical lat-
tices [14–23]. Using Floquet theory, the stroboscopic
dynamics of a non-interacting driven system can be re-
lated to an effective time-independent Hamiltonian [24–
27]. This approach - Floquet engineering - enriches the
set of quantum models that can be simulated in cold-
atom experiments. However, general arguments and nu-
merical studies [28–30] suggest that the interplay of in-
teractions and driving in a thermodynamically large sys-
tem introduces heating, leading to a featureless infinite-
temperature state in the long-time limit.
Although this general result might sound discourag-

ing, the heating process can be very slow in some driven
systems for specific regime of microscopic parameters.
There, the system can be described by a physically in-
teresting “prethermal” Floquet state on experimentally

relevant time scales [31–37]. Moreover, the onset of ther-
malization in a finite-size interacting system may exhibit
unexpected features, not found in the thermodynamic
limit [38, 39]. Heating rates and resulting instabilities
have been recently investigated both theoretically and
experimentally for the driven Bose-Hubbard model in the
weakly interacting regime [33, 40–42].

In this paper, we consider small systems of several in-
teracting bosonic atoms in a periodically driven optical
lattice featuring synthetic magnetic flux. The focus of
our study is on finding optimal microscopic parameters
that would allow to prepare and probe the basic bosonic
Laughlin state in this setup. To this end, we employ
exact numerical simulations of the driven Bose-Hubbard
model [43] for small system sizes.

From one point of view, it is expected that a small
driven system exhibits low heating rates for a driving
frequency set above a finite bandwidth of an effective
model [28]. However, driving a system with such a high
frequency may lead to undesirable effects, such as cou-
pling of the lowest band to higher bands of the underlying
optical lattice, thus making the initial description based
on the lowest-band Hubbard model inapplicable. These
effects have been addressed in a recent study [44] where
an optimal intermediate frequency window for Floquet
engineering has been established.

In our study, we go a step further in the search for the
optimal regime that might allow for the bosonic Laugh-
lin states under driving. In particular, for a realistic,
intermediate value of a driving frequency, the interaction
term complicates the effective model by introducing sev-
eral higher-order terms. Their effect on the topological
states has been addressed only recently [45, 46] and it
has been found that typically these terms work against
the topological state. For this reason, the stability of the
Laughlin state at intermediate driving frequency requires
a separate study, that we perform here. Moreover, we nu-
merically investigate an experimentally relevant prepara-
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FIG. 1. Lattice geometry used throughout the paper. The
parallelogram gives the exemplary lattice size (Lx, Ly) =
(4, 8). The color scale is defined by mod (m + n, 4), in
accordance with the driving term from Eq. 1. The vectors
R1 = 4 ex,R2 = −ex + ey are used to implement periodic
boundary conditions. The small rectangle gives the magnetic
unit cell for the effective model in Eq. (3).

tion protocol for the Laughlin state in a driven system
[47]. For a reference, we note that a simpler, but closely
related question concerning the static (undriven systems)
has gained lot of attention [6, 7, 11, 48].

The paper is organized as follows: in Section II we
introduce the model under study and briefly review key
features of the particle-entanglement spectra that we will
exploit in the identification of the Laughlin-like state.
Then, in Subsection IIIA we investigate general heating
effects of interacting bosons exposed to the driving. By
extending this approach, in Subsection III B we construct
the stroboscopic time-evolution operator and inspect its
eigenstates in order to identify possible FQH states. Fi-
nally, in Section IV we address the possibility of accessing
these states in an experiment through a slow ramp of the
driving term.

II. MODEL AND METHOD

In this section we first introduce the driven model and
explain the basis of Floquet engineering. Then we sum-
marize several key features of the particle-entanglement
spectra that we use to characterize the bosonic Laughlin
states.

A. Driven model

Properties of bosonic atoms in a deep optical lattice
can be realistically described within the framework of
the Bose-Hubbard model [1]. We consider a basic driv-
ing scheme [43] that introduces a uniform, synthetic mag-
netic flux into a square optical lattice here spanned by the
two vectors ex and ey. The corresponding Hamiltonian

is given by the driven Bose-Hubbard model

Ĥ(t) = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

− Jy
∑

m,n

(

eiωtâ†m,n+1âm,n + h. c.
)

+
κ

2

∑

m,n

sin (ω t− (m+ n− 1/2)φ) n̂m,n

+
U

2

∑

m,n

n̂m,n(n̂m,n − 1), (1)

where operators âm,n (â†m,n) annihilate (create) a boson
at lattice position (m,n), and local density operators are
n̂m,n = â†m,nâm,n. Jx and Jy are tunneling amplitudes
and U is the on-site local repulsive interaction. We use
the units where ~ = 1 and the lattice constant a = 1.
The driving scheme is defined by the driving frequency
ω, the driving amplitude κ and by a phase φ. In the
following we set φ = π/2 and κ/ω = 0.5. These val-
ues were recently used in an experimental realization of
the Harper-Hofstadter model [17]. The derivation of this
model is briefly reviewed in Appendix. We assume peri-
odic boundary conditions implemented using the vectors
R1 = 4 ex,R2 = −ex + ey, as presented in Fig. 1. This
choice is compatible with the driving term and it allows
us to exploit translational symmetry by working in the
fixed quasi momentum basis.
Formally, by using the Floquet theory [24, 25, 49], it

can be shown that the full time-evolution operator cor-
responding to this model is given by

Û(t, t0) = e−iK̂(t)e−i(t−t0)ĤeffeiK̂(t0), (2)

where K̂(t) is a periodic “kick” operator K̂(t) = K̂(t +

2π/ω) and Ĥeff is a time-independent effective Hamilto-
nian. The full-time evolution operator is periodic as well
and consequently the (quasi) eigenenergies of Ĥeff are
defined up to modulo ω. The last equation gives formal
mapping of a periodically driven system to an effective
model that captures the stroboscopic time-evolution of
the model.
In the non-interacting regime, U = 0, there are sev-

eral well controlled approximations to obtain the effective
Hamiltonian. These techniques are the essence of Flo-
quet engineering - an approach where the driving scheme
is implemented in such a way to yield a sought-after ef-
fective model. However, according to general analytical
arguments and numerical insights, the corresponding ef-
fective model of a driven interacting many-body system
in the thermodynamic limit exhibits nonphysical features
[28, 29]. In particular, the system thermalizes and in the
long-time limit its steady state is a featureless, infinite-
temperature state, independent of the initial state.
Here we consider small samples of several bosonic

atoms. Due to a finite spectrum bandwidth, we expect
the high-frequency expansion to be relevant for a finite
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range of the driving frequency. Within these assump-
tions, the leading-order (in 1/ω) effective Hamiltonian
is

Ĥeff = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

− J ′
y

∑

m,n

(

ei(m+n)φâ†m,n+1âm,n + h. c.
)

+
U

2

∑

m,n

n̂m,n (n̂m,n − 1) . (3)

The Hamiltonian (3) features complex hopping phases
ei(m+n)φ that result in a uniform synthetic magnetic flux
φ per lattice plaquette. Due to the driving, the renor-
malized hopping amplitude along the y direction turns
into

J ′
y ≡

κ

2ω
sin(φ/2) Jy. (4)

For the values φ = 2πα, where the flux density α is set to
α = 1/4, and κ/ω = 0.5, the tunneling amplitude along
y direction in the effective model is J ′

y ≈ Jy × 0.1768.

In a certain regime of microscopic parameters, the
ground state of the model defined in Eq. (3) is given
by the lattice version of the Laughlin state [7, 9, 50–
52]. The Laughlin state is stabilized for the filling factor
ν = Np/Nφ = 1/2, where Nφ = αLx × Ly is the to-
tal number of fluxes (Nφ being an integer) and Np is
the number of bosons, and for a strong-enough repul-
sion U . Another important requirement for the Laugh-
lin state is to avoid the strong hopping anisotropy and
to keep Jx ≈ J ′

y, so we set Jx = 0.2Jy. We con-
sider system sizes Np = 4, 5, 6 and the respective lat-
tices sizes (Lx, Ly) = (4, 8), (4, 10) and (4, 12), see Fig. 1,
where we expect the ground state to correspond to the
ν = 1/2 Laughlin state. The Hilbert space sizes for
kx = ky = 0 are dimH = 6564, 108604, and 1913364
respectively. For this choice of microscopic parameters,
the model ground state of Eq. (3) is approximately two-
fold degenerate. The two ground-states are found in the
sectors kx = 0, ky = 0 and kx = 0, ky = π. We denote

them by |ψ0,0
LGH〉 and |ψ0,π

LGH〉.

As we are mainly interested in the driven regime, it is
not only the ground state, but the full spectrum of the
model from Eq. (3) that plays a role. A rough argument
is that the system does not absorb energy provided that
the driving frequency ω is set above the bandwidth of
the effective model. Several spectra of the model from
Eq. (3) for kx = 0, ky = 0 are presented in Fig. 2(a).
It can be seen that the ground-state energy is weakly
affected by the value of U ≥ Jx, while the top part of the
spectrum with few states is found at UNp(Np−1)/2. For
higher values of U the spectrum splits into bands where
the lowest band corresponds to the hard-core bosons and
higher bands include double and higher occupancies.

B. Particle-entanglement spectra

There are several ways to characterize the ground-
states of the model from Eq. (3) as the Laughlin states.
Usually, the starting point in this direction is the iden-
tification of the two-fold degeneracy expected in the im-
plemented torus geometry for ν = 1/2. Another relevant
quantity is the overlap of the numerically obtained state
with the Laughlin analytical wave function in the torus
geometry [9, 52]. A more direct evidence can be obtained
through the calculation of the relevant topological index
(Chern number) or the quantized Hall conductance. One
more convincing approach, that we pursue here, is based
on the analysis of the entanglement spectra of the rele-
vant states.
In the following we will use the particle-entanglement

spectrum (PES) [52, 53] to distinguish possible topolog-
ically non-trivial states. In order to obtain this type of
entanglement spectrum, we partition Np particles into
two sets of NA and NB = Np−NA particles. For a given
mixed state ρ, we construct a reduced density matrix
ρA = trBρ by performing a partial trace over NB par-
ticles. The resulting PES is given by − ln ξn, where ξn
are eigenvalues of ρA. The related particle-entanglement
entropy is given by [54, 55]

SA = −tr (ρA ln ρA) . (5)

By partitioning particles, we keep the geometry of the
system unchanged. For this reason, we will inspect the
PES for the different momentum sectors kAy of the re-
maining NA particles. An example of a PES is pre-
sented in Fig. 2(b). As proposed in Refs. [52, 53], we
have considered the incoherent superposition of the al-
most twofold degenerate ground state of Eq. (3) as the
density matrix

ρGS =
1

2

(

|ψ0,0
LGH〉〈ψ

0,0
LGH|+ |ψ0,π

LGH〉〈ψ
0,π
LGH|

)

. (6)

For simplicity, we only present the PES for the two mo-
menta kAy = 0 and kAy = π/6. We observe a clear particle-
entanglement gap ∆. In addition, the counting of low-
lying modes below this gap (10 modes for kAy = 0 and 9

modes for kAy = π/6, at NA = 3, Np = 6) corresponds to
the Laughlin state [52, 53]. In this way the PES encodes
topological features of the state ρ in the form of well
defined number of excitations per momentum sector kAy
[52, 53]. This type of analysis is useful as it can identify
topological features even without model states, as done
for the case of fractional Chern insulators [56, 57].
In the following we will consider specific particle par-

titions NA = 2, Np = 4, NA = 2, Np = 5 and NA =
3, Np = 6. For these cases the counting of excitations
NL(k

A
y ) per momentum sector kAy is well established

and given in Table I. In Fig. 2(c) we show the particle-
entanglement gap of the mixtures, Eq. (6), obtained at
different values of U . Numerical results for the obtained
PES indicate that a reasonably large gap is found start-
ing at U ∼ 0.5Jx and the characteristic features of the
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FIG. 2. (a) The energy spectrum En of the model from Eq. (3) in the kx = 0, ky = 0 sector for Np = 4 and different values of
interaction U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-core bosons). The top part of the spectrum is at ≈ (U/Jx)Np (Np − 1) /2.
(Not shown for U/Jx = 40.) For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds to hard-core
bosons. (b) The low-lying part of the particle-entanglement spectrum − ln ξn of the ground-state incoherent superposition,
Eq. (6), in the region A momentum sectors kA

y = 0 and kA
y = π/6, and for Np = 6, U/Jx = 2.5. (c) The particle-entanglement

gap ∆ of the incoherent superposition Eq. (6) as a function of interaction strength U for Np = 4, 5, 6.

Laughlin state persist with a further increase in U . We
note that at lower values of the flux density α < 1/4, the
Laughlin state can be found at even lower values of the
repulsion U , [9, 52].

Np (Lx, Ly) NA PES: NL(k
A
y )

4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2

5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3

6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

TABLE I. Counting of modes NL

(

kA
y

)

in the PES of the
Laughlin state for several system sizes and particle partitions.
The last column lists the NL(k

A
y ) values for each momentum

sector kA
y = 2πi/Ly, i = 0, . . . , Ly − 1.

By analyzing the effective model from Eq. (1), we have
obtained a guidance for the regime of microscopic param-
eters and for the geometry of the small system that can
give rise to Laughlin states. In the next sections our aim
is to go beyond the effective model from Eq. (3) and to
identify topological states supported by the full driven
dynamics as captured by the model given in Eq. (1).

III. DRIVEN DYNAMICS

In this section we discuss the full driven dynamics as
captured by the model given in Eq. (1).

A. Heating

First we address the onset of heating following the
standard procedure discussed in Refs. [37, 58]. The ini-
tial state of the system is prepared using the ground state
of the effective model

|ψ(t = 0)〉 = e−iK̂(t=0)|ψ0,0
LGH〉 (7)

and we monitor the stroboscopic time-evolution t = N T ,
T ≡ 2π/ω governed by the full driven model defined in
Eq. (1). In our numerical simulations, we approximate

the micromotion operator K̂(t = 0) using the leading-
order high-frequency expansion, see Eq. (A.12). The
quantity of interest is the expectation value of the ef-
fective Hamiltonian (3)

〈Ĥeff(t = NT )〉K = 〈ψ(t)|e−iK̂(t=0)Ĥeffe
iK̂(t=0)|ψ(t)〉.

(8)
We expect this quantity to reasonably correspond to the
ground-state energy of the effective model E0 in the
regime of very high frequency. On the other hand, for a
“low” driving frequency we expect the system to quickly
reach the infinite-temperature β → 0 regime defined by

lim
β→0

〈Ĥeff〉 =
1

dimH
tr
(

Ĥeff

)

. (9)

For this reason we monitor the normalized total energy

Q(t = NT ) =
〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0

(10)

and we present it in Fig. 3(a), for U/Jx = 10. In agree-
ment with the known results [58], we find that the ther-
malization is quick for both a “high” driving frequency
ω/Jx ≥ 20 and for a “low” driving frequency ω/Jx ≤ 10.
For the intermediate values of ω, the heating process is
slow [58] and the total energy exhibits a slow exponential
growth captured by Q(t = NT ) ≈ 1− b exp(−c t), t≫ 1.
An example of this behavior is given for ω/Jx = 15 in
Fig. 3(a). The heating process can also be monitored
through the particle-entanglement entropy SA as a func-
tion of time. In Fig. 3(b) for Np = 5 and low driving
frequency we find that this quantity quickly saturates to
its maximal value. Indeed, for a thermal state at infinite
temperature, SA is given by

Smax
A ≈ ln

(

Lx Ly +NA − 1

NA

)

, (11)
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FIG. 3. (a) The normalized total energy Q(t = NT ) from Eq. (10), and the (b) particle-entanglement entropy SA(t = NT ),
Eq. (5), during the time evolution governed by Eq. (1) for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters:
Np = 5, U/Jx = 10. Note that the asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one given in Eq. (11), as
presented by the horizontal line. (c) The long-time limit limN→∞ Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10
and U/Jx = ∞ (hard-core bosons). The lines are only guides to the eye.

marked by the horizontal (red) line in Fig. 3(b). Except
for the highest frequency considered (ω/Jx = 50), we find
that in the process of heating, the particle-entanglement
gap of the initial state quickly closes (not shown in the
plots).
Here we briefly discuss finite-size effects by compar-

ing numerical results for the normalized total energy for
Np = 4, Np = 5 and Np = 6. In line with the known
results [28, 29, 33], the “high-frequency” regime with low
heating rates moves toward higher ω as the system size
increases. However, we find that the estimates obtained
in this section (ω/Jx ≥ 20 for the high, and ω/Jx ≤ 10
for the low-frequency regime, for U/Jx = 10) apply to all
the three sizes Np = 4, 5, 6, at least for the time scales
that we consider.

B. The stroboscopic time-evolution operator

In order to better understand the limitations of the
effective model, here we time evolve all relevant basis
states for a single driving period T = 2π/ω and construct
the stroboscopic time-evolution operator:

ÛF ≡ Û(t0 + T, t0 = 0), (12)

such that Û(NT + t0) = ÛN
F . In the next step, for a

system size Np = 4, (Lx, Ly) = (4, 8) we fully diagonalize
this operator and inspect its eigenstates |n〉. Following
the described procedure, we obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑

n

|〈n|ψ(t = 0)〉|2〈n|Ĥeff|n〉K

(13)
where we define

〈n|Ĥeff|n〉K = 〈n|e−iK̂(t=0)Ĥeffe
iK̂(t=0)|n〉. (14)

Results for Q(t = NT ) from Eq. (10) obtained in this
way are summarized in Fig. 3(c) where we make a com-
parison between the long-time energies for the case of

hard-core bosons (U → ∞) and soft-core bosons (finite
values of U). The obtained results indicate that heat-
ing rates of hard-core bosons are closer to the case of
U/Jx = 1 in comparison to U/Jx = 10, which is ex-
pected from the bandwidths shown in Fig. 2(a). Overall
we observe that the “high-frequency regime” is wider for
lower ratios U/Jx.
In Fig. 4, we make a comparison between the exact

driven model captured by ÛF and Ĥeff. In Figs. 4(a)
and (b) we inspect the distribution of expectation values

〈n|Ĥeff|n〉K . By comparing these values to the eigenener-
gies of the effective model, Eq. (3), we get an insight into
the pertinence of the effective description [28, 29]. In par-
ticular, for an interacting system in the thermodynamic
limit, the distribution is flat and the effective description
is useless. We state again that we consider only small
atomic samples. For this reason, it is expected that for
high values of ω, the full stroboscopic description nicely
matches to the effective model values. Such an example
is given in Fig. 4(a) for U/Jx = 1 and ω/Jx = 20. As
the value of ω gets lower the distribution becomes flatter,
as can be seen in Fig. 4(b) for U/Jx = 10 by comparing
results for ω/Jx = 50 and ω/Jx = 10.
The intermediate regime of frequencies, e. g. ω/Jx = 20

for U/Jx = 10, is of the main experimental relevance [44].
We now investigate whether the driven stroboscopic dy-
namics supports some Laughlin-like states, by calculating
the PES of the mixture

ρF =
1

2

(

|n0(0, 0)〉〈n0(0, 0)|+ |n0(0, π)〉〈n0(0, π)|
)

(15)

where |n0(kx, ky)〉 is the state from the kx, ky sector with

the lowest expectation value 〈n|Ĥeff|n〉K . The results are
presented in Fig. 4(c). We find that the states with a well
defined gap and the Laughlin-like PES can be found down
to ω/Jx ≥ 15 for U/Jx = 1, and down to ω/Jx ≥ 20 for
U/Jx = 10. Having established existence of these states
for small samples of Np = 4 particles, in the next section
we discuss dynamical protocol which can be exploited to
prepare these states.
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FIG. 4. Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF , Eq. (12), in the kx = 0, ky = 0
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from the top of the spectrum of Ĥeff, Eq. (3) for clarity reasons. (c) The low-lying part of the particle-entanglement spectra
− ln ξn of the incoherent superposition ρF , Eq. (15), for U/Jx = 10, ω/Jx = 20 (crosses) and ω/Jx = 10 (boxes).

IV. SLOW RAMP

The question about an optimal adiabatic protocol that
can be used to prepare the Laughlin state in a cold-atom
setup has gained lot of attention [6, 7, 11, 48]. The sit-
uation becomes even more complex once the full driving
process is taken into account. A general wisdom is that
by starting from a topologically trivial state, the topolog-
ical index of a thermodynamically large system can not
be changed adiabatically. We consider a small atomic
sample and follow the proposal of Ref. [11]. Our main
contribution is that we extend this protocol to the case
of the driven, interacting Bose-Hubbard model.

A. Model

Following results of Ref. [11], we consider a slow ramp
of the tunneling amplitude along y direction, Jy(t),
as well as a slow ramp of the driving amplitude κ(t).
Namely, we start from a series of decoupled wires along
the x direction and start coupling them. More precisely,
initial states are selected as the ground states of Ĥini

Ĥini = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

+
U

2

∑

m,n

n̂m,n(n̂m,n − 1). (16)

For the filling factors that we consider, the ground states
of the Ĥini are simple non-interacting states with the
ground state energy E0,ini = −2JxNp. Out of the several
degenerate ground states we select those where atoms oc-
cupy every second wire. There two such states and we
label them as |ψ+〉 (even wires occupied) and |ψ−〉 (odd
wires occupied). These states have finite projections only
onto the sectors kx = 0, ky = 0 and kx = 0, ky = π of the
driven model from Eq. (1). Therefore we may expect the
two initial states |ψ±(t = 0)〉 to be transformed into the
two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the
tunneling amplitude along the y direction, Jy(t), and
slowly ramp up the driving amplitude κ(t). The time-
evolution is governed by

Ĥsr(t) = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

− Jy(t)
∑

m,n

(

eiωtâ†m,n+1âm,n + h. c.
)

+
κ(t)

2

∑

m,n

sin (ωt− (m+ n− 1/2)φ) n̂m,n

+
U

2

∑

m,n

n̂m,n(n̂m,n − 1), (17)

where Jy(t) = Jy tanh(η t), κ(t) = κ tanh(η t), η being
the ramping rate. In the long-time limit, we recover the
original Hamiltonian from Eq. (1). During the ensuing
time evolution we construct the mixture

ρ(t) =
1

2

(

|ψ+(t)〉〈ψ+(t)|+ |ψ−(t)〉〈ψ−(t)|
)

. (18)

We monitor stroboscopically the energy expectation
value

E(t) = tr
(

ρ(t)Ĥeff

)

(19)

and the PES of ρ(t).

B. Results

In Fig. 5(a) we present the energy expectation value
from Eq. (19) for U/Jx = 10 and several driving fre-
quencies ω/Jx = 25, 20, 15, 10. Our numerical results
indicate that ramps with the rates up to η/Jx ∼ 0.1
work reasonably well. Slower ramps give better results,
but are less practical [11]. By construction, the initial
state is a non-interacting state with particles delocalized
along the x direction and therefore the initial energy is
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FIG. 5. (a) The expectation value E(t) defined in Eq. (19) and (b) the particle-entanglement gap ∆(t) of ρ(t), Eq. (18), during
the time evolution governed by Eq. (17) for several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx =

10, η/Jx = 0.05. (c) The overlap tr (ρ(t)ρF ) of the time evolved state with the target eigenstates of ÛF for ω/Jx = 25, 20.
Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

E(t = 0) = −2Np Jx. During the ramp with the rate
η/Jx = 0.05, for the regime of high driving frequen-
cies, down to approximately ω/Jx = 20, we find that
the energy initially decreases and reaches an almost con-
stant value at around tJx ∼ 20. On the other hand,
for ω/Jx = 15, the system slowly heats up during the
ramping process, and for ω/Jx = 10 the system quickly
reaches the infinite-temperature state.
One of our main results is summarized in Fig. 5(b),

where we plot the particle-entanglement gap of ρ(t), from
Eq. (18), as a function of time. In the high-frequency
regime ω/Jx ≥ 20, starting around tJx ∼ 20 we find a
persistant particle-entanglement gap, marking the onset
of a topologically non-trivial state. It is even more in-
teresting, that even for ω/Jx ∼ 15, the state seems to
exhibit a finite gap on intermediate time scales. This is
not the case for ω/Jx ≤ 10, where the gap quickly van-
ishes. In Fig. 5(c), we present the value of the overlap
tr (ρ(t)ρF ), of the time-evolved mixed state with the rel-
evant state from Eq. (15) for Np = 4. Clearly, the slow
ramp of the type given in Eq. (17), allows for the prepa-

ration of the relevant eigenstates of ÛF with high fidelity
(better than 1%).
In Figs. 6 (a) and (b) we show the time evolution of the

PES in the two momentum sectors kAy = 0 and kAy = π/6
for Np = 6, U/Jx = 5 and η/Jx = 0.05. The PES of
the initial state is easy to understand. As the Ly/2 wires
are occupied by single atoms, the reduced density matrix
is proportional to the identity matrix with the propor-

tionality factor yielding − ln ξn = ln
(

2
(

Ly/2
NA

)

)

≈ 3.69.

During the ramp we find that additional modes in PES
are gaining weight and moving down in the spectrum.
Finally, the state ρ(t) reached around t ≈ 50T exhibits a
well defined gap and the correct counting of the low-lying
modes: there are 10 low-lying modes for kAy = 0 and 9

low-lying modes for kAy = π/6, see Figs. 6 (c) and (d),
see also Table I.
In Fig. 7 we discuss a satisfactory range of ramping

rates η for a given interaction strength U and a given
driving frequency ω that we fix at ω/Jx = 15. The
obtained numerical results suggest that at weaker in-
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FIG. 6. The low-lying part of the particle-entanglement spec-
tra − ln ξn of ρ(t), Eq. 18, during the time evolution governed
by Eq. (17) in the (a) kA

y = 0, and (b) kA
y = π/6 momen-

tum sectors. The low-lying part of the PES in the sectors (c)
kA
y = 0, and (d) kA

y = π/6, at two instances of time t = 0
and t/T = 100. Parameters: Np = 6, U/Jx = 5, ω/Jx =
15, η/Jx = 0.05.

teraction strengths U/Jx ≤ 2, slower ramping rates are
needed. One way to explain this behavior is by using the
effective model and arguing that the gap protecting the
Laughlin state is smaller at weaker U . On the other hand,
for stronger interaction strengths U/Jx ≥ 8 the particle-
entanglement gap closes at later stages as the heating
process becomes dominant. Finally, in the intermediate
range U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to
the sought-after state ρ(t) from Eq. 18, with persistant
features in the PES up to t = 500T . These results in-
dicate that when optimizing the ramping protocol in an
actual experiment, there will be a trade off between the
unfavorable heating and a faster ramping into the de-
sired state, as both of these processes are promoted by
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FIG. 7. The particle-entanglement gap ∆(t) as a function
of time during the time evolution governed by Eq. (17), for
several interaction strengths (a) U/Jx = 1.25, (b) U/Jx =
5, and (c) U/Jx = 10, and several ramping rates η/Jx =
0.025, 0.05, 0.1. Other parameters: Np = 5, ω/Jx = 15.

interactions.

V. CONCLUSIONS

The technique of Floquet engineering has been suc-
cessfully exploited for the implementation of synthetic
magnetic fields in driven optical lattices. Following up on
these achievements and on a long-standing pursuit for the
FQH states in cold-atom setups, in this paper we have ad-
dressed possible realization of the bosonic Laughlin state
in a small atomic sample in a periodically driven optical
lattice. While a thermodynamically large interacting sys-
tem generally heats up into an infinite-temperature state

under driving, the heating process can be controlled to
some extent in a few-particle system.

We have assumed a realistic driving protocol and finite
on-site interactions, and we have identified the FQH state
based on analysis of its particle-entanglement spectra.
Results of our numerical simulations show that the stro-
boscopic dynamics of Np = 4, 5, 6 particles supports the
topological ν = 1/2 Laughlin state down to ω/Jx = 20
for U/Jx = 10, and down to ω/Jx = 15 for U/Jx = 1,
for the driving amplitude κ/ω = 0.5. These results are
in reasonable agreement with the recent estimates of the
optimal heating times [44] that take into account the con-
tribution of the higher bands of the underlying optical
lattice. In addition, we have investigated slow ramping of
the driving term and found that it allows for the prepa-
ration of the Laughlin state on experimentally realistic
time scales of the order of 20 ~/Jx, where ~/Jx is the
tunneling time. Interestingly, we find that some topolog-
ical features persist during an intermediate stage even in
the regime where the system exhibits a slow transition
into the infinite-temperature state (e. g. ω/Jx = 15 for
U/Jx = 10).

A highly relevant question that we have not tackled
and that we postpone to future investigation, concerns
suitable experimental probes of topological features. The
recent progress in the field has led to the development of
several detection protocols specially suited for the cold-
atom systems [59–64]. For the type of systems considered
in this paper, the most promising are results of the re-
cent study [64] showing that fractional excitations can be
probed even in small systems of several bosons.
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Appendix: Driven optical lattices

In this appendix we review the derivation of the model given in Eq. (1). The system is described by

Ĥlab(t) = ĤBH + Ĥdrive(t) + ω V̂ , (A.1)

where we start with the Bose-Hubbard model

ĤBH = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

− Jy
∑

m,n

(

â†m,n+1âm,n + h. c.
)

+
U

2

∑

m,n

n̂m,n(n̂m,n − 1), (A.2)
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and we introduce an offset ωV̂

V̂ =
∑

m,n

n n̂m,n. (A.3)

This shifted Bose-Hubbard model is exposed to a suitable resonant driving scheme:

Ĥdrive(t) =
κ

2

∑

m,n

sin

(

ωt− φm,n +
φ

2

)

n̂m,n, φm,n = (m+ n)φ. (A.4)

We assume periodic boundary conditions compatible with the driving term (A.4) in the lab frame. To this purpose
we use vectors R1 = 4 ex and R2 = −ex + ey as presented in Fig. 1. For simplicity, we work in the rotating frame

|ψrot(t)〉 = eiωtV̂ |ψlab(t)〉 (A.5)

and derive the Schrödinger equation

i
d|ψrot(t)〉

dt
= Ĥrot(t)|ψrot(t)〉, (A.6)

where

Ĥrot(t) =
(

eiωtV̂ Ĥlab(t)e
−iωtV̂ − ωV̂

)

. (A.7)

Now we calculate Ĥrot(t) explicitly. The only nontrivial action of this rotation on Ĥlab comes from the nearest-neighbor
hopping along y direction. Indeed, we have

eiωtV̂ â†m,nâm,n′e−iωtV̂ = eiωt(n−n′)â†m,nâm,n′ . (A.8)

In total we obtain

Ĥrot(t) = −Jx
∑

m,n

(

â†m+1,nâm,n + h. c.
)

+
U

2

∑

m,n

n̂m,n(n̂m,n − 1)

+ eiωtĤ1 + e−iωtĤ−1 + e−iωt(Ly−1)ĤLy−1 + eiωt(Ly−1)Ĥ−Ly+1, (A.9)

with

Ĥ1 = −Jy

OBC
∑

m,n

(

â†m,n+1âm,n −
i

4
κei(−φm,n+

φ
2
)n̂m,n

)

, Ĥ−1 = Ĥ†
1 , (A.10)

Ĥ−Ly+1 = −Jy
∑

m

â†m,0âm−Ly,Ly−1, ĤLy−1 = Ĥ†
−Ly+1. (A.11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic boundary conditions along the direction parallel to
R2 as imposed in the lab frame. In order to limit the complexity of the numerical calculation, we keep translational
invariance and impose the periodic boundary conditions in both directions in the rotating frame. This implies that
we will neglect “phasors” e−iωt(Ly−1) and eiωt(Ly−1). Under these assumptions, we can recast Eq. (A.9) into the
time-dependent Hamiltonian given in Eq. (1). In practice, this would require engineering additional non-trivial terms
in the lab frame.
The leading order of the kick operator is given by

K̂(t = 0) ≈ −
κ

2ω

∑

m,n

cos(φm,n − φ/2)n̂m,n. (A.12)
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