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a b s t r a c t

As camera pixel arrays have grown larger and faster, and optical microscopy techniques ever more
refined, there has been an explosion in the quantity of data acquired during routine light microscopy.
At the single-molecule level, analysis involves multiple steps and can rapidly become computationally
expensive, in some cases intractable on office workstations. Complex bespoke software can present high
activation barriers to entry for new users. Here, we redevelop our quantitative single-molecule analysis
routines into an optimized and extensible Python program, with GUI and command-line implementa-
tions to facilitate use on local machines and remote clusters, by beginners and advanced users alike.
We demonstrate that its performance is on par with previous MATLAB implementations but runs an
order of magnitude faster. We tested it against challenge data and demonstrate its performance is com-
parable to state-of-the-art analysis platforms. We show the code can extract fluorescence intensity values
for single reporter dye molecules and, using these, estimate molecular stoichiometries and cellular copy
numbers of fluorescently-labeled biomolecules. It can evaluate 2D diffusion coefficients for the character-
istically short single-particle tracking data. To facilitate benchmarking we include data simulation routi-
nes to compare different analysis programs. Finally, we show that it works with 2-color data and enables
colocalization analysis based on overlap integration, to infer interactions between differently labelled
biomolecules. By making this freely available we aim to make complex light microscopy single-
molecule analysis more democratized.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

1. Introduction

Cell biology was transformed by the advent of super-resolution
microscopy, a sub-theme of which is single-molecule localization
microscopy (SMLM) [1]. SMLM techniques determine the spatial
location of single fluorophores to below the optical diffraction limit
by fitting a point spread function (PSF) to the experimentally
acquired image data. These localizations can be used in a ‘pointil-
list’ method to reconstruct a single or time series super-resolved
image, as in Photo-Activated Light Microscopy (PALM) [2] and
Stochastic Optical Reconstruction Microscopy (STORM) [3], or
single-molecules or clusters can be tracked as a function of time

while quantifying their intensity and diffusion coefficients [4–7].
Particularly, analysis of intensity and step-wise photobleaching
has become a powerful tool to measure the stoichiometry (i.e.
the number of fluorescently labelled biomolecules present in any
given tracked object) and copy number of molecular complexes
in cells [8–14]. Multiple algorithms and software packages have
been written and made available to researchers to analyze these
super-resolution microscopy data either as standalone suites or
as plugins for popular image analysis programs such as ImageJ
[15]. However, limited software tools are available for stoichiome-
try determination and none are available, to our knowledge,
exploiting the speed and extensibility of Python.

Existing super-resolution localization software has been exten-
sively reviewed and compared [16,17] but we discuss some of the
more popular packages here. Among the most popular super-
resolution reconstruction package is ThunderSTORM [18], a
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multi-purpose tool which is capable of reconstructing data from
both STORM and PALM, techniques which both work to increase
the temporal and spatial separation of emitting fluorophores so
that the point spread function (usually approximated as a 2D Gaus-
sian intensity profiles in the focal plane) can be fit to one fluores-
cence emitter only. ThunderSTORM is a powerful and flexible
toolbox which gives high sub-pixel reconstruction accuracy,
although for this to be the case the experiment must be optimized
for and performed on fixed cells, and as a result dynamic informa-
tion such as that embodied within effective diffusion coefficients
are in general inaccessible. Similar approaches are also shared by
other popular algorithms such as RainSTORM [19], QuickPALM
[20] and DAOSTORM [21] which again produce high spatial resolu-
tion with the caveat that there is no temporal information. How-
ever, in the case of DAOSTORM, multiple point spread function
fits allow the reconstructible density of fluorophores to rise by
approximately sevenfold, while QuickPALM also includes utilities
for 3D reconstruction and drift correction, processes that would
generally be included in a larger multi-package workflow. Some
routines have also been developed based not on classical algo-
rithms but on machine learning in the case of 3B (standing for
‘‘Bayesian analysis of bleaching and blinking”) [22], which hold
the promise of more efficient analysis of large time-series data
but which require careful interpretation of the results as well as
considered choice of models and priors in the case of Bayesian
statistics.

Away from STORM/PALM-type static reconstruction, many
codes have been developed to find individual foci in noisy live-
cell microscopy data. In general, classical algorithms in the same
class as PySTACHIO and ADEMSCode operate through identifica-
tion of local intensity maxima, though some include pre-filtering
steps such as Gaussian filtering [23–27], Laplacian of Gaussian
[25,26,28], wavelet products [29,30], or deconvolution [31]. In gen-
eral, a functional form is then fit to detected peaks (commonly
Gaussian but occasionally Lorentzian [32]), though in some cases
localization itself is done using adaptive thresholding methods
[27]. PySTACHIO and ADEMSCode both use Gaussian filtering, peak
detection, intensity threshold masking, and finally iterative Gaus-
sian fitting, meaning spot detection in PySTACHIO is comparable
to state-of-the-art methods.

Having found fluorescent foci in individual image stack frames,
the challenge is then to compile these into individual focus trajec-
tories. Here, PySTACHIO and ADEMSCode use the most conserva-
tive approach, which is to link focis between frames based on
distance thresholding, as some other algorithms do [30], though
some also include thresholding on the shape of the fitted Gaussian
function to determine whether two foci are the same particle.
However, more exotic algorithms are also in use today, such as
multiple hypothesis tracking [33], probabilistic data association
[34], and nearest-neighbor assignment [24]. Many of these also
make use of so-called ‘dropped frame’ tolerance [17] – that is to
say, if a spot exists in a position (x,y) in frame n, is not detected
in frame n + 1, but is localized near to (x,y) in frame n + 2 the tra-
jectory is accepted and the ‘dropped’ localization is filled in a pos-

teriori. While this has been shown to work well in some systems,
we use the conservative strict-linking method in PySTACHIO to
avoid the risk of mis-linking in the highly crowded and diffusive
live cell environment.

After tracking, many packages are available for post-processing
either trajectories or foci intensities. Foci diffusion can be analyzed
to extract physically relevant properties such as the diffusion coef-
ficient, or to elucidate modes of motion – i.e. tethered, semi-
tethered or free diffusion, for example by trajectory postprocessing
with Single-Molecule Analysis by Unsupervised Gibbs sampling
(SMAUG) [35] which uses a machine learning approach to under-
cover the diffusion states underlying the determined fluorophore

trajectories. Similarly, Bayesian approaches may be used to iden-
tify single fluorophore bleaching steps to estimate stoichiometries
[36]. However, these are generally used after the tracking and tra-
jectory determination has taken place and are more accurately
classified as post-processing packages.

In Python, some single-molecule tracking codes have been
developed, trackpy is based on the commonly used Crocker and
Greir algorithm [24] and recently TRAIT2D [37] has also been
developed. However, these packages are not capable of molecular
stoichiometry analysis. In this paper, we present PySTACHIO, a
standalone single-molecule image analysis framework written in
Python 3.8 and based on our original MATLAB (MathWorks) frame-
work [38], that had been developed and improved from a range of
earlier core algorithms implemented both in MATLAB [39] and
LabVIEW [40,41] (NI), but used a MATLAB version and libraries that
gave improvements in computational speed through paralleliza-
tion of key For Loop structures [8]. Given single-molecule photo-
bleach image series, PySTACHIO tracks molecule positions
detected in the focal plane of the fluorescence microscope as a
function of time and calculates their stoichiometry and diffusion
coefficients. It fits a kernel density function to the measured
background-corrected intensities and produces an estimate of the
fluorescence intensity denoted as Isingle, that corresponds to the
characteristic brightness of a single fluorophore molecule inte-
grated over all pixels in the central circular region of the PSF minus
any contributions due to local background such as camera noise,
sample autofluorescence and of fluorophores that are not in the
focal plane but still contribute fluorescence detected by the camera
detector. This Isingle estimate can be used alongside interpolation
and model fits of the fluorophore photobleaching probability to
give the initial fluorescence intensity to estimate the stoichiome-
tries of detected fluorescence foci and estimate the total copy num-
bers of fluorescence emitter inside individual whole cells. It
includes an easy to use GUI which is configured to be installable
as a web hosted app (at the time of writing we have a demonstra-
tion instance available for public use) as well as a command-line
tool which may be used to run PySTACHIO on batches of data on
remote clusters. PySTACHIO is written to be both modular and
extensible and we hope that this skeleton application will be fur-
ther developed by us and others in the future.

2. Methods

The underlying principles of PySTACHIO are the same as those
in our previous code [38]. In brief, the algorithm works by generat-
ing candidate fluorescent foci from the raw image using an
optional Gaussian blur followed by a top-hat transformation to
detect the background. The image is then binarized, with the
threshold automatically determined from the peak of the pixel
intensity histogram. A series of morphological opening and closing
is used to determine candidate pixels associated with individual
fluorescent foci. The center coordinates are then optimized
through iterative Gaussian masking which when converged,
reports the central position to sub-pixel accuracy with a precision
related to the number of photons received from the fluorophore
and the pixel size (a general rule of thumb for 5 ms exposure
and a standard green fluorescent protein this lateral spatial preci-
sion is ~40 nm). Candidate foci are then assessed for signal-to-
noise ratio (SNR) by comparing the integrated intensity within a
5 pixel radius of the candidate center coordinate with the standard
deviation of the pixel intensities inside a larger 17 � 17 pixel
square centered on the fluorescent focus center, excluding those
within the center circle. Those that fall below the threshold (typi-
cally 0.4, whose value is informed by in vitro calibration data using
surface immobilized fluorophores [10] combined with
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edge-preserving filters applied to the time-resolved data that allow
single-molecule bleach steps to be detected directly [42]) are then
removed from the candidate foci list, while the remaining accepted
foci are then corrected for local background by subtraction of the
mean of the intensities of the local background pixels within the
17 � 17 pixel square but excluding the 5 pixel radius circle.

Foci detected in successive frames are then linked into particle
trajectories if the distance between them falls between a user-
settable parameter, by default 5 pixels based around the typical
width of the PSF, specifically approximately the full width at half
maximum of a single GFP molecule PSF in our single-molecule
microscope [43]. The linked foci are built up into a trajectory which
is written to a file alongside key information at that frame –
namely intensity, foci widths, and SNR values. These are trivially
read in for post-processing or visualization either with PySTACHIO
or with a range of bespoke software. If two trajectories collide, both
are terminated at that frame at the coincident locus since this
results in the lowest likelihood for incorrect linking of nearby flu-
orescent foci, but trivial user-modification of this criterion can
enable linking-decision criteria based on physical parameters such
as foci intensity to generate much longer trajectories if required
[44].

Single-molecule foci intensities, Isingle, are estimated by taking
the background-corrected intensities as calculated above for all
foci, or optionally for all foci in the final half of the data acquisition

in which most of the sample has been photobleached. The intensi-
ties are then binned into a histogram, and a kernel density function
estimate (KDE) [12] fitted using the gaussian_kde routine from
scipy with a kernel width set to 0.7 (set on the basis of typical esti-
mates to size of Isingle compared to the background noise [45]).
The peak of this fit is then found, and this is taken to be the Isingle
value. Though we do not explicitly calculate or propagate errors on
Isingle values (or other estimated values) an error bar may be esti-
mated by taking the full width at half maximum value of the peak
in the KDE plot which corresponds to Isingle. Note however that
this approach relies on having good single-molecule data as an
input to the routine – the data should for example be fairly low
density, either monomeric fluorophores or photobleaching over
the course of the acquisition. Once the Isingle value is found, it
can be set as a parameter for future analysis runs rather than cal-
culating it each time. Using the Isingle value, the molecular stoi-
chiometry is found for each fluorescent focus by dividing its total
integrated intensity by the Isingle value to give the value for the
number of fluorophores present in that focus. For trajectories
which begin in the first four frames of the acquisition, we fit a
straight line to the first three intensity values of the trajectory
and extrapolate back to the initial intensity, which is used to gen-
erate a stoichiometry value corrected for photobleaching. A linear
fit is used as a compromise approximation to the expected expo-
nential photobleach probability function, since it approximates

Fig. 1. a) Flowchart of the PySTACHIO workflow; b) simulated data with identified foci indicated with red crosses. Here, the foci were simulated with Isingle 14,000, pixels
were 120 � 120nm in size, and the background had mean and standard deviation 500 and 120 counts respectively. c) Error on simulated foci in pixel units. Bar: 1 mm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the initial points of an exponential decay for higher stoichiometry
foci to acceptable accuracy, but also fits the flat linear section of a
step-wise photobleach of a lower stoichiometry fluorescent focus
during which potentially no photobleaching may have occurred
[46]. Other methods for stoichiometry determination involve
counting the number of steps directly [47]. This works well for
low copy number proteins in high SNR environments where single
steps are easily resolved but is less general, although has been
automated using methods such as Hidden Markov modeling [48].

Diffusion coefficients are generated from the detected trajecto-
ries by plotting the mean squared displacement as a function of
time for each diffusing particle. The initial section of the mean
squared displacement (MSD) vs. time interval relation for each
tracked focus (by default, the first four time intervals values) is
then fit with a straight line, and its gradient and intercept
extracted. By default, the fitting algorithm constrains the intercept
to be the known localization precision (this is a limitation of the
current implementation – other work as demonstrated that in
the presence of camera blur and other errors this assumption
may be faulty [49]). The diffusion coefficient is then given as the
gradient divided by four for 2D diffusion in the lateral focal plane
of the microscope. Typically, trajectories of five frames or fewer
are disregarded from the diffusion analysis, but this parameter
may be modified by the user to account for longer or shorter dura-
tion trajectories depending on their specific imaging conditions.

Simulated diffusing and photobleaching fluorescent foci are cre-
ated with an initially pseudo-random position. If the diffusion
coefficient is non-zero, the fluorophore is assigned a pseudo-
random displacement drawn from a distribution designed to give
the input diffusion coefficient as time t?1. The foci photobleach
after a pseudo-random time, the scale of which is set by a user-
set bleach time parameter. If the maximum stoichiometry is above
1 molecule, each initial fluorescent focus is given a pseudo-random
number of fluorophores and hence has intensity n*Isingle. After
each frame, each fluorophore has a probability of photobleaching
and those that do have their brightness removed from the simula-
tion while the others remain. This static probability of photo-
bleaching on each frame mimics the step-wise photobleaching
behavior of clusters of fluorophores and can be used for Isingle
analysis (see Fig. 2). Note that here that unlike state-of-the-art flu-
orescence simulation packages (e.g. FluoSim [50]) we do not seek
to model exact fluorophore photophysics so parameters such as
fluorescence lifetime, photoblinking, and emission distributions
are neglected. Instead, in PySTACHIO the desired number of fluo-
rophores are seeded in an ‘‘on” (or emitting) state, and stochasti-
cally photobleach with a user-settable probability per frame
which leads to an overall exponential decay of emitters. After pho-
tobleaching, fluorophores do not return to the on state. Fluo-
rophores photobleach with a uniform probability of
photobleaching at any point within a frame exposure. To simulate
this, we generate a uniform random number between 0 and 1 and
give the following frame that fraction of Isingle in addition to the
n*Isingle that it receives due to the emitters in the on state. During
diffusion simulations, fluorophore movement occurs as a step at
the end of each frame and the fluorophores are assumed to be sta-
tic throughout the frame integration time – an assumption which
significantly improves computational efficiency, but which could
be improved in later version of the codebase. Similarly, we do
not model fluorophores diffusing in and out of the plane of focus
which would require not only 3D diffusion but also a 3D PSF,
increasing computational complexity considerably.

A graphical user interface (GUI) which runs locally in a browser
window was written using plotly Dash and is capable of selecting

files, running analysis, changing parameters, and showing results
and simulated data on separate tabs. On the command line, we
make use of Python 30s multiprocessing module to parallelize the
tracking portion of the code using multiple CPU cores in a way
analogous to OpenMP. PySTACHIO is not GPU-accelerated at this
time.

The overall workflow of PySTACHIO is given in flowchart form
in Fig. 1a.

Fig. 2. Simulated step-wise photobleaching of immobile multi-fluorophore foci. a)
The KDE fit of measured intensities gives an accurate estimation of Isingle (input
Isingle ~14,000 counts); b) intensity plots of the tracked foci show characteristic
photobleaching steps. Inset: Chung-Kennedy [42] filtered intensity traces show
clear steps; c) the rounded stoichiometry reproduces the input stoichiometry
within error across the stoichiometry range 1–25 molecules.
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3. Results

3.1. PySTACHIO performs well at identifying foci in simulated data

Fig. 1b shows simulated image data with crosses overlaid at the
detected positions of simulated fluorophores, where the simulation
parameters were taken to be consistent with experimentally
observed values (Isingle = 10,000 bg_mean = 500 bg_std = 120
num_spots = 10 frame_size = (128,128) diffusion_coeff = 1.0
pixel_size = 0.120 [these are the default simulation parameters
for both the installable PySTACHIO and the web-hosted instance]).
By measuring detected positions and comparing to the known sim-
ulated ground truth, we can plot the root mean squared error
(Fig. 1c). We note that that these errors are sub-pixel in scale with
the modal error being around 0.2 pixels, a distance in our simula-
tion of approximately 20 nm, comparable to previous experimental
findings [51]. In Fig. 1b, we see that in this case out of ten foci with
optimal parameter choices (snr_filter_cutoff = 0.4 bw_threshold_t
olerance = 0.8 num_frames = 2 subarray_halfwidth = 8 inner_mas
k_radius = 3 max_displacement = 7 filter_image = Gaussian min_-
traj_len = 2) all ten are detected, which is consistent with (though
slightly superior to) previous detection accuracies with this
method [38] – however, this is highly dependent on well-
optimized parameter choices.

We have also applied PySTACHIO to previously generated chal-
lenge data [17] using the SNR = 4 diffusing data set which was
noted to be the threshold for most packages to reliable super-
resolve foci. Run on single frames with optimal parameter choices
(snr_filter_cutoff = 0.6 num_frames = 100 pixel_size = 0.067 bw_t
hreshold_tolerance = 0.5 subarray_halfwidth = 8 struct_disk_radi
us = 10 inner_mask_radius = 3max_displacement = 7 filter_image =
Gaussian min_traj_len = 3), we find that 83–100% of foci are iden-
tified, with an average detection rate 92%. Here, we used a radius
cutoff of 2 pixels to discriminate between false and true positives.
False positives range between 0 and 4 per frame with an average
1.3 false positive foci per frame (note that each simulated frame
here has ca. 50 spots so this represents a low percentage error).
Per frame, we find between 0 and 12 false negatives with an aver-
age of 5.5 false negatives per frame. This is consistent with PySTA-
CHIO and ADEMSCode performance on other trial data – we find
that in general false negatives outnumber false positives as foci
are discarded which are too close together and cannot be found
if they are too close to the frame edge, as the bounding box would
then extend beyond the frame itself. With these detection and
error rates, we report a frame-by-frame Jaccard similarity index
0.8–1.0, mean 0.91. Compared to the ground truth data, we find
a root mean square localization error of 0.47 pixels, which at this
simulated pixel size corresponds to approximately 30 nm.

However, PySTACHIO’s more common operation mode is trajec-
tory linking, and with this enabled we also discard any spots which
are not part of a trajectory with a length greater than a user-
specified cutoff (usually three frames). This leads to higher error
rates but fewer false positives. Running PySTACHIO with trajectory
linking reflects this. Here, we find an average true positive rate of
81.9 (range 66.1% to 92.5%), average false negatives per frame
increase to an average of 14.1 false negatives per frame (range
6–22), and false positives reduce to an average of 0.5 false positives
per frame (range 0–4), leading to an average Jaccard similarity
index of 0.81 (range 0.65–0.93). We note here that we do not cor-
rect for putative ‘dropped frames’ as do other software platforms
[17] – we insist on strict linking where each spot must be detected
and localized within the cutoff radius for each frame step. In the
highly diffusive subcellular environment this strict linking
increases confidence in individual tracks though does so at the cost
of removing some trajectories from later analysis.

We also used the challenge data to accurately measure the per-
formance of our code compared to that of our previous version
ADEMSCode. We found that with the same parameter set, PySTA-
CHIO tracked all 100 frames in ca. 60 s while it took ADEMSCode
around 560 s for the same tracking operation – a speedup in the
new version of approximately 10x.

3.2. Simulating step-wise photobleaching

By giving each simulated fluorescent focus a notional number of
fluorophores, we can simulate clusters of proteins. In the simula-
tion parameters, we specify a probability of each fluorophore pho-
tobleaching between simulated frames. To simulate the next frame
therefore we iterate through each fluorophore and generate a uni-
form pseudo-random number to determine if the fluorophore has
photobleached (trivial modifications also allow users to define dif-
ferent probability distributions depending on the photophysics of
the dye under study and the imaging environment). Repeating this
for many frames gives an image where initially bright foci decay in
a stochastic step-wise manner with an underlying exponential
probability, as seen in Fig. 2b. We have also implemented the
Chung-Kennedy step-preserving filter [12] here which is shown
as an inset to Fig. 2b.

3.3. Single fluorophore brightness determination, and measuring

stoichiometry

Tracking the intensity of all the foci across all frames we can
form a histogram and approximate this with a Gaussian kernel
density function with a specified bandwidth. By taking the peak
of this KDE we approximate the underlying Isingle value, i.e., the
integrated intensity of a single molecule (Fig. 2a). Dividing the ini-
tial brightness of the focus, we can find the number of fluorophores
that compose it, the so-called stoichiometry. We estimate the t = 0
intensity of the focus by fitting the intensities of the focus in the
second, third, and fourth frames with a straight line and extrapo-
lating this back to the first frame to approximately correct for pho-
tobleaching. This extrapolated brightness is then divided by the
Isingle value to give the stoichiometry. Testing this on simulated
data gives excellent agreement with the input ground truth values
(Fig. 2c). It is easy to modify the form of the interpolation function
as required, for example to use an exponential interpolation, how-
ever, a straight line we found to be a pragmatic compromise to
both approximate a short section of an exponential photobleaching
response function but also provide reasonable interpolation in
instances where no photobleaching of track foci had actually
occurred for which exponential interpolation would be unphysical.

3.4. Generating trajectories for simulated diffusing fluorophores

By comparing localized foci between frames and applying a dis-
tance threshold, we work out which pairs of foci are likely to be the
same molecule. These have their positions linked between frames
to form a trajectory. Comparing the input ground truth to the mea-
sured trajectory (Fig. 3a) shows an excellent level of correspon-
dence, with the same distribution of absolute errors as in Fig. 1c.

3.5. Determining diffusion coefficients in simulated data

To determine the diffusion coefficient for each tracked fluores-
cent focus, we begin by plotting the MSD against time interval, s
(Fig. 3b). According to Brownian motion, these plots should be a
straight line whose gradient is four times the diffusion coefficient.
We therefore fit a straight line and extract the gradient to estimate
the diffusion coefficient. In order to avoid biases due to unusually
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long trajectories, by default we take only the first four MSD plot
points, and we weight the linear fit to these towards the lower s
values containing more points. In our previous MATLAB implemen-
tation this was also constrained such that the intercept of the fit
passed through the known localization precision. The default set-
ting in PySTACHIO performs an unconstrained fit to cover instances
where users have not measured the localization precision; how-
ever, we found that the average diffusion coefficient estimate is
still within errors of the ground truth. As we see in Fig. 3c the
straight-line fits give a distribution of values centered around the
simulated ground truth. Running and tracking ten simulations at
each simulated diffusion coefficient, we build up statistics as in
Fig. 3d. Although the spreads are relatively high, the ground truth
line hits each interquartile range which for single-molecule data is
an acceptable level of accuracy. We note however that in general
our estimations skew marginally lower than the ground truth val-
ues. We hypothesize this to be due to the step-length distributions
in each simulation. As diffusion coefficient increases, the chance of
a fluorophore moving a step length greater than our distance cutoff
for a fluorophore to be linked between successive frames goes up.
Because of this, trajectories may be split into two parts, each of
which necessarily contains the lower-apparent-diffusion parts of
the trajectory. Although this is a weakness, it is common to all
distance-cutoff methods and underlines the need for thoughtful
selection of parameters based on fluorophore density and the
physical properties of the system under investigation. We also note
that this small bias is in all case significantly less than the standard
deviation.

3.6. PySTACHIO computational efficiency

Fig. 4 shows the computational scaling of PySTACHIO with com-
mon variables. In Fig. 4a, the scaling of PySTACHIO shows the
expected quadratic scaling with frame size, though with an artefact
for low frame sizes. These simulations were performed with a fixed
number of simulated foci and as such, as the frame size increases
the effective focus density is reduced. This is correlated with a
decrease in overall runtime despite the larger frame. We hypothe-
size that in some circumstances Gaussian masking can take signif-
icantly longer to converge in the case that there are two or more
fluorophores in close proximity that lead to heightened or irregular
local backgrounds, leading to overall profiling of the Gaussian
masking to get a higher standard deviation of runtime as shown
in Supplementary Fig. 1. Between the 64 � 64 and 128 � 128 pixel
simulations therefore the higher overhead of the larger frame is
outweighed by the cost savings of fluorophores which are more
spatially separated.

In Fig. 4b we see the scaling due to number of foci (though with
a large enough frame size that the fluorophores remain spatially
separated), while in Fig. 4c the scaling due to number of frames.
In each case the scaling is linear, which is the expected behavior
given the O(N) scaling considerations in each case.

3.7. GUI and terminal modes

As well as being run in the terminal, plotly.dash was used to
create a browser-based dashboard. Here, users can select files for

Fig. 3. a) Simulated fluorophore trajectory with the tracked trajectory overlaid; b) mean squared displacement (MSD) plots for diffusing fluorophores; c) histogram of
measured diffusion coefficients; d) box plot showing the distribution of measured diffusion coefficients for given input diffusion coefficients. Here the orange central line is
the mean, with the box itself representing interquartile range (IQR). The whiskers represent the IQR ± one standard deviation, and circles show datapoints outside this range.
In all cases, the ground truth line (dashed in black) passes through the interquartile range of the measured diffusion coefficients. The upper simulated limit for diffusion
coefficient is set by theoretical considerations of the maximum detectable diffusion coefficient based on the criterion of a maximum of a five pixel separation between foci in
subsequent image frames to be considered part of the same focus trajectory assuming rapid Slimfield millisecond single-molecule microscopy [55]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

J.W. Shepherd, E.J. Higgins, Adam J.M. Wollman et al. Computational and Structural Biotechnology Journal 19 (2021) 4049–4058

4054



tracking and post-processing and change key parameters to
observe their effect on results. Users can also choose to simulate
data within the GUI application and is therefore most suited to
smaller datasets, new users, or exploratory/preliminary analysis.

By contrast, the terminal application supports batch processing
and runs in headless mode with results written to files including
graph generation for usual usage modes, such as stoichiometry cal-
culation, diffusion coefficient calculation, and so on. Usage on the
command line is in the following format: PySTACHIO.py tasks file_-
root keyword_args where tasks is one or more from track simulate
postprocess view where the arguments must be separated by com-
mas but without spaces; file_root is the path and root name of the
file to be tracked (if in simulation mode, this is used for output
files) and should be specified without the .tif extension. This root
is used also for all the output files and plots. keyword_args allow
the user to specify individual parameters to override defaults, e.g.
snr = 0.5. The command line implementation can therefore be triv-
ially used to script convergence tests across a range of parameters,
producing graphs for each condition.

3.8. Visible copy number analysis

If the user supplies a binary cell mask in .tif format where pixels
of value 0 represent background, value 1 pixels belong to cell 1,
PysSTACHIO will find the integrated and background-corrected
intensity for each cell in the first bright frame and report an
approximate copy number for that segmented binary large object
(BLOB), valuable for users who wish to know how many fluores-
cently labelled biomolecules are, for example, present in any given
single biological cell. Under tests (see Fig. 5a) we simulated 100
fluorophores pseudo-randomly distributed in a 3D rod-like bacte-

rial cell typical of many light microscopy investigations, focused
at the midplane of the cell. We performed this ten times with vary-
ing noise. The mean total copy number was 99 ± 0.2(S.E.M.), once
corrected for the presence of any of out-focal-plane fluorescence
[51].

3.9. Linking foci in dual-color experiments

For two-color experiments, often employed to enable whether
different biomolecules in a cell interact with each other, the color
channels are analyzed separately initially as for single color micro-
scopy. The tracked foci data for each position are used to generate
the distances between each set of fluorophores between frames in
each channel. Foci pairs with a distance higher than a user-settable
cut-off (default five pixels) are discarded. The rest have an overlap
integral calculated using their fitted Gaussian widths, and if this
integral is above a threshold the pairs are taken to be colocalized
[39]. In experimental data, such putative colocalization can then
be indicative of binding between tagged molecules, at least to
within the experimental localization precision of typically a few
tens of nanometers.

Tests on simulated data (Fig. 5b) show that the algorithmworks
well in high SNR regimes, with all located foci correctly linked.
However, the simulated data has various simplifications not pre-
sent in real data. First, simulated two color data has perfect regis-
tration between channels, while for real data channels can be
misaligned or contain chromatic and other aberrations necessitat-
ing linear or affine transformation between channels and tracked
foci data. Depending on the microscope this may introduce a sig-
nificant source of error. In simulated data, the foci are high SNR
and have the same SNR across colors which is generally not true

Fig. 4. Scaling of runtime for PySTACHIO with a) frame size, b) kinetic series length, and c) number of foci to track; d) a screenshot from the GUI mode showing parameter
selection and tracked trajectories. In panels a-c the error bars represent standard deviation. For each data point, the tracking software was run five times. In panels b) and c)
frame size was 256 � 256 pixels. In panels a) and c) the number of simulated foci was 10. In panels a) and b) 100 frames were simulated.
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for real life data and again introduces error. Careful interpretation
of output data is therefore necessary.

3.10. Comparison to live cell data

We compared PySTACHIO to previously describe single-
molecule localization data obtained from a study of a fluorescently
labeled transcription factor, Mig1, inside live budding yeast cells
[1] and analyzed trajectories for foci stoichiometries. Our results
(Fig. 5 panels c and c) show good agreement with previously
described results. A fitted Gaussian kernel density estimation
shows a peak at 4.4 which as half width at half maximum 4.5, a
range which is within error of published results for a cluster size
of associated Mig1 molecules [4,46].

4. Discussion

Our single-molecule analysis software has been translated into
Python and is now between 10 and 20� faster than the MATLAB
implementation. It also has a user-friendly interface alongside a
simple-to-script command line interface for power users. Our
results work well on simulated data and are comparable to previ-
ous analyses of experimental data.

PySTACHIO is capable not only of tracking particles and track
analysis but also simulation and molecular stoichiometry calcula-
tion for even high (10–100 s) stoichiometries. It is written entirely
in Python 3.8 and free packages for Python and is written in a mod-
ular and extensible way to facilitate customization for a wide array

of image analysis projects. PySTACHIO is released under the MIT
license allowing anyone to download and modify our code at any
time. We hope therefore that our program will be accessible for
new users and democratize image analysis as well as forming a
basis for advanced users to interrogate their data in depth. Partic-
ularly, there is enormous potential to integrate PySTACHIO into
recent Python microscope control software [52,53] and to imple-
ment this code for applications high speed Slimfield and correla-
tive microscopy [54].

5. Code availability

The PySTACHIO source is available to download from GitHub at
https://github.com/ejh516/pystachio-smt. A static version of the
code used for this publication is available via Zenodo [56]. PySTA-
CHIO will soon be available as an installable package on PyPI as
pystachio-smt. A web-hosted instance is available at the time of
writing for public use which contains the key utilities of the code
as described to enable users to explore its functionality prior to
downloading locally and adapting to their own specific needs.
Details of how to access this web version are available in the
GitHub.
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