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A multi-task deep learning neural network for predicting 
flammability-related properties from molecular structures†
Ao Yang ‡,a,b, Yang Su ‡,c,a, Zihao Wang a, Saimeng Jin a, Jingzheng Ren b, Xiangping Zhang d, 
Weifeng Shen *,a and James H. Clark e

It is significant that hazardous properties of chemicals including replacements for banned or restricted products are 
assessed at an early stage of product and process design. This work proposes a new strategy of modeling quantitate 
structure-property relationships based on multi-task deep learning for simultaneously predicting four flammability-
related properties including lower and upper flammable limits, auto-ignition point temperature and flash point 
temperature. A multi-task deep neural network (MDNN) has been developed to extract molecular features 
automatically and correlate multiple properties integrating a Tree-LSTM neural network with multiple feedforward 
neural networks. Molecular features are encoded in molecular tree graphs, calculated and extracted without manual 
actions of the user or preliminary molecular descriptor calculation. Two methods, joint training and alternative 
training, were both employed to train the proposed MDNN, which could capture the relevant information and 
commonality among multiple target properties. The outlier detection and determination of applicability domain were 
also introduced into the evaluation of deep learning models. Since the proposed MDNN utilized data more efficiently, 
the finally obtained model performs better than the multi-task partial least squares model on predicting the 
flammability-related properties. The proposed framework of multi-task deep learning provides a promising tool to 
predict multiple properties without calculating descriptors.

1. Introduction
In the last decades, with the growth of chemical production, the potential 
risks associated with handling hazardous substances have always been of 
great concern to industry, government and the public. While the 
production and treatment of (hazardous) chemical substances are now 
strictly controlled in most regions, legislation affecting the chemicals 
themselves is only now becoming critical. The advent of Registration, 
Evaluation, Authorisation and Restriction of Chemicals (REACH) in 
Europe and similar chemical-focused legislation in other regions 
including China, Japan and Korea is forcing industry to assess the 
hazards of all industrial chemicals. Chemicals that are not proven to be 
sufficiently safe are to be banned or strictly controlled in use. Many 
widely used chemicals including some of the most important process 
solvents have been classified in this way, and the list of unacceptable 
chemicals is increasing rapidly. It is important that the hazardous 
properties of chemicals involving replacements for banned or restricted 
products are assessed at an early stage of product and process design.

In Globally Harmonized System (GHS) of classification and 
labelling of chemicals, four properties including flash point temperature 

(FPT), auto-ignition temperature (AIT), upper and lower flammability 
limits (UFL/LFL) are employed to classify chemicals using similar 
categories.1 The property, FPT, is often used to evaluate the flammable 
risk of organic liquid in REACH legislation. AIT is important for the 
assignment of temperature classes in explosion protection (i.e., ATEX in 
Europe) of plants and equipment, which can be used to assess situations 
in which a substance can spontaneously catch fire. UFL and LFL are 
usually seen as the ease with which a substance can burn or be ignited. 
The four properties are often used to estimate possibilities of catching 
fire on substances in many standards and codes.

It is however, very time-consuming to screen safer candidates of 
hazardous chemicals from many possible compounds through 
experimental assessments of all the key risk parameters in authorized 
laboratories. This is considered by many people to be a major 
disincentive to companies developing new safer chemicals to replace 
those hazardous compounds judged badly by REACH and related 
assessments. The GHS rule also states that if experimental values of any 
properties are unavailable to assess the hazardous level of a chemical, 
these properties of an individual molecule can be predicted by 
mathematical models such as quantitative structure-activity/property 
relationships (QSAR/QSPR). These predictive models could accelerate 
the process development at least during initial assessments and thus 
enable early go/no-go decisions in screening of alternatives with lower 
costs. Among these, the previous QSPR models can estimate properties 
by using some information of molecular structures, e.g., the occurrences 
of certain molecular groups2-4, molecular descriptors and properties5-7. 
Most existing studies of physicochemical properties involving AIT, FPT, 
UFL and LFL were reviewed by Nieto-Draghi et al.8 and Jiao et al.9. 
Herein, Table 1 exemplifies some existing models for predicting the four 
properties with various features of molecular structures.

Many studies applied group contribution methods and multiple linear 
regression (MLR) in predicting flammability-related properties, and other 
models were formulated with various numerical descriptors of molecular 
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structures. Except for linear models, non-linear regression (NLR) was 
employed to correlate more flexible models. The stochastic optimization was 
also used to build prediction models, for the globally optimized correlations 
e.g., Gharagheizi et al.10, 11, Pan et al.12 and Lazzús13. The existing studies based 
on both MLR and NLR suggested that outlier detection, applicability domain 
(AD) and uncertainty analysis should be used to evaluate the models14-17. Even 
though this provided a good accuracy for the flammability-related properties, 
all the studies as listed in Table 1 focused on correlating one property with 
molecular descriptors in a single task of model regression.

On the other hand, most of previous QSPR studies employed manually-
defined methods based on chemistry or graph theory to depict molecular 
features as numerical descriptors. For example, group contribution methods 

count occurrences of molecular fragments, but connectivity is frequently 
ignored among groups. When only one topological index of connectivity is 
used in a QSPR model, differences among atoms are frequently not recorded. 
If a new compound has an undefined group or other ambiguous features which 
cannot be depicted in these manually-defined methods, these models based on 
only a type of molecular descriptors could not provide a satisfactory 
estimation. Hence, a variety of descriptors have been developed to enhance the 
resolution and coverage of diverse molecular structures.18 As an example, the 
group contribution plus (GC+) proposed by Hukkerikar2 combined the multi-
level group contribution and atom connectivity indices for wider correlation of 
more properties. However, it might be time-consuming to select the best 
descriptors for a task of QSPR modeling.19, 20

Table 1. The typical available QSPR-based models for predicting flammability-related properties. 
Property Molecular features Models Reference
FPT The occurrences of molecular groups MLR Hukkerikar et al.2

The occurrences of molecular groups MLR Frutiger et al.3
Atom connectivity indices, the occurrences of molecular 
groups

MLR Suzuki21

Topological indices MLR, ANN Patel et al.5 
The occurrences of molecular groups MLR Alibakhshi22

Molecular descriptors, boiling point MLR Katritzky6

The occurrences of molecular groups GA-MLR Gharagheizi et al.10 
The occurrences of molecular groups ANN Gharagheizi et al.3
The occurrences of molecular groups SVM Pan et al.4 

AIT The occurrences of molecular groups MLR Hukkerikar et al.2 
The occurrences of molecular groups MLR Frutiger et al.3 
The occurrences of molecular groups ANN Albahri23

Atom connectivity indices MLR Suzuki24

LFL/UFL The number of carbon atoms NLR Shimy25

The occurrences of molecular groups MLR Frutiger et al.3 
The occurrences of molecular groups NLR Albahri26

The occurrences of molecular groups ANN Gharagheizi27, 28

Molecular descriptors GA-MLR Gharagheizi11

Topological, charge and geometric descriptors GA-MLR Pan et al.12 
The occurrences of molecular groups ANN-PSO Lazzús13

Molecular descriptors ANFIS Bagheri et al.29 
The occurrences of molecular groups NLR High and Danner30

The occurrences of molecular groups MLR Rowley et al.31 
Abbreviations: genetic algorithm (GA), artificial neural networks (ANN), particle swarm optimization (PSO), adaptive neuro fuzzy inference system 
(ANFIS), support vector machine (SVM)

A data-driven technique, deep learning, has been recently employed to 
build QSPR/QSAR models.32-35 One important reason is that deep learning 
techniques can extract valuable features automatically and discover potential 
relationships among various big data. For example, in the Tox21 Data 
Challenge launched by NIH, EPA and FDA36, various deep learning neural 
networks (DNNs) were employed to automatically extract the relevant 
molecular features from a huge number of descriptors and detect toxicophores. 
This could help chemists to identify valuable candidates at early stage and with 
less manual work. As the powerful capabilities of DNNs on extracting features, 
deep learning techniques can formulate QSPRs/QSARs from visual 
representations of molecular structures, e.g., images learned by convolutional 
neural network (CNN)37, texts learned by recurrent neural network (RNN)38 
and graphs learned by graph neural networks (GAN)35, 39, 40. Even though deep 
learning provides a way to reduce the dependency of QSPRs/QSARs on 
molecular descriptors41, the powerful ability could easily make DNNs over-
fitted on small data sets. The reason is that DNNs are often formed in the 
sophisticated architectures involving a very large number of parameters.

Generally, the best way is to train a QSPR/QSAR model based on deep 
learning using a larger number of samples. Although the prediction models10, 

27, 28 of flammability-related properties performed well, they were trained on    
more data points including estimated values. In fact, the experimental data  sets 
of four flammability-related properties are available with small sizes in 
DIPPR801 database according to  previous studies3. We noticed that multi-task 

learning (MTL) is a type of transfer learning that can gain relevant knowledge 
among multiple tasks for modelling on a small data set, even though the 
relevant knowledge among these tasks may be tenuous and unnoticeable to 
humans42. Caruana43 studied many technical details in this field and 
summarized the improvements over single task learning (STL) obtained by 
MTL: a) amplification of used data; b) attention focusing; c) representation 
bias and feature selection; and d) regularization against overfitting. Hence, 
MTL was used to tackle data deficiencies or improve prediction performance 
for modelling QSARs/QSPRs based on molecular descriptors, e.g., ANN with 
a multiple output layer44 and multi-task partial least squares (PLS)45. It should 
be mentioned that the multi-task PLS requires that every molecule in the 
training set have a complete set of properties. If a particular row of employed 
data sets has a null value of a feature or a target property, the row 
corresponding to a compound cannot be utilized in the training of multi-task 
PLS models.

In this research, an architecture of multi-task deep learning neural 
networks (MDNN) is proposed to establish the predictive model for  
flammability-related properties. Molecular structures are transformed into 
directed acyclic graphs (DAGs) by a program developed in this work, and the 
DAGs are vectorized by two techniques,  word embedding and a tree structured 
long short-term memory46 (Tree-LSTM) network. Importantly, unlike previous 
models, there is no need to extract corresponding features of molecular 
structures through pre-defined descriptors. The proposed MDNN can extract 
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molecular features related to a unique property and may capture some possible 
interactions among multiple properties using two training strategies, i.e., joint 
training and alternative training. The procedures involving outlier detection 
and AD analysis are also proposed to assess the predictive model based on 
multi-task deep learning. All of these are aimed at  developing an automatic 
tool of multi-task QSPR modelling that can simultaneously correlate diverse 
target properties in one deep learning model without descriptor selections, and 
fully utilize limited experimental datasets. Another technique of multi-task 
learning, PLS regression, is taken as a baseline of comparison to highlight 
better performance and scalable data-handling capacity of the proposed 
MDNN.

2. Methodology
The entire architecture of MDNN is first introduced  which involves two types 
of modules (see Fig. 1): (1) An encoder based on the Tree-LSTM network46 
that can vectorize the molecular structures depicted in DAG, as well as capture 
all relevant features and commonality for all tasks; (2) Multiple feedforward 
neural networks (FNNs) are assigned for extracting task-specific features 
(learning personality of each task) and outputting each property respectively. 
Afterwards, the implementation and modelling of MDNN are detailed. In the 
data preparation, SMILES expressions were converted to DAGs using our 
program based on Faulon’s algorithm47 in advance. Each vertex of a DAG was 
labelled in a string involving symbols of atoms and chemical bonds, and the 
strings were mapped to vectors with the algorithm of word embedding48. The 
procedure had been proposed to transform molecular structures in the previous 
work40. Herein, joint training and alternative training were both employed 
especially for the multi-task deep learning. The obtained model was finally 
tested on an external test set to validate the extrapolating ability. Empirical 
cumulative distribution functions (ECDF) of prediction residuals were 
employed to detect outliers. The ECDF is a step function that increases by 1/n 
in every data point. An approach based on principal component analysis (PCA) 
was proposed to explore applicability domains of the obtained model.

2.1 Network architecture

As mentioned above, the Tree-LSTM network is used as an auto-encoder to 
extract the holistic features of a molecular structure for all properties. In 
contrast, several FNNs work similarly to filters which only capture the relevant 
features for each property. Herein, four FNNs were used to correlate/output the 
four flammability-related properties and shared one Tree-LSTM network as 
the encoder of molecular structures.

2.1.1 The extraction block of molecular features. Since Tree-LSTM 
networks can traverse all vertexes in a DAG and mimic the topological graph 
of the DAG, the starting point is that molecular structures should be 
transformed to DAG forms. Although DAGs can be canonized in a certain 
rule47, the resulting canonical orientation is still likely to be quite arbitrary 
among all possible orientations39. Hence, in this study, every DAG was 
generated from each orientation (i.e., traversed from all possible root atoms) 
and was then vectorized by the Tree-LSTM network respectively. The whole 
workflow is presented and exemplified by the chemical 2,4,6-Trichlorotoluene 
(Fig. 2).

Fig. 1. The schematic diagram of MDNN for modelling QSPRs of 
multiple target properties.

Fig. 2. The molecular structure is transformed to a DAG and then simulated by a Tree-LSTM network.
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In the original format of DAGs, each edge does not correspond to a 
chemical bond of molecules and each vertex is only associated with each atom 
symbol. For example, a double bond between two atoms cannot be recorded in 
an original DAG, which is also contrary to the definition of DAGs. To record 
all bonds of a molecule, a modification was implemented on the original style 
of DAG, i.e., bond types are attached on adjacent atom symbols (see the third 
step in Fig. 2) in the children vertexes of a DAG. As the Tree-LSTM network 
only accepts vectors as inputs of each unit mapping to each vertex of a DAG. 
As such, the strings (i.e., “[c]”, “:[c]”, “-[Cl]”, “-[C]” and “-[c0]” shown in the 
third step of Fig. 2) representing the vertexes should be converted to vectors 
(i.e., v1~v5 shown in the fourth step of Fig. 2). A word embedding model, skip-
gram48, was employed to encode such strings as vectors.
Of note is that the Tree-LSTM network can be considered as a dynamic 
computational graph which has a self-adaptive capability of various molecular 
structures. For each DAG corresponding to a computation graph of the Tree-
LSTM network (see the fourth step in Fig. 2, there are five computation 
graphs), a recurrent algorithm traverses from the root vertex to leaf vertexes of 
each DAG and calculate corresponding units of the Tree-LSTM network 
according to the inputting vectors and neighbourhood outputs. Afterwards, all 
the vectors representing the DAGs of all orientation are summed into a vector 
which can represent a molecule (see the fifth and sixth steps in Fig. 2). As 
space is limited, more details related to the transformation of molecular 
structures, word embedding and Tree-LSTM are disclosed in the Sections S1 
to S3 of Supporting Information.†

2.1.2 The extraction block of task-specific features. Each task-specific 
block was used to extract relevant features of a specific property and output 
prediction values. Hence, the number of target properties will determine the 
number of task-specific blocks, i.e., the number of tasks. Theoretically, each 
task-specific block can be designed as a different FNN with the independent 

structure and parameters, and it is also workable to train each block with 
different optimizers respectively. In the task-specific block, an activation 
function, rectified linear (ReLU)49, was applied to perform non-linear 
transformations and generate activation values, since ReLU has lower 
computation consumptions and lower risks of gradient vanishing. Although the 
scalable architecture can provide flexible configurations for multiple tasks of 
modelling QSPRs, it becomes more challenging to optimize more hyper-
parameters. Herein, four FNNs corresponding to the four flammability-related 
properties (i.e., FPT, AIT, UFL, LFL) were configured with same structural 
parameters for lower complexity of optimization.

2.2 MDNN implementation and training

As the proposed MDNN includes a dynamic neural network (i.e. Tree-LSTM 
network),  it was implemented on an open-source software platform supporting 
dynamic networks, PyTorch50. All tasks of training, validation and testing were 
finished on the hardware platform with NVidia GTX1060 and Intel i5 8400. A 
parser based on RDKit51 was developed and Faulon’s algorithm40 was 
implemented in Python, to translate SMILES expressions into DAGs. 
Meanwhile, a simple implementation of word embedding algorithm52 was 
utilized to train the embedding vectors in TensorFlow53. After all programs 
were prepared, a multi-task prediction model of the four flammability-related 
properties was obtained using the procedure illustrated in Fig. 3.

In the workflow of Fig. 3, a regression algorithm named Adam54 was 
employed as optimizers to train the proposed MDNN. Eight optimizers were 
configured with different hyper-parameters for each task in alternate training. 
Meanwhile, another optimizer was employed to carry out the joint training on 
the entire MDNN. Additionally, early stopping was used to avoid overfitting, 
i.e., once there was no improvement on loss values of validation sets for a 
specified time (e.g., twenty epochs), the training process would be terminated.

Fig. 3. The overview of the methodology for formulating a multi-task QSPR model based on deep learning.

2.2.1 Data analysis and preparation. The experimental data involving 
FPT, AIT, LFL and UFL were used to train the MDNN, which were extracted 
from an authoritative database named DIPPR80155. The database, DIPPR801, 
provides the uncertainty and acceptance for each experimental data point in 
which all data had been checked and reviewed by database maintainers. Hence, 
it was employed in many QSPR studies as a reliable data source. A list of 
molecular structures was gathered from PubChem56 representing isomeric 
SMILES, including all the available compounds in DIPPR801 and other 
compounds. Some compounds involving inorganic gas, salts, metal-organics 
and metallic elements were excluded from the employed data set, as molecular 
structures of these unemployed compounds are significantly different from 

most conventional organics and their flammability property data are often 
unavailable. The employed datasets only including accepted and experimental 
values were stored in (Comma-Separated Values) CSV format. The lists of 
employed compounds are provided in the Section S4 of Supporting 
Information. †

As for different units and numerical levels among the four flammability-
related properties, it is necessary to standardize the raw data sets for easier 
training models. The reason is that the different numerical metrics could result 
in big gaps of gradient among each task. Note that the raw experimental 
datasets should be standardized in a linear transformation to guarantee that 
distribution shapes are not changed. The Z-score transformation as shown in 

Experimental 
values

Molecular 
structures
(SMILES)

Training 

Training set

Validation 
set

Test set

Divide 
data sets

Step 2:

Step 3: Define the deep learning model

Initial guess of hyperparameters:
Structural hyperparameters of network
Hyperparameters of optimizer 

Step 4: Train model and optimize hyperparamters

Only use the training and validation sets 
Observe the changes of loss of the training and  validation set
Manually tune hyperparameters after grid or random search 

Step 5: Outlier detection and formulation of the final model

Merge the training and validation sets  into one set
Calculate the ECDF of residuals of the merged set
Consider the data points as outliers below a probability of 
0.025 and above 0.975
Exclude outliers for data set
Re-divide data set to training and validation sets
Re-train the deep learning model 

Step 6: Evaluate the performance of the final model 

Use the test set to evaluate the final model
Analyze the applicability domain of the final model 

DAGs

Data preparationStep 1:

standardized
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Eq. (1) was employed that can always produce a distribution with a mean of 0 
and a standard deviation of 1.

     (1)
exp exp

expˆ i
i

x xx





where  represents the transformed property values and  refers to the 𝑥exp
𝑖 𝑥exp

𝑖

original values,   and σ are the average value and standard deviation of a 𝑥exp

data set, respectively. It should be noticed that the  and σ must be calculated 𝑥exp

on training sets, then two parameters are used to transform the validation and 
test sets.

All available data were employed in the initial correlation, in which 
outliers were not excluded. The final correlation based on the proposed MDNN 
was implemented without outliers. Tables 2 and 3 list the used data points for 
the flammability-related properties in the initial and final correlation, 
respectively. Table 4 shows information related to the ranges of raw data 
collected from DIPPR801 database. For training and optimizing the multi-task 
model, the data set was split into three sets including a training set, a validation 
set and a test set. The transformation should be only implemented on the 
training set of each property. The term “validation set” refers to the dataset 
utilized to determine the hyper-parameters and observe trends of loss for early 
stopping in training models. The test set was employed to test model 
performance finally after a deep learning model was well trained with 
determined hyper-parameters. All compounds both in the validation and test 
sets were sampled randomly. 

Before proceeding with the training, all molecular structures were 
converted into DAGs attached embedding vectors as mentioned above. Since 
the generation of embedding vectors does not need property data, many more 
compounds can be employed by the word embedding algorithm. In this work, 
23709 compounds depicted in SMILES expressions were employed to train 
the embedding vectors for each vertex of DAGs. At this stage, 170 symbols 
were extracted from all vertexes of the DAGs and each one was represented 
by a 48-dimensional vector. The symbols are listed in the Section S2 of 
Supporting Information. †

Table 2. Data points of the flammability-related properties used in the initial 
correlation.

Property Whole dataset Training set Validation set Test set
FPT 1176 822 177 177
AIT 501 349 76 76
LFL 449 315 67 67
UFL 350 243 53 54

Table 3. Data points of the flammability-related properties used in the final 
correlation.

Property Whole dataset Training set Validation set Test set
FPT 1176 822 177 177
AIT 480 334 70 76
LFL 443 309 67 67
UFL 329 226 49 54

Table 4. Ranges of used datasets on the flammability-related properties.

Property minimum maximum average
standard 
deviation

FPT 87.1 570 330 63.4
AIT 363 1283 651 120
LFL 0.0454 16.9 2.24 2.41
UFL 2.40 100 12.7 9.31

2.2.2 Training and evaluating a deep learning based QSPR model. 
Unlike single-task DNNs, there are two strategies to train multi-task DNNs as 
usual, i.e., alternate training and joint training.57 With joint training for 
property prediction, a distribution of vectors representing molecules in the 
chemical latent space is simultaneously organized by the four properties and 
commonalities among the four tasks which could be learned. There is a 
requirement on the training data for joint training, i.e., the experimental values 

of four properties must be available simultaneously in one data row. Therefore, 
all parameters of the MDNN can be trained in each epoch of the joint training. 
After the joint training had been conducted, alternate trainings were employed 
to train each FNN as well as the Tree-LSTM network in one epoch. It is not 
necessary to fill all training data matrices in the alternate training which could 
transfer some information from rich data sets to sparse ones. In the alternate 
training, only the corresponding FNN is updated for the current task during 
each iteration, while all parameters of other task-specific FNNs are frozen. 
Two types of loss function were employed in the two types of training 
methods. For the joint training, all parameters of the whole network were 
updated to minimize a combined loss function Eq. (2).58

                                     (2)1 2 2
1( , , ,..., ) ( ) log

2i i i
i i

   


 
  

 
W WL L

                                             (3)2
1( , ) ( ) log

2i i
i

 


  iW WL L

where W is used to represent model parameters and σi is the observation noise 
parameter (i.e., standard deviation) of each task. This loss function weighs the 
losses of all tasks using the homoscedastic uncertainty of each task, which 
allows each task corresponding to each property to be learned simultaneously. 
Li(W) representing the loss function for each task was calculated by mean 
square error (MSE) between the estimated values and the experimental values. 
It should be noted that the loss function Li(W) was employed for each FNN 
and the weighted loss function Li (W, σi) was used to train the Tree-LSTM 
encoder in the alternate training. The details related to model training are 
presented in the Section S5 of Supporting Information.†

2.2.3 Determination of hyper-parameters. It is significant to determine 
the optimal configuration of hyper-parameters for a deep learning model. In 
general, two parts of hyper-parameters should be determined: the structural 
parameters of deep neural network (e.g., number of hidden layers, number of 
neurons, types and parameters of activation functions) and parameters of 
training optimizers. Unfortunately, there is no such a universal configuration 
that can work well for all models and data sets. It is necessary to optimize the 
hyper-parameters for different models separately.

In most cases, two approaches, grid search and random search, can 
provide an acceptable configuration of hyper-parameters for a certain data set. 
Since there exist 19 hyper-parameters in the proposed MDNN, it is extremely 
time-consuming to assess all possible combinations of hyper-parameters. In 
the training process of the proposed MDNN, an initial guess of structural 
parameters is chosen to fix the network architecture referred to the successful 
practices in previous studies35, 58, 59. To reduce the complexity of 
hyperparameter optimization, the numbers of neurons in the hidden layers were 
scanned while the layer number of each task-specific FNN was fixed at four 
(three hidden layers and one output layer), since there were no significant 
improvements for more layers. Afterwards, a grid search was applied to find 
the optimal ranges of other hyper-parameters initially. The hyper-parameters 
were also fine-tuned into the optimal range manually. Herein, one or two 
hyper-parameters were tuned at a time manually, it should be observed whether 
the MDNN performance was improved on the validation sets after manual 
tuning. The finally adopted configuration of hyper-parameters are listed in 
Tables 5 and 6. After all the hyper-parameters were determined and validated, 
the model was tested on an external test set eventually.

Table 5. The finally adopted structural hyper-parameters of the MDNN.
Hyper-parameters Values
The dimension of embedding vectors 48
The memory dimension of the Tree-LSTM 32
The output dimension of the Tree-LSTM 32
The hidden layers of each task-specific FNN 3
The neuron number of each hidden layers in the FNNs 32

2.2.4 Statistical evaluation. The following statistical indicators were 
employed as the performance metrics to evaluate the learned MDNN model.

Mean absolute error (MAE) is the measure of deviation between the 
predicted values and the experimental values, and it is obtained via Eq. (4).
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Mean percentage error (MPE) provides an average of percentage error 
by which the predicted values differ from the experimental values, and it is 
expressed as Eq. (5).

Table 6. The finally adopted hyper-parameters of the training optimizers.
Hyper-parameters Values Tasks
The learning rate ηt 0.02000 Jointly, training the whole MDNN according to all properties
The learning rate η1 0.00120 Alternatively, training the Tree-LSTM network according to FPT 
The learning rate η2 0.00120 Alternatively, training the Tree-LSTM network according to AIT
The learning rate η3 0.0006 Alternatively, training the Tree-LSTM network according to LFL
The learning rate η4 0.00023 Alternatively, training the Tree-LSTM network according to UFL
The learning rate η1 0.00120 Alternatively, training the task-specific FNN according to FPT 
The learning rate η2 0.00180 Alternatively, training the task-specific FNN according to AIT
The learning rate η3 0.00009 Alternatively, training the task-specific FNN according to LFL
The learning rate η4 0.00020 Alternatively, training the task-specific FNN according to UFL
The batch size bt 32 Jointly, training the whole MDNN according to all properties
The batch size b1 32 Alternatively, for the Tree-LSTM and FNN corresponding to FPT 
The batch size b2 32 Alternatively, for the Tree-LSTM and FNN corresponding to AIT
The batch size b3 32 Alternatively, for the Tree-LSTM and FNN corresponding to LFL
The batch size b4 32 Alternatively, for the Tree-LSTM and FNN corresponding to UFL

                     (5)
exp pre

exp
0

1 100%
N i i

i i

x x
MPE

N x


 ∑

Since the correlation analysis reported in the published literatures21, 22, 24, 

32, 33, 60, 61 usually chose the correlation coefficients of r or R2 as the performance 
indicator, both of them were employed to assess the proposed MDNN in this 
research.

The Pearson correlation coefficient, 

                   (6)
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2.3 The outlier detection and AD determination

The outlier detection was also studied for deep learning based QSPRs in this 
work. The outliers of four tasks were detected with the empirical cumulative 
distribution function (ECDF) of the residuals between experimental and 
predicted values. The ECDF is a step function that increases by 1/n in every 
data point. Let (X1, …, Xn) be independent, identically distributed real random 
variables with the common cumulative distribution function F(t), then the 
ECDF can be defined as shown in Eq. (8) for a realization (x1, ..., xn). 

 (8)µ
1

number of element in the sample 1( )
i

n

n X t
i

tF t I
n n 




  

For a fixed t, the indicator  is a Bernoulli random variable with parameter 
iX tI 

p=F(t). The value of the ECDF is the number of samples whose sample value 
is less than or equal to t divided by the total number of samples n. This 
methodology was suggested in the residual analysis of group contribution 
models by Frutiger et al.14, in which the distribution of residuals could not be 
assumed as a normal distribution in advance. Frutiger et al.14 applied the 
approach on a unsegmented data set and repeatedly regressed a group 
contribution model after outliers were excluded. Finally, the model 
performance was improved successfully thanks to the reduction of residual 
dispersion. However, raw data sets are often divided into three subsets for 
training, validation, and test respectively in the modelling of QSPRs based on 
deep learning. Although outliers can be detected on all the three data sets, only 
the outliers in the training and validation sets can be excluded. The test set is 

often utilized to evaluate the generalization ability of a trained model of deep 
learning, which is independent to the training and validation sets and should 
not be evaluated in the model training. Moreover, there is a possibility that 
some compounds included in test sets could drift out of the latent chemical 
space determined by training and validation sets. To depict the latent chemical 
space learned by MDNN and check the changes of chemical space after outliers 
are excluded, we also investigated ADs of the final model from two aspects: 
structural domain and property domain.16

   Molecular features are depicted in a high-dimensional vector output by the 
Tree-LSTM network. As the high-dimensional vector cannot be visualized and 
analysed easily, it is suitable to apply a dimension-reduction algorithm, 
principal components analysis (PCA), on the determination of ADs involving 
training and validation sets62. We decided to assess structural space and 
property space together, i.e., all the high-dimensional vectors and target 
properties in a dataset were combined into a matrix. PCA can reduce 
dimensionality and enable only a few principal components (PCs) to retain the 
most of variance of all data. As such, ADs could be analysed and visualized in 
a lower dimensional space. Another factor is that the scope of an AD should 
be also determined, a strategy based on convex hull was applied to explore the 
AD boundary. For this reason, it is easy to discover whether some compounds 
in test sets exist outside the AD. Meanwhile, the outliers identified by ECDF 
can also be marked in a visualized AD, to investigate relationships between the 
outliers and ADs. The calculation method of convex hull is disclosed in Section 
S7 of the Supporting Information. †

3. Results and discussion
After the time-consuming tuning of hyperparameters was finished in the 
MDNN training, the obtained model was evaluated on the data sets. For each 
property, the model performance was measured in four statistical indicators 
involving MAE, MPE, r and R2. The identified outliers are provided in Table 
S10 of the Supporting information. †Another multi-task learning algorithm, 
partial least square (PLS) 45, were employed to compare with the proposed 
MDNN. Comparisons with the existing predictive models of flammability-
related properties are provided in Section S6 of the Supporting information. †

Two results are presented for two models obtained before and after 
outliers were excluded, respectively. Fig. 4 shows prediction deviations 
obtained by the model (Ⅰ) trained with all data points. After the outliers were 
identified and excluded, the proposed MDNN was re-trained without the 
outliers of training and validation sets. Outliers were identified for the retrained 
model (II) again, Fig. 5 provides predictions of the model (Ⅱ). In Figs. 4 and 
5, diagonal lines represent the equivalence between experimental values and 
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predicted values, while circles, rectangles, and plus signs indicate the predicted 
values of compounds in training, validation, and test sets, respectively. Tables 
7 and 8 present the values of performance metrics for the models (Ⅰ) and (Ⅱ) 
respectively. It suggested that the proposed MDNN model can accurately 
predict the four flammability-related properties with small deviations for most 
compounds.

The relationships between compound families as well as prediction errors 
have also been investigated according to the model (I). Distributions of 
compounds in various families were presented with MPE in Figs. S15~S18 of 
the Supporting Information. For each property, the MPE of each family was 
calculated on a union set of training, validation and test sets. Since a method 
of random sampling was used to divide data sets, some families with much less 
compounds would be not selected into the validation and test sets. As shown 
in Fig.S15~S18, chemicals in training sets are more diverse than validation and 
test sets. For example, several compound families (e.g., 1-alkenes, alkynes, 
formates, etc.) were not sampled into the validation and test sets for FPT, i.e., 
the diversity of training set is larger than that of validation and test set. Among 
the four properties, compounds correlated with FPT distribute in 79 families, 
the least number of families employed in the correlation of UFL is 67. 
Molecules used to train MDNN on AIT distribute in 73 families, and the 
compounds used in the correlation of LFL distribute in 72 families.

Although the MDNN model predicted FPT accurately on most 
compounds, the MDNN model would produce a large prediction error on a 
small molecule, for example, methane which only has one carbon atom. The 
model provided a good value of MPE within 10% on halogenated 
hydrocarbons only including a single atom of halogen. However, a large 
prediction error output by the MDNN model would show on the hydrocarbons 
halogenated with two different halogen atoms. Furthermore, if C=C double 
bonds existed in a molecule with halogen atoms together, the model would 
give a larger prediction error of FPT. The reason could be due to substitution 
positions of halogen atoms in halogenated olefins, which cause significant 
changes of chemical properties of these molecules. On the other hand, only a 
small number of halogenated olefins were available in the DIPPR801 database, 
MDNN cannot learn enough information of this compound family. For other 
compounds containing other heteroatoms, such as O,N,S,P,Si and other atoms, 
the model can also predict FPT accurately on most of these compounds. It can 
be found that the outliers are mainly concentrated in a few of compounds with 
multiple functional groups, such as dinitrobenzene, ethylene glycol, dimethyl 
chlorosilane. According to the AD analysis, 8 compounds were predicted 
outside the application domain, but only one compound, hexachlorobenzene 
was identified as an outlier because of its large relative error (19.8%). The 
reason could be only 1 to 3 chlorine atoms exist in aromatic hydrocarbons of 
the training set. 

Fig. 4. The experimental versus predicted values of four flammability-related properties for the training, validation and test sets obtained by the model (I): (a) 
FPT; (b) AIT; (c) LFL; (d) UFL.

The model can predict AIT as accurately as existing models. A large 
prediction error was observed mainly on peroxides, since only two compounds 
can be learned by MDNN in the peroxide family. In the other words, not 
enough samples involving the molecular feature “-O-O-” could be learned by 
MDNN. The MDNN model mainly predict LFL inaccurately on three 
compound families including nitriles, monoaromatics and aromatic esters. Five 

compounds were identified as the samples outside the AD of training set of 
LFL, i.e., isobutyl acrylate, benzonitrile, tetrafluoroethylene, hydrazine, and 
trans-decahydronaphthalene. For example, the model can estimate an 
acceptable value of LFL on tetrafluoroethylene, although MDNN did not learn 
the molecule including C=C bonds and four fluorine atoms. Benzoyl chloride 
and difluoromethane were determined as the samples outside AD of training 
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set of UFL, their relative errors were smaller than 20%. The highest prediction 
error of MDNN appeared on the families including mercaptans and 
polyfunctional C, H, O, N for UFL. Only two compounds of mercaptans can 
be used to train MDNN for predicting UFL. Another two compounds involving 
N-methyl-2-pyrrolidone and morpholine in the family of polyfunctional C, H, 
O, N were predicted with the high relative errors for UFL. In short, the MDNN 
model could show more prediction errors on polyfunctional molecules.

Among four flammability-related properties, the learned models (Ⅰ) and 
(Ⅱ) both provide the highest accuracy on FPT. For AIT, the values of MPE 
are also acceptable for the test set, however, the data points show more 
dispersion with smaller R2 and larger MPE than other properties. For LFL and 
UFL, these two models also provide an acceptable accuracy for most 
compounds while a few compounds deviate from the diagonal lines as shown 
in Fig. 4(c, d) and Fig. 5(c, d). It is worth noting that the magnitudes of LFL 
and UFL are smaller than those of FPT and AIT. Since the smaller absolute 
values tend to result in larger deviation in MPE, outliers can result in the higher 
MPE and lower R2 especially for LFL. As the distribution of raw data points 
of AIT are more disperse than those of other properties, these two models 
perform unexpectedly on AIT. However, the models can still predict properties 
precisely on the test sets. It suggested that the correlations between properties 
and molecular structures were learned by the proposed MDNN without 
calculating descriptors. Four empirical cumulative distribution functions 
(ECDFs) of prediction residuals are described in Fig. 6 for the model (Ⅰ). The 
two horizontal lines at the bottom and top of each subplot of Fig. 6 represent 
the probabilities, 0.025 and 0.975, respectively. Data points that are not 
reasonably likely expected to occur according to the empirical CDF can be 
considered as outliers, i.e. data points can be considered as outliers below the 
0.025 or above the 0.975 probability levels. The list of outliers is presented as 
Table S10 of the Supporting Information. † As shown in Table 8, the model 
(Ⅱ) performs better on the training and validation sets for FPT, AIT, and LFL 
according to MPE. The higher values of MPE is obtained by the model (Ⅱ) on 
UFL, despite higher values of r and R2. Comparing Table 7 and Table 8, we 
can see that the exclusion of outliers does not always provide better results for 
the deep learning model. Except for UFL, the model (II) provides worse 
performance on the test sets of other properties.

In this research, our interest is particularly focused on the changes of ADs 
caused by the exclusion of outliers. The matrix of an AD was reduced into a 

three-dimensional (3D) space for visualization, consisting of the molecular 
feature vectors and target properties of molecules. The three principal 
components (PCs) can explain more than 85% of variances in the raw space of 
training sets (33 dimensions). After the convex hull of AD was determined on 
training and validation sets, the compounds which may appear outside the AD 
were identified from a test set. For the model (Ⅰ), Fig. 7 presents the scatters 
of three PCs for training sets, validation sets, and test sets of the four properties, 
respectively. Meanwhile, the outliers are also marked in Fig.7, which was 
identified by ECDFs. The visualized ADs of models (Ⅰ) and (Ⅱ) are shown 
as 3D convex hulls in Figs. S11-S14 of Supporting Information. †

A convex hull defines an interpolation region formulated by experimental 
data and molecular feature vectors for a property. The boundary of a convex 
hull describes the smallest convex area covering a training set and the 
corresponding validation set. When a compound appears outside the convex 
hull, the compound will be extrapolated by the model built on the training and 
validation sets. Notably, the model has abilities to predict flammability 
properties on compounds outside ADs. For example, when the proposed model 
predicted FPT on squalene, the model still provided an accurate result (only 
3.33% relative errors), but the model did not learn the complicated molecular 
structure which included so many carbon atoms.

When the convex hulls and outliers are observed together (see Figs. S6-
S9 of Supporting Information †), more outliers appear near the boundaries of 
convex hulls or in the low-density region of scatters. Once the outliers were 
excluded according to residual ECDFs (see Fig. S10 in the Supporting 
Information†), the convex hulls would cover smaller ranges. The ADs of LFL 
and FPT became significantly narrower, while the ADs of AIT and UFL 
changed slightly. As discussed earlier, the exclusion of outliers did not result 
in better performance of the retrained model on test sets. In other words, the 
generalization ability of retrained models could be declined since less samples 
remains in the downsized training sets. It can be also observed that the convex 
hulls representing ADs also include some considerable empty space. If more 
outliers are blindly excluded, the ADs will be narrower and the empty space 
will be reduced. Although not each point in the convex hulls can correspond 
to a potentially feasible molecular structure, the outlier exclusion still may 
reduce the interpolation space of learned models and make predictive models 
meaningless.  As the empty space a learned model of interpolation covers, 
declines, so does the need to include property-space in the assessment.

Table 7. The performance statistics of the initially learned MDNN model (Ⅰ)
FPT (K) AIT (K) LFL (%) UFL (%)

MAE Training set 10.17/8.448a 38.14/32.41a 0.2918/0.2867a 2.032/1.472a

Validation set 12.27/10.51a 49.59/41.16a 0.3564/0.3449a 2.055/1.686a

Test set 10.96/10.45b 45.34/44.76b 0.3663/0.3445b 1.815/1.806b

MPE Training set 2.990/2.449a 6.069/4.925a 22.76/14.51a 14.50/11.75a

(%) Validation set 3.575/3.046a 8.143/6.409a 48.28/12.82a 14.77/11.68a

Test set 3.101/3.010b 7.218/7.071b 19.52/19.14b 15.39/15.40b

r Training set 0.9712/0.9856a 0.8757/0.9302a 0.9728/0.9736a 0.8880/0.9699a

Validation set 0.9561/0.9779a 0.7911/0.8847a 0.9608/0.9617a 0.7947/0.8920a

Test set 0.9660/0.9698b 0.8305/0.8237b 0.9702/0.9558b 0.8582/0.8521b

R2 Training set 0.9394/0.9680a 0.7632/0.8550a 0.9449/0.9464a 0.7883/0.9404a

Validation set 0.9060/0.9538a 0.6256/0.7623a 0.9164/0.9171a 0.6114/0.7602a

Test set 0.9303/0.9387b 0.6778/0.6780b 0.9138/0.8828b 0.6134/0.5294b

NOTE: a This value was obtained on the data set without the outliers identified by ECDF; b This value was obtained on the data points only involved in the AD 
determined by training and validation sets.

Table 8. The performance statistics of the finally re-trained MDNN model(Ⅱ)
FPT (K) AIT (K) LFL (%) UFL (%)

MAE Training set 10.15/8.995a 34.02/30.21a 0.2398/0.3207a 2.366/1.759a

Validation set 11.49/9.695a 40.65/32.74a 0.2772/0.3066a 3.026/2.430a

Test set 13.56/12.59b 56.12/54.34b 0.3881/0.2617b 2.439/2.505b

MPE Training set 3.120/2.729a 5.367/4.519a 16.27/17.77a 18.77/13.46a

(%) Validation set 3.401/2.937a 6.443/5.490a 19.87/12.10a 18.99/17.32a

Test set 4.001/3.762b 9.234/8.889b 19.26/16.77b 24.15/24.45b

r Training set 0.9808/0.9871a 0.9421/0.9204a 0.9754/0.9880a 0.9623/0.9633a

Validation set 0.9643/0.9836a 0.9135/0.9389a 0.9809/0.9812a 0.7832/0.8608a
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Test set 0.9554/0.9595b 0.8020/0.8015b 0.8876/0.9736b 0.8752/0.8490b

R2 Training set 0.9541/0.9775a 0.8845/0.9067a 0.9877/0.9586a 0.9238/0.9693a

Validation set 0.9214/0.9616a 0.8173/0.8778a 0.9619/0.9625a 0.5703/0.6254a

Test set 0.9022/0.9105b 0.5985/0.5920b 0.7435/0.9417b 0.6868/0.6107b

NOTE: a This value was obtained on the data set without the outliers identified by ECDF; b This value was obtained on the data points only involved in the AD 
determined by training and validation sets.

To the best of our knowledge, there is a lack of equivalent and available 
deep-learning models on the flammability-related properties that makes it 
difficult to compare the proposed MDNN with other existing models. 
Moreover, most existing models predict a single flammability-related property 
according to the manually selected molecule features. The proposed MDNN 
can correlate four flammability-related properties in a single model with 
molecular structures but not using pre-defined descriptors. Despite the large 
differences between the proposed model and existing single-task models, the 
proposed MDNN was still compared with the existing classical models 
(Section S6 of Supporting information †). The results show that the accuracy 
of the MDNN model is competitive to that of other types of classical models. 

Unlike some other studies those employ both experimental and prediction 
values, only the experimental values were used in this work. For the deep 
learning model, the smaller data sets could make the model performance less 
remarkable. 

In addition, a multi-task model, although it is not a deep learning model, 
was built based on PLS45 and Joback63 group-contribution method and used to 
compare with the proposed MDNN. The multi-task PLS has been implemented 
in the previous study45, but it requires all values of molecular features and 
target properties available for a compound at the same time; the finally 
employed data were less in PLS than those data correlated in the training of 
proposed MDNN.

Fig. 5. The experimental and predicted values of four flammability-related properties for the training, validation and test sets obtained by the model (II): (a) 
FPT; (b) AIT; (c) LFL; (d) UFL.

The multi-task PLS model can also correlate four properties in a single 
model successfully, but its predictions are less accurate. Fig. 8 presents the 
deviations between the predicted values and experimental values obtained by 
the multi-task PLS. The PLS model provides lower values of Pearson 
correlation coefficient r than those given by the MDNN model. The PLS model 
performs undesirably on AIT and shows some lower errors on other three 
properties. This could be attributed to the data dispersion of properties. In 
particular, the combustion reaction is complicated and related to various 
factors, e.g., chemical equilibrium, mass transfer, kinetics, etc. It is possible 
that uncertainty and inconsistent configurations in experiments may cause 
different measured values, and the impact of the gas composition is not 
frequently considered in experiments.64 All these factors are not always 
available for each compound in the common-used databases, although the used 
data were carefully reviewed in DIPPR801 database.

      The proposed multi-task learning strategy could be an approach to employ 
a unified molecular representation to correlate multiple properties in one 
model. We admit that it might be easier to obtain acceptable results via the 
previous single-task models specially designed for a unique property and with 
a particular representation of a molecule structure. However, these previous 
single-task models often describe molecular structures by various descriptors 
and their used data sets of properties could also be far different. As such, the 
ADs of various models are often different and there is a potential risk that 
various models may output different values on same compounds. The 
molecular representation can be unified in various models if the employed set 
of descriptors contains all the information of a chemical structure, however, 
this is practically impossible65. In this work, the proposed approach learns the 
molecular graphs directly, which aims to depict a molecule in 2D graphs as 
much as possible and unify the molecular representations for correlating 
various properties simultaneously, though all the precise information of 
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molecules cannot be still perfectly recorded. In other words, the selection and 
calculation of molecular descriptors can be eliminated in the modelling of 

QSPRs through the proposed strategy.

Fig. 6. The residual ECDFs for the training, validation, and test sets of: (a) FPT; (b) AIT; (c) LFL; (d) UFL, resulted by the model (Ⅰ) 

4. Conclusions
To accelerate the process development at least during initial assessments and 
thus enable early go/no-go decisions in screening of the banned or restricted 
products based on the hazardous properties, a new methodology has been 
developed.  This involves building QSPR models based on multi-task deep 
learning, involving data preparation, model training, outlier detection and AD 
determination. The methodology was successfully employed to correlate a new 
multi-task model for the simultaneous prediction of four flammability-related 
properties with a good accuracy. Compared with the multi-task learning 
technique of PLS, the proposed MDNN does not require that each molecule in 
the training set have a complete set of properties. Thus, the proposed MDNN 
can be applied on more samples and provides more accurate prediction. The 
proposed method can solve challenges in the descriptor-based QSPR 
modelling, e.g., the development of a suitable descriptor for property 
correlation, the selection of descriptor and correlation analysis. As MDNN 
employs 2D structures (SMILES) rather than 3D, it is much easier to do 
massive screening of previously-unknown compounds without having to do 
3D structural determination or prediction before property prediction. To avoid 

the risks of using the deep learning model, the outlier identification and AD 
determination were introduced into the evaluation of MDNN models. The 
residual ECDF was employed to identify these outliers. This study illustrates 
that it is feasible to observe the position of outliers in the latent chemical space 
with AD analysis based on PCA and the calculation of convex hulls. The 
results suggest that the ADs became narrower after outliers were excluded 
from training and validation sets. It can be also found that some compounds 
included in test sets appear outside the ADs. The exclusion of outliers could 
not necessarily improve the prediction ability of MDNN. The proposed method 
can identify whether the properties of a compound are estimated inside or 
outside the ADs of a deep learning model. Our strategy can open new avenues 
for modelling QSPRs with multiple-property outputs using the multi-task deep 
learning. This can be used as a promising tool for the data-driven virtual 
screening of green chemicals.
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Fig. 7. The data points obtained with PCA of four flammability-related properties in the 3D space

Fig. 8. The prediction versus the experimental values of the four flammability-related properties by the PLS-based multi-task model
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