UNIVERSITY of York

This is a repository copy of Highly efficient NHC-iridium-catalyzed β -methylation of alcohols with methanol at low catalyst loadings.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/175979/</u>

Version: Accepted Version

Article:

Lu, Zeye, Zheng, Qingshu, Zeng, Guangkuo et al. (3 more authors) (2021) Highly efficient NHC-iridium-catalyzed β -methylation of alcohols with methanol at low catalyst loadings. Science China Chemistry. pp. 1361-1366. ISSN 1674-7291

https://doi.org/10.1007/s11426-021-1017-0

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Highly Efficient NHC-Iridium-Catalyzed β-Methylation of Alcohols with Methanol at Low Catalyst Loadings

Journal:	SCIENCE CHINA Chemistry			
Manuscript ID	SCC-2021-0251.R1			
Manuscript Type:	Article			
Date Submitted by the Author:	n/a			
Complete List of Authors:	Lu, Zeye; Fudan University, Department of Chemistry Zheng, Qingshu; Fudan University, Department of Chemistry Zeng, Guangkuo; Fudan University, Department of Chemistry Kuang, Yunyan; Fudan University, Department of Chemistry Clark, James; University of York, Department of Chemistry Tu, Tao; Fudan University, Department of Chemistry			
Keywords:	hydrogen-borrowing, ligand effect, iridium, N-heterocyclic carbene, methylation			
Speciality:	Organic Chemistry			
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.				
Table1.cdx Table2.cdx Table3.cdx				

SCHOLARONE[™] Manuscripts

1	Highly Efficient NHC-Iridium-Catalyzed β -Methylation
2	of Alcohols with Methanol at Low Catalyst Loadings
3	Zeye Lu, ¹ Qingshu Zheng, ¹ Guangkuo Zeng, ¹ Yunyan Kuang, ¹ James H. Clark, ⁴ and
4	Tao Tu ^{1,2,3} *
5	¹ Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
6	Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438,
7	China.
8	² State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic
9	Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
10	³ Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou
11	450001, China.
12	⁴ Green Chemistry Centre of Excellence, University of York, York YO 105DD, UK.
13	*Corresponding Author: (email: <u>taotu@fudan.edu.cn)</u>
14	

Abstract: The methylation of alcohols is of great importance since a broad number of bioactive and pharmaceutical alcohols contain methyl groups. Here, a highly efficient β -methylation of primary and secondary alcohols with methanol has been achieved by using bis-N-heterocyclic carbene iridium (bis-NHC-Ir) complexes. Broad substrate scope and up to quantitative yields were achieved at low catalyst loadings with only hydrogen and water as by-products. The protocol was readily extended to the β -alkylation of alcohols with several primary alcohols. Control experiments, along with DFT calculations and crystallographic studies revealed that ligand effect is critical for their excellent catalytic performance, shedding light on more challenging Guerbet reactions with simple alcohols.

hydrogen-borrowing, ligand effect, iridium, *N*-heterocyclic carbene, methylation
 12

1 Introduction

The alkylation of alcohols constitutes one of the most crucial C-C bond forming reactions [1-6]. Among them, the methylation of alcohols is of great importance since a broad number of bioactive and pharmaceutical alcohols contain methyl groups [7-10]. In contrast with conventional methylation reagents such as sensitive Grignard reagents, toxic methyl iodide and methyl sulfate [11-12], methylation with inexpensive methanol via a hydrogen-borrowing pathway [13-19] is considered as one of the most promising and sustainable approaches [20-25]. Due to its high energy consumption for the dehydrogenation of methanol [26-27], the first example of selective β -methylation of 2-arylethanols was realized by Beller and coworkers by combing two distinct Ru-complexes (Ru-MACHO and Shvo catalysts (Figure 1a) [28]. Subsequently, Leitner and coworkers realized the identical transformations by using a single Ru catalyst (Ru-MACHO-BH₄) with up to 84% yield [29-30]. Furthermore, the Leitner and Kempe groups simultaneously accomplished the methylations using earth-abundant manganese analogues as catalysts with better yields (up to 92%) [31-32]. Interestingly, as aforementioned, current best results for this challenging transformation were achieved by catalysts containing earth-abundant metals rather than the generally more active noble metals, both at high catalyst loadings. This surprising outcome encouraged us to get insight into this topic.

20 The plausible mechanism on the β -methylation of alcohols involves the 21 dehydrogenation of methanol and its coupling partner to the corresponding 22 formaldehyde and aldehyde/ketone, respectively. Followed by cross-aldol

condensation of two different aldehydes or between ketone and aldehyde, and the desired methylation product is then formed after re-hydrogenation (Figure 1a). This multi-step cascade transformation is obviously challenging for a single catalyst to realize dehydrogenation and hydrogenation simultaneously. Another issue worth to mention is that the aldol-condensation step is generally considered as a base-mediated transformation and high energy is usually required [33]. Therefore, how to design highly efficient bi-/multi-functional catalysts to low the energy for the cascade steps is the key issue.

a) Previous work: with catalysts bearing phosphine ligands

Robust N-heterocyclic carbenes (NHCs) with strong σ -donating and weak π -accepting properties can be utilized to design highly efficient bifunctional catalysts [34-39]. Recently, we also found NHC-Ir complexes exhibited very high catalytic activity towards various multi-step transformations [40-44]. Furthermore, to the best of our knowledge, there is no example on homogeneous Ir-catalyzed β -methylation of alcohols, especially with NHC ligands. Herein, by using newly designed bis-NHC-Ir complexes, we realized excellent selectivity and yields (both > 99%) towards the β -methylation of diverse alcohols at low catalyst loading (0.05 mol%, Figure 1b). Broad substrate scopes with primary and secondary alcohols were achieved, and the protocol was readily extended to the β -alkylation of alcohols, further highlighting the applicability of the bis-NHC-Ir complexes.

Initially, in light of the excellent performance of NHC-Ir complexes [45-46], the β -methylation of 2-phenyl ethanol (1) was selected as a model reaction to test our hypothesis. After optimization, a good yield of methylated product (3, 74%, Figure 2) could be achieved by using 0.05 mol% mono-NHC-Ir complexes 4a, derived from *N*,*N*'-dimethylimidazolium iodide [47], with 2 equiv. 'BuONa in 1 mL methanol at 140 °C for 24 hours. An increased yield (84%, Figure 2) was observed with its *N*-phenyl substituted analogue **4b** under the otherwise identical reaction conditions. In consideration that the number of NHC-ligands may benefit their catalytic activity [43], bis-NHC-Ir complexes 5a-d were then applied (Figure S5). Although inferior outcomes were obtained for the known bis-NHC-Ir complexes 5a and 5b with two methyl groups (56% and 57%, respectively), excellent yields were achieved with our

newly developed *N*-aryl-*N'*-methyl bis-NHC-Ir complexes **5c-d** (98% ~ >99%, Figure 2). In dramatic contrast, commercially available iridium complexes (**6-9**) with phosphine ligands led to lower yields (10~64%, Figure 2, and Table S5) under otherwise identical reaction conditions. These results further indicate the superiority of our newly developed catalysts. With these structurally defined catalysts in hand, a turnover number (TON) of up to 30,800 could be achieved in the presence of 0.001 mol% bis-NHC-Ir **5d** under the optimized reaction conditions within four days. At an elevated temperature of 200 °C, a high turnover frequency (TOF) of 4640 h⁻¹ could be

9 achieved within one hour.

Figure 2 Catalysts screening (Reaction conditions: 1 mmol 2-phenylethanol 1, 2 mmol 'BuONa and 0.05 mol% catalysts were stirred in 1 mL methanol at 140 °C under N₂ atmosphere for 24 hours, and yields were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. Im = Imidazole, BenIm = Benzimidazole).

1 2 Experimental

General procedure for bis-NHC-Ir-catalyzed β -methylation of primary alcohols. To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst 5d (0.05 mol%), methanol (1 mL), 'BuONa (2 mmol) and primary alcohol (1 mmol) was added under nitrogen atmosphere. The solution was heated at 140 °C for h. 1,3,5-Trimethoxybenzene was added as an internal standard, and sent for NMR measurement. Pure products were obtained by column chromatography over silica gel using ethyl acetate/petroleum ether mixture as eluent.

General procedure for bis-NHC-Ir-catalyzed β -methylation of secondary alcohols. To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst 5d (0.1 mol%) methanol (1 mL), 'BuONa (3 mmol) and primary alcohol (1 mmol) was added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. 1,3,5-Trimethoxybenzene was added as an internal standard, and sent for NMR measurement. Pure products were obtained by column chromatography over silica gel using ethyl acetate/petroleum ether mixture as eluent.

More experimental details and characterizations are available in the SupportingInformation.

3 Results and discussion

After optimization of the reaction conditions and catalyst screening, the substrate scope of primary alcohols was then investigated (Table 1). In the presence of 0.05 mol% bis-NHC-Ir **5d**, good to excellent yields of corresponding methylated products

,
2
3
4
5
5
6
7
, 0
ð
9
10
11
11
12
13
1.5
14
15
16
10
17
18
10
19
20
21
22
22
23
24
25
25
26
27
20
28
29
30
50
31
31 32
31 32 22
31 32 33
31 32 33 34
31 32 33 34 35
31 32 33 34 35 26
31 32 33 34 35 36
31 32 33 34 35 36 37
31 32 33 34 35 36 37 38
31 32 33 34 35 36 37 38 20
31 32 33 34 35 36 37 38 39
31 32 33 34 35 36 37 38 39 40
31 32 33 34 35 36 37 38 39 40 41
31 32 33 34 35 36 37 38 39 40 41
 31 32 33 34 35 36 37 38 39 40 41 42
31 32 33 34 35 36 37 38 39 40 41 42 43
31 32 33 34 35 36 37 38 39 40 41 42 43 44
31 32 33 34 35 36 37 38 39 40 41 42 43 44
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53
31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 90 51 52 53
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56
31 32 33 34 35 36 37 38 9 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56
31 32 33 34 35 36 37 38 9 41 42 44 45 46 47 48 50 52 53 54 55 57
31 32 33 34 35 36 37 38 40 42 43 44 45 46 48 50 51 52 54 55 56 578

1	(10-33) were obtained with high selectivity. In the case of aryl ethanols, both
2	electron-donating (10-13) and electron-withdrawing (14-18) substituents proved to be
3	compatible and almost quantitative yields were observed. The position of substituent
4	hardly affects the methylation results, excellent yields were attained with ortho-,
5	meta-, and para-methylphenyl ethanols (97%–99% for 10-12). Halogenated substrates
6	were also well compatible (93-99%, 14-18). A slight inferior yield (83%) was
7	achieved with the iodo-analogue (19). Electron-withdrawing trifluoromethyl group
8	gave a good yield of 83% (20) though nitro- and cyano- analogues were hardly
9	converted to desired products under the optimal reaction conditions. To our delight,
10	unprotected hydroxyl group was also well tolerated, and a yield of 95% was attained
11	(21). Additionally, bulky and heterocyclic substrates containing S, N atoms were also
12	suitable (22-24). Remarkably, this protocol was readily extended to the syntheses of
13	drug precursors. For instance, the ibuprofen precursor 33 could be accessed in 95%
14	yield under the standard reaction conditions and in 90% yield even on gram-scale
15	experiment. And the precursor 33 could be easily converted to ibuprofen by selective
16	dehydrogenation using our developed self-supported ruthenium catalyst (Scheme S1)
17	[44].
18	

a) Reaction carried out with bis-NHC-Ir 5d (0.05 mol%), primary alcohol 1 (1 mmol) and ^{*t*}BuONa
(2 mmol) in 1 mL methanol at 140 °C under N₂ atmosphere for 24 h, yields are determined by ¹H
NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. b) Using mesitylene as an
internal standard. c) With ^{*t*}BuONa (3 mmol). d) With 5d (0.1 mol%). e) With 5d (0.2 mol%) and
^{*t*}BuONa (6 mmol) at 150 °C for 24 h. f) Yields are determined by GC-MS with mesitylene as an

2
3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
47 10
+0 40
49
50
51
52
53
54
55
56
57
50
20
59

1

Encouraged by the results from aryl ethanols, the methylation of aliphatic alcohols 1 was then investigated. 3-Phenyl-1-propanol (25) was obtained in 93% yield under 2 3 otherwise identical reaction conditions. Excellent yield of 3-furanpropanol (93%, 26) was also gained with 3 equivalents of base. Other long-chain alkyl primary alcohols 4 also resulted in excellent to quantitative yields (92-98% for 27-29). In the case of 5 simple short chain alcohol like ethanol, di- β -methylation product *iso*-butanol was 6 produced with a yield of 75% (30). Pleasingly, the protocol is readily extended to the 7 β -methylation of diols. Octanediol and hexanediol were conveniently converted into 8 9 dimethyl products **31** (91%) and **32** (92%), respectively. These results were obviously better than other known catalytic systems [29]. 10

With the excellent outcomes from primary alcohols, less active secondary alcohols 11 12 were then studied by our newly developed protocol (Table 2). By slightly increasing the catalyst loading to 0.1 mol% and the base to 3 equiv., quantitative yield of 13 dimethylated product 34 was observed with 2-phenyl ethanol. Electron-donating 14 15 substituents including methyl and methoxyl barely hampered the dimethylation process, and the corresponding products 35, 36, 37 and 38 were attained in good to 16 excellent yields (82-99%). Due to the incomplete hydrogenation of the ketone 17 intermediate, only a 78% yield was achieved with *para*-bromo-phenyl ethan-1-ol (**39**). 18 19 Bulky naphthalene substrates resulted in 1- and 2-isomers 40 and 41 in yields of 95% and 82%, respectively. This suggests that bulkiness hardly hampered the methylation 20 21 process. When the heterocyclic substrate 1-(benzo[b]thiophen-5-yl) ethan-1-ol was studied, a moderate yield was obtained (42, 52%). Probably due to its low boiling 22

MeO

38: 90%^{b)}

42: 52%

: 55%

(d.r = 67:33)

OH

ΟН

Br

: 78%

43: 56%^{e,f)}

OH

47: 83%^{d,f)}

Me

: 99%

: 95%

44: 99%^{c)}

OH

35: 99% (o-Me)

36: 87% (m-Me)

37: 82% (p-Me)

: 82%

45: 90%^{c)}

QН

OH

a) With bis-NHC-Ir 5d (0.1 mol%), secondary alcohol 1 (1 mmol) and 'BuONa (3 mmol) in 1 mL

methanol at 140 °C under N₂ atmosphere for 24 h, yields are determined by ¹H NMR analysis with

1,3,5-trimethoxybenzene as an internal standard. b) Using mesitylene as an internal standard. c)

With 5d (0.05 mol%), 'BuONa (2 mmol). d) With 'BuONa (6 mmol). e) With 5d (0.2 mol%),

'BuONa (12 mmol). f) Yields are determined by GC-MS with mesitylene as an internal standard.

1 Table 3 Alkylation of 2-phenylethanol with diverse primary alcohols ^{a)}

a) With 5d (0.05 mol%), 2-phenyl ethanol 1 (1 mmol) and ¹BuONa (3 mmol) in 1 mL primary
alcohol at 150 °C under N₂ atmosphere for 24 h, yields are determined by ¹H NMR analysis with
1,3,5-trimethoxybenzene as an internal standard. b) Add 5 mmol primary alcohol and use 1.5 mL *p*-xylene as solvent.

Inspired by the excellent results obtained in the β -methylation of diverse alcohols with methanol, more general β -alkylation with other primary alcohols instead of methanol were investigated (Table 3). Although possible side-products are unavoidable due to the possible Guerbet reaction [48-49], 45% and 39% yield of β -alkylated products (**48** and **49**) could be still be achieved when ethanol or *iso*-butanol were applied instead of methanol at 150 °C. Delightedly, all selected benzyl alcohols and even heterocyclic analogues were also suitable alkylation

1 reagents. Good to excellent yields were observed for these substrates (62%-88%,

50-53), further indicating the applicability of the protocol.

Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the dichloromethane solution of bis-NHC-Ir complexes 5c or 5d. Combining the crystal data of complex 5a in the previous study [37], the possible ligand effects on catalytic performance were then explored. As depicted in Figure 3a, when the methyl substitutes on NHC ligands was repalced by phenyl groups, the Cco-Ir bonds were slightly increased (1.874 Å vs 1.882 Å for 5a vs 5c), consequencely the CO ligands could be much more easily dissociated, leaving a vacant position for the later transformation. An unsymmetric crystal structure was observed with complex 5d, in which the lengths of two C_{co}-Ir bonds were slightly different (1.884 Å and 1.888 Å) but both are longer than those observed in complexes 5a and 5c (Figure 3a), highlighting that one of CO ligands might be more easily dissociated from the Ir center and facilitating the initial step of dehydrogenation of alcohols. Furthermore, the percent buried volumes (% V_{bur}) and steric maps of complexes 5a, 5c and 5d were caculated by SambVca 2.1 (Figure 3b) [50-52]. As we expected, the steric bulkiness of complexes 5c and 5d ($\%V_{bur} = 51.6\%$ and 51.1%) are much hindered than that of analogue **5a** ($%V_{bur} = 47.9\%$), which might be another key issue to affect catalytic performance along with the electronic effect of NHC ligands.

Figure 3 a) Crystal structures of complexes 5a, 5c and 5d, and the corresponding C_{CO}-Ir bond
lengths (Colour code: Ir, cyan; O, red; N, blue; C grey. Hydrogens are omitted for clarity). b)
Percent buried volumes and steric maps of complexes 5a, 5c and 5d.

In order to further understand these observations from the crystal structures, density functional theory (DFT) calculations were performed to elucidate the electronic nature of the iridium carbonyl complexes bearing different types of NHC ligands. The calculations indicated that the ionization potentials (IP, in eV) of Ir centers [43] follow the sequence of 5a (11.34 eV) > 5c (10.84 eV) > 5d (10.45 eV). The lower IP of the iridium centers in complexes 5c and 5d with N-aryl substituents than that in complex 5a implied that the generation of active Ir(III)-H species from NHC-Ir (I) after dehydrogenation is more feasible [42]. Recalling the strong trans-effect [53] observed in the crystal structure of complex 5d, the ready dissociation of one CO ligand may facilitate the first dehydrogenation step. Therefore, the yields of product 3 were

Page 15 of 118

Science China Chemistry

increased along with the trend of 5a < 5c < 5d (Figure 2), highlighting the crucial role
 of the ligand effect during the β-methylation process.

Further control experiments were carried out to study the reaction mechanism. Initially, the possible radical or nanoparticles reaction pathways were excluded by TEMPO (2,2,6,6-tetramethyl-1-piperinedinyloxy) or mercury tests (Scheme S3, eq. i, ii) respectively [54]. The reaction profile revealed that more than half of the substrates were consumed within 1.5 h in the presence of 0.05 mol% 5d, reflecting the high catalytic activity of 5d (Figure S17). Surprisingly, no possible aldehyde or olefin unsaturated intermediates were detected, implying that the base-mediated aldol condensation coupling after dehydrogenation of phenylethanol and methanol was extremely fast. Secondly, when acetophenone (54) or di-methylated-ketone (55) was applied as a substrate, 67% or 94% of the di-methylated product 34 was obtained (Scheme S2, i, ii) under otherwise standard conditions, indicating both of them were possible intermediates. Notably, other viable catalysts 6-9 exhibited much lower yields than **5d** in the former transformation (Figure 4a, ii, and Scheme S2) but with similarly high catalytic activity in the latter conversion (Figure 4a, i, and Scheme S2), implying the high efficiency of 5d accelerated the C-C bond formation step of acetophenone to di-methylated-ketone via aldol-condensation, which was usually considered as a base-mediated process with high energy requirement without catalyst assisting [33]. This observation was also in agreement with recently reports with DFT calculations [42, 55].

Science China Chemistry

Finally, upon using deuterated methanol in the β -methylation of acetophenone (54), above 90% of hydrogens at all possible positions were replaced by deuteriums (Scheme S3, eq. iii), indicating methanol was the hydrogen resource and a hydrogen-borrowing mechanism is involved [14-19]. When 2-phenylethanol was used instead of acetophenone, the proportion of nondeuterated alcohol protons increased to about 20% (Scheme S3, eq. iv), suggesting the alcohol substrate like aryl ethanol is also a hydrogen source. The kinetic isotope effect (KIE) experiment at the first two hours by using methanol or deuterated methanol gave out a k_H/k_D value of 2.26, indicating the dehydrogenation of methanol is the rate-determining step (Figure S18) [56-57].

Based on these control experiments and previous reports [28,31], a plausible mechanism was proposed in Figure 4b. Initially, CO dissociates from bis-NHC-Ir complex A to form species B with a free coordination site. Two different alcohols are readily dehydrogenated into their corresponding ketones/aldehydes simultaneously by **B** to generate Ir-hydride species **C**, **D** and **E**, subsequently. Along with bis-NHC-Ir-H₂ species **F** formation, α,β - unsaturated aldehyde coordinated iridium-dihydride species G was then produced after the aldol-condensation under the basic conditions. The unsaturated aldehyde intermediates are reduced in situ by the dihydride species to give out the final methylation product and regenerate the active bis-NHC-Ir species B to complete the catalytic cycles.

Figure 4 a) Comparison of the catalytic activity of selected viable catalysts in methylation of
acetophenone or di-methylated-ketone. b) The plausible mechanism of the β-methylation of
alcohols.

4 Conclusions

In conclusion, a highly efficient and selective β-methylation of primary and
secondary alcohols with methanol as a clean C1 source was realized by using novel
bis-NHC-Ir complexes at low catalyst loadings. The protocol was readily extended to
β-alkylation of alcohols with other primary alkyl alcohols. Crystallographic and
computational studies revealed the crucial ligand effects on the catalytic efficiency. A
detailed mechanistic study indicated besides hydrogen-borrowing processes, the high

Science China Chemistry

efficiency of the newly developed bis-NHC-Ir catalysts was attributed to their
 superior activity in the challenging C-C bond formation step. Our protocol not only
 revealed the ligand effect is pivotal for this challenging transformation but also pave
 the way to more challenging Guerbet reactions.

Acknowledgements Financial support from the National Key R&D Program of China (No.
2016YFA0202902), the National Natural Science Foundation of China (Nos. 21871059,
21861132002 and 21572036) and the Department of Chemistry at Fudan University is
gratefully acknowledged.

Conflicts of interest The authors declare that they have no conflict of interest.

Supporting information supporting information is online The available at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

2			
3			
4	1	1	Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science, 2020, 367: 397-400
5			
6 7	2	2	Zetzsche LE, Narayan ARH. Nat Rev Chem, 2020, 4: 334-346
/ 8			
9	h	2	Creatives BIL Cham Bay 2017 117, 0229 0246
10	3	3	Crabtree RH. Chem Rev, 2017, 117: 9228-9246
11			
12	4	4	Ravelli D, Protti S, Fagnoni M. Chem Rev, 2016, 116: 9850-9913
13			
14	5	5	Brahmachari G RSC Adv 2016 6: 64676-64725
15	5	5	Diamiachair G. NSC Nav, 2010, 0. 01070 01725
16		_	
17	6	6	Gunanathan C, Milstein D. <i>Science</i> , 2013, 341: 1229712
18			
19	7	7	Leitner W, Klankermayer J, Pischinger P, Pitsch H, Kohse-Hoinghaus H. Angew Chem
20			
27	0		Let Ed. 2017, 54, 5412, 5452
23	ð		<i>Ini Ea</i> , 2017, 30: 3412-3432
24			
25	9	8	Natte K, Neumann H, Beller M, Jagadeesh RV. Angew Chem Int Ed, 2017, 56:
26			
27	10		6384-6394
28			
29		0	
30 21	11	9	Schonnerr H, Cernak T. Angew Chem Int Ed, 2013, 52: 12256-12267
37			
33	12	10	Barreiro EJ, Kummerle EA, Fraga CA. Chem Rev, 2011, 111: 5215-5246
34			
35	13	11	Chen YT. Chem Eur J. 2019, 25: 3405-3439
36			
37	1 4	10	Stalada C. America de Seure MC. Cil M. Fermine EC. Hannie W. Cham. Dev. 2015, 115.
38	14	12	Szekely G, Amores de Sousa MG, GII M, Ferreira FC, Heggie W. Chem Rev, 2015, 115:
39			
40 //1	15		8182-8229
42			
43	16	13	Wang K. Zhang L. Tang WI. Sun HM. Xue D. Lei M. Xiao IL, Wang C. Angew Chem
44			
45	47		L (E L 2020, 50, 11409, 11415
46	17		Int Ea, 2020, 59: 11408-11415
47			
48	18	14	He ZH, Liu HZ, Qian QL, Lu L, Guo WW, Zhang LJ, Han BX. Sci China Chem, 2017,
49 50			
50	19		60: 927-933
52			
53	20	15	No TWI Line C. Len KK, Den HL, Theo N. And an Chem. Let Ed. 2020, 50, 11204, 11200
54	20	13	ing i w, Liao O, Lau KK, raii fij, Zhao I. Angew Chem Int Ea, 2020, 59: 11384-11389
55			
56	21	16	Irrgang T, Kempe R. Chem Rev, 2019, 119: 2524-2549
57			
50 50	22	17	Chakraborty S, Daw P, David YB, Milstein D. ACS Catal, 2018, 8: 10300-10305
60			• · · · · · · · · · · · · · · · · · · ·

1	18	Peña-López M, Piehl P, Elangovan S, Neumann H, Beller M. Angew Chem Int Ed, 2016,
2		55: 14967-14971
3	19	Watson AJ, Williams JMJ. Science, 2010, 329: 635-636
4	20	Lan XB, Ye ZR, Liu JH, Huang M, Shao YX, Cai X, Liu Y, Ke ZF. ChemSusChem,
5		2020, 13: 2557-2563
6	21	Bettoni L, Gaillard S, Renaud JL. Org Lett, 2019, 21: 8404-8408
7	22	Polidano K, Williams JMJ, Morrill LC. ACS Catal, 2019, 9: 8575-8580
8	23	Polidano K, Allen BDW, Williams JMJ, Morrill LC. ACS Catal, 2018, 8: 6440-6445
9	24	Lan XB, Ye ZR, Huang M, Liu JH, Liu Y, Ke ZF. Org Lett, 2019, 21: 8065-8070
10	25	Shen D, Poole DL, Shotton CC, Kornahrens AF, Healy MP, Donohoe TJ. Angew Chem
11		Int Ed, 2015, 54: 1642-1645
12	26	Lin WH, Chang HF. Catal Today, 2004, 97: 181-188
13	27	Qian M, Liauw MA, Emig G. Appl Catal A-Gen, 2003, 238: 211-222.
14	28	Li Y, Li HQ, Junge H, Beller M. Chem Commun, 2014, 50: 14991-14994
15	29	Kaithal A, Schmitz M, Hölscher M, Leitner W. ChemCatChem, 2019, 11: 5287-5291
16	30	Wesselbaum S, Stein TV, Klankermayer J, Leitner W. Angew Chem Int Ed, 2012, 51:
17		7499-7502
18	31	Kaithal A, Bonn P, Holscher M, Leitner W. Angew Chem Int Ed, 2020, 59: 215-220
19	32	Schlagbauer M, Kallmeier F, Irrgang T, Kempe R. Angew Chem Int Ed, 2020, 59:
20		1485-1490
21	33	Kaithal A, Schmitz M, Hoscher M, Leitner W. ChemCatChem, 2020, 12: 781-787
22	34	Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. Sci China Chem, 2021, 64: 7-16

1	35	Campos J, Sharninghausen LS, Crabtree RH, Balcells D. Angew Chem Int Ed, 2014, 53:
2		12808-12811
3	36	Hopkinson MN, Richter C, Schedler M, Glorius F. Nature, 2014, 510: 485-496
4	37	Sharninghausen LS, Campos J, Manas MG, Crabtree RH. Nat Commun, 2014, 5: 5084
5	38	Gonzalez SD, Marion N, Nolan SP. Chem Rev, 2009, 109: 3612-3676
6	39	Chen JA, Huang Y. Sci China Chem, 2016, 59: 251-254
7	40	Wu JJ, Shen LY, Duan S, Chen ZN, Zheng QS, Liu YQ, Sun ZM, Clark JH, Xu X, Tu T.
8		Angew Chem Int Ed, 2020, 59: 13871-13878
9	41	Wang JQ, Wu JJ, Chen ZN, Wen DH, Chen JB, Zheng QS, Xu X, Tu T. J Catal, 2020,
10		389: 337-344
11	42	Wu JJ, Shen LY, Chen ZN, Zheng QS, Xu X, Tu T. Angew Chem Int Ed, 2020, 59:
12		10421-10425
13	43	Chen JB, Wu JJ, Tu T. ACS Sustain Chem Eng, 2017, 5: 11744-11751
14	44	Sun ZM, Liu YQ, Chen JB, Huang CY, Tu T. ACS Catal, 2015, 5: 6573-6578
15	45	Iglesias M, Oro LA. Chem Soc Rev, 2018, 47: 2772-2808
16	46	Manas MG, Campos J, Sharninghausen LS, Lin E, Crabtree RH. Green Chem, 2015, 17:
17		594-600
18	47	Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH. J
19		Am Chem Soc, 2011, 133: 7547-7562
20	48	Fu SM, Shao ZH, Wang YJ, Liu Q. J Am Chem Soc, 2017, 139: 11941-11948
21	49	Xie YJ, David Y, Shimon LJ, Milstein D. J Am Chem Soc, 2016, 138: 9077-9080

3			
4	1	50	Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat Chem,
5			
6	•		0010 11 070
7	2		2019, 11: 872
8			
9	3	51	Clavier H. Nolan SP. Chem Commun 2010 46: 841-861
10	5	51	
11			
12	4	52	Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L. Eur J Inorg
13			
14	-		Cham 2000 1750 1766
15	5		<i>Chem</i> , 2009, 1739-1700
16			
17	6	53	Tu T, Zhou YG, Hou XL, Dai LX, Dong XC, Yu XH, Sun J. Organometallics, 2003, 22:
18			
19	_		
20	7		1255-1265
21			
22	8	54	Crabtree RH Chem Rev 2012 112: 1536-1554
23	Ū	01	
24			
25	9	55	Jimenez MV, Tornos J. Modrego FJ, Torrente JJ, Oro LA. Chem Eur J, 2015, 21:
26			
27	10		17877-17880
28	10		
29			
30	11	56	Vellakkaran M, Singh K, Banerjee D. ACS Catal, 2017, 7: 8152-8158
31			
32	10	57	Simmons EM Hortonia IE Anomy Charles Let Ed 2012 51, 2066 2072
33	12	57	Simmons EM, Harlwig JF. Angew Chem Int Ea, 2012, 51: 5000-5072
34	12		
35	15		
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50 51			
57			
52 53			
55			
55			
56			
57			
58			
59			
60			
-			

Supporting Information

Highly Efficient NHC-Iridium-Catalyzed β -Methylation of Alcohols with Methanol at Low Catalyst Loadings

Zeye Lu,¹ Qingshu Zheng,¹ Guangkuo Zeng,¹ Yunyan Kuang,¹ James H. Clark,⁴ & Tao Tu^{1,2,3}*

¹Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.

²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

³Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

⁴Green Chemistry Centre of Excellence, University of York, York YO 105DD, UK.

*Corresponding Author: (Email: <u>taotu@fudan.edu.cn</u>)

Table of Contents

1. General	S3
2. Syntheses of NHC-Iridium complexes	S4
3. NMR spectra of imidazolium salts and catalysts	S7
3.1 NMR spectra of imidazolium salts L3-L4.	S7
3.2 NMR spectra of iridium complexes 5c-5d	S10
4. High resolution mass spectrometry of iridium complex 5d	S13
5. Crystal structures of iridium complexes 5c and 5d	S14
6. β -Methylation of primary and secondary alcohols with methanol	S25
6.1 Optimization of reaction conditions	S25
6.2 Procedure of TON and TOF of β -methylation with methanol	S26
6.3 General procedure for β -methylation of primary alcohols with metha	anolS26
6.4 Preparation of ibuprofen from precursor 33 using self-supported Ru	catalystS33
6.5 General procedure for β -methylation of secondary alcohols with met	thanolS34
6.6 General procedure for β -alkylation of 2-phenyl ethanol with prima	ary alcohols
	S38
7. Control experiments	S40
7.1 Procedure for β -methylation of 2-arylethanol with TEMPO	S40
7.2 Procedure for β -methylation of 2-arylethanol with Hg	S40
7.3 Reaction profile for β -methylation of 2-arylethanol	
I I I I I I I I I I I I I I I I I I I	S40
7.4 Procedure for β -methylation of acetophenone with methanol	
7.4 Procedure for β -methylation of acetophenone with methanol 7.5 Procedure for hydrogen transfer of di-methylated-ketone with metha	S40 S41 S41
7.4 Procedure for β -methylation of acetophenone with methanol 7.5 Procedure for hydrogen transfer of di-methylated-ketone with metha 7.6 Procedure for β -methylation of acetophenone with CD ₃ OD	S40 S41 S41 S41
7.4 Procedure for β -methylation of acetophenone with methanol 7.5 Procedure for hydrogen transfer of di-methylated-ketone with metha 7.6 Procedure for β -methylation of acetophenone with CD ₃ OD 7.7 Procedure for β -methylation of 2-arylethanol with CD ₃ OD	S40 S41 S41 S42 S42
7.4 Procedure for β -methylation of acetophenone with methanol 7.5 Procedure for hydrogen transfer of di-methylated-ketone with metha 7.6 Procedure for β -methylation of acetophenone with CD ₃ OD 7.7 Procedure for β -methylation of 2-arylethanol with CD ₃ OD 7.8 Procedure for KIE experiment of β -methylation with CH ₃ OH or CD	
7.4 Procedure for β -methylation of acetophenone with methanol 7.5 Procedure for hydrogen transfer of di-methylated-ketone with metha 7.6 Procedure for β -methylation of acetophenone with CD ₃ OD 7.7 Procedure for β -methylation of 2-arylethanol with CD ₃ OD 7.8 Procedure for KIE experiment of β -methylation with CH ₃ OH or CD 8. ¹ H NMR spectra of reaction mixtures after β -methylation of alcohols.	
 7.4 Procedure for β-methylation of acetophenone with methanol	

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. All reaction sealed tubes (35 mL) were purchased from Beijing Synthware Glass. CDCl₃, D₂O and DMSO-d₆ were purchased from Cambridge Isotope Laboratories. ¹H, ¹³C, and ¹⁹F spectra were recorded on Bruker 400 DRX spectrometers at room temperature. The chemical shifts (δ) for ¹H NMR are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm, DMSO- d_6 at δ 2.50 ppm, D₂O at δ 4.79 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm) or DMSO- d_6 (39.5 ppm). The following abbreviations are used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, q = random raquartet. ESI-TOF-MS spectra were recorded on a Bruker micrOTOF II instrument. Single-crystal X-ray diffraction data for iridium complexes were collected at 173 K on a Bruker D8 VENTURE microfocus X-ray source system. GC-MS spectra were recorded on Agilent technologies 7890A GC system and 5975C inert MSD with Triple-Axis Detector. High resolution mass spectra (HR-MS) were acquired using a Q-Exactive Focus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher) equipped with a Dionex Ultimate 3000 HPLC system (Thermo Fisher).

GC method: The instrument was set to an injection volume of 1 μ L, an inlet split ratio of 100:1, and inlet and detector temperatures of 250 and 280 °C. The temperature program used for all of the analyses is as follows: 40 °C, 3 min; 5 °C/min to 95 °C. Response factor for all of the necessary compounds with respect to standard benzene was calculated from the average of three independent GC runs.

Computational methods: The percent buried volumes (% *V*bur) and steric maps of complexes **5a**, **5c** and **5d** were caculated by SambVca 2.1^{S1-S2} at https://www.molnac.unisa.it/OMtools/sambvca2.1/index.html.

For the geometry optimization, the quantum calculations were performed by using generalized gradient approximation functional and the correction of the D3 version of

Grimme's empirical dispersion with Becke-Johnson damping (PBED3(BJ)).^{S3-S5} The all-electron basis sets of $6-31+G(d,p)^{S6}$ and the Stuttgart/Dresden effective-core potential (SDD)^{S7-S9} were used for main group elements and Ir atom, respectively. Analytical frequencies were calculated in order to confirm that a local minimum has no imaginary frequency. Charge analyses were performed using the APT schemes.^{S10} All calculations were carried out using the Gaussian 16 program.^{S11}

2. Syntheses of NHC-Iridium complexes

Figure S1. Syntheses of NHC-Ir complexes.

The NHC-Ir complexes **4a-4b**, **5a-5b** was synthesized according to previously reported procedures.^{S12-S14}

Syntheses of compounds L3-L4: Iodized salt (L1 *or* L2, 10 mmol) ^{S15} was added into 100 mL DCM and stir at room temperature until completely dissolved. Then Et_3OBF_4 (3.9 g, 20 mmol) was added to the solution and stirring for 16 h at room temperature. After the reaction, 100 mL methanol was added for another 1 h stirring. The reaction mixture was then concentrated and recrystallized with ether to afford the formation of white solid.

Syntheses of compounds S5c-S5d: [Ir(COD)Cl]₂ (201 mg, 0.3 mmol) was dissolved in 10 mL dry EtOH and added to a 50 mL Schlenk tube with a magnetic stir bar. Then NaH (28 mg, 1.2 mmol) was added to the solution and then after stirring of 1 h,

Science China Chemistry

imidazole tetrafluoroborate salt (S5c or S5d) (2 mmol) was added. The reaction mixture was stirred for 24 h at room temperature. The obtained mixture was directly used for the following CO exchange without purification.

Syntheses of compounds 5c-5d: S5c or S5d in 15 mL dry DCM, CO (g) was bubbled through the solution at room temperature for 4 h. Solvent was evaporated and pure products were obtained by column chromatography over silica gel using DCM/methanol (100:1) mixture as eluent. The solid was further washed with Et₂O and dried to obtain complex 5c or 5d as a bright yellow solid (60 % for two steps).

L3:

¹**H** NMR (400 MHz, DMSO- d_6 , 298 K) δ = 9.70 (s, 1H, imidazole-H), 8.27 (d, 1H, J = 1.5 Hz, ArCH), 7.93 (s, 1H, ArCH), 7.76 (d, 2H, J = 8.0 Hz, ArCH), 7.67 (dd, 2H, J = 10.4, 5.0 Hz, ArCH), 7.55-7.62 (m, 1H, ArCH), 3.95 (s, 3H, CH₃) ppm. ¹³C NMR (101 MHz, DMSO- d_6 , 298 K) δ = 135.9, 134.8, 130.3, 129.8, 124.5, 121.9, 121.0, 36.1 ppm.

¹⁹**F NMR** (376 MHz, DMSO- d_6 , 298 K) δ = 148.28 ppm.

HRMS (ESI), *m/z*: [M-BF₄]⁺ calculated for C₁₀H₁₁N₂: 159.0922, found: 159.0912.

L4:

¹**H** NMR (400 MHz, DMSO- d_6 , 298 K) δ = 9.61 (s, 1H, imidazole-H), 8.19 (t, 1H, J = 1.8 Hz, ArCH), 7.90 (t, 1H, J = 1.8 Hz, ArCH), 7.63-7.71 (m, 2H, ArCH), 7.17-7.22 (m, 2H, ArCH), 3.92 (s, 3H, OCH₃), 3.84 (s, 3H, CH₃) ppm.

¹³C NMR (101 MHz, DMSO- d_6 , 298 K) δ = 160.0, 135.8, 127.9, 124.2, 123.5, 121.3, 115.2, 55.8, 36.1 ppm.

¹⁹**F NMR** (376 MHz, DMSO- d_6 , 298 K) δ = 148.24 ppm.

5c:

¹**H NMR** (400 MHz, DMSO- d_6 , 298 K) δ = 7.45-7.56 (m, 4H, ArCH), 7.24-7.36 (m, 3H, ArCH), 3.23 (s, 3H, CH₃) ppm.

¹³**C NMR** (101 MHz, DMSO-*d*₆, 298 K) δ = 180.1, 166.9, 138.7, 129.5, 129.0, 125.0, 124.2, 123.5, 38.1 ppm.

¹⁹**F NMR** (376 MHz, DMSO- d_6 , 298 K) δ = 148.30 ppm.

HRMS (ESI), m/z: [M-BF₄]⁺ calculated for C₂₂H₂₀IrN₄O₂: 565.1215, found 565.1215.

5d:

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) δ = 7.47 (d, 1H, *J* = 1.7 Hz, ArCH), 7.40 (d, 1H, *J* = 1.3 Hz, ArCH), 7.15 (d, 2H, *J* = 8.7 Hz, ArCH), 6.95-7.01 (m, 2H, ArCH), 3.84 (s, 3H, OCH₃), 3.26 (s, 3H, CH₃) ppm.

¹³**C NMR** (101 MHz, DMSO- d_6 , 298 K) δ = 180.2, 166.8, 159.5, 131.7, 126.3, 124.2,

123.7, 114.4, 55.7, 37.8 ppm.

¹⁹**F NMR** (376 MHz, DMSO- d_6 , 298 K) δ = 148.31 ppm.

HRMS (ESI), m/z: [M-BF₄]⁺ calculated for C₂₄H₂₄IrN₄O₄: 625.1422, found 625.1437.

3. NMR spectra of imidazolium salts and catalysts

3.1 NMR spectra of imidazolium salts L3-L4

Figure S2. ¹H NMR (400 MHz, DMSO-*d*₆, 298 K) spectrum of L**3.**

S8

Figure S5. ¹H NMR (400 MHz, DMSO-*d*₆, 298 K) spectrum of L4.

Figure S6. ¹³C NMR (101 MHz, DMSO-*d*₆, 298 K) spectrum of L4.

S11

Figure S13. ¹⁹F NMR (376 MHz, DMSO-*d*₆, 298 K) spectrum of **5d.**

4. High resolution mass spectrometry of iridium complex 5d

Figure S14. High resolution mass spectrometry of iridium complex 5d

http://chem.scichina.com/english

5. Crystal structures of iridium complexes 5c and 5d

Yellow block crystals suitable for single-crystal X-ray diffractions were obtained by slow evaporation of their dichloromethane solutions.

Figure S15. Crystal structure of iridium complex 5c.

Figure S16. Crystal structure of iridium complex 5d.

Identification code	5c	
Empirical formula	C22 H20 B F4 Ir N4 O2	
Formula weight	651.43	
Temperature	293(2) K	
Wavelength	1.34138 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	$a = 15.2636(15) \text{ Å} \Box \alpha = 90^{\circ}.$	
	$b = 13.1155(13) \text{ Å} \qquad \beta = 119.206(2)^{\circ}.$	
	$c = 13.685(2) \text{ Å} \qquad \gamma = 90^{\circ}.$	
Volume	2391.3(5) Å ³	
Z	4	
Density (calculated)	1.809 mg/m^3	
Absorption coefficient	7.501 mm ⁻¹	
F(000)	1256	
Crystal size	0.120 x 0.100 x 0.080 mm ³	
Theta range for data collection	5.778 to 59.495°.	
Index ranges	-19<=h<=19, -16<=k<=16, -17<=l<=17	
Reflections collected	14873	
Independent reflections	2653 [R(int) = 0.0425]	
Completeness to theta = 53.594°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.581 and 0.462	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2653 / 28 / 179	
Goodness-of-fit on F ²	1.058	
Final R indices [I>2sigma (I)]	R1 = 0.0252, wR2 = 0.0718	
R indices (all data)	R1 = 0.0257, wR2 = 0.0726	
Extinction coefficient	0.00038(7)	
Largest diff. peak and hole	0.859 and -0.643 e.Å ⁻³	

1 2	
3	Table
4 5	10010
6 7	Ir(1)-0
8	Ir(1)-(
9 10	Ir(1)-(
11	Ir(1)-(
12 13	B(1)-F
14	B(1)-F
15 16	B(1)-F
17	B(1) = R(1) =
18	D(1)-1 D(1) I
19 20	D(1)-1
21	B(1)-I
22 23	B(1)-f
24	B(1)-F
25 26	B(1)-F
27	F(1)-F
28	F(2)-F
30	F(3)-F
31	N(1)-0
32 33	N(1)-0
34	N(1)-0
35 36	N(2)-0
37	N(2)-0
38 30	N(2)-0
40	O(1)-0
41 42	C(2)-C
42 43	C(2)-H
44	C(3)-I
45 46	C(4)-0
47	C(4)-0
48 49	C(5)-(
50	C(5)-I
51 52	C(6)-(
53	C(6)-H
54 55	C(7)-C
56	C(7)-F
57	$C(8)_{-6}$
50 59	C(8)-F

Table S2 Bond lengths [Å] and angles [°] for Ir complex 5c.

Ir(1)-C(11)#1	1.882(4)
Ir(1)-C(11)	1.882(4)
Ir(1)-C(1)	2.080(3)
Ir(1)-C(1)#1	2.080(3)
B(1)-B(1)#2	0.38(3)
B(1)-F(4)#2	1.22(3)
B(1)-F(3)#2	1.270(12)
B(1)-F(3)	1.371(12)
B(1)-F(1)	1.372(17)
B(1)-F(4)	1.379(16)
B(1)-F(2)	1.386(16)
B(1)-F(2)#2	1.40(3)
B(1)-F(1)#2	1.74(2)
F(1)-F(3)#2	1.648(18)
F(2)-F(4)#2	0.55(2)
F(3)-F(3)#2	0.80(3)
N(1)-C(1)	1.358(4)
N(1)-C(3)	1.385(4)
N(1)-C(4)	1.430(4)
N(2)-C(1)	1.351(4)
N(2)-C(2)	1.383(4)
N(2)-C(10)	1.464(4)
O(1)-C(11)	1.138(5)
C(2)-C(3)	1.338(5)
C(2)-H(2)	0.9300
C(3)-H(3)	0.9300
C(4)-C(9)	1.385(4)
C(4)-C(5)	1.389(4)
C(5)-C(6)	1.385(5)
C(5)-H(5)	0.9300
C(6)-C(7)	1.379(6)
C(6)-H(6)	0.9300
C(7)-C(8)	1.381(6)
C(7)-H(7)	0.9300
C(8)-C(9)	1.402(5)
C(8)-H(8)	0.9300

1 2			
3	C(0) H(0)	0.9300	
4	C(3)-H(3)	0.9300	
6	$C(10)-\Pi(10A)$	0.9600	
7	С(10)-Н(10В)	0.9600	
8	C(10)-H(10C)	0.9600	
10			
11	C(11)#1-Ir(1)-C(11)	91.6(2)	
12 13	C(11)#1-Ir(1)-C(1)	90.43(17)	
14	C(11)-Ir(1)-C(1)	173.99(14)	
15	C(11)#1-Ir(1)-C(1)#1	173.99(14)	
16	C(11)-Ir(1)-C(1)#1	90.43(17)	
18	C(1)-Ir(1)-C(1)#1	88 11(15)	
19 20	B(1)#2-B(1)-F(4)#2	107(7)	
21	B(1)#2 B(1) T(4)#2 P(1)#2 P(1) F(2)#2	07 5(16)	
22	$D(1)#2-D(1)-\Gamma(3)#2$ E(4)#2 D(1) E(2)#2	97.3(10)	
23 24	F(4)#2-B(1)-F(3)#2	123(2)	
25	B(1)#2-B(1)-F(3)	66.7(14)	
26	F(4)#2-B(1)-F(3)	117(2)	
27 28	F(3)#2-B(1)-F(3)	35.2(13)	
29	B(1)#2-B(1)-F(1)	164(8)	
30 31	F(4)#2-B(1)-F(1)	87.8(13)	
32	F(3)#2-B(1)-F(1)	77.1(13)	
33	F(3)-B(1)-F(1)	111.3(11)	
34 35	B(1)#2-B(1)-F(4)	58(6)	
36	F(4)#2- $B(1)$ - $F(4)$	121 5(15)	
37	F(3)#2-B(1)-F(4)	1132(10)	
39	F(3) = D(1) = F(4)	115.2(17) 106.0(17)	
40	F(3)-D(1)-F(4) F(1) P(1) F(4)	100.9(17)	
41 42	F(1)-B(1)-F(4)	110.0(15)	
43	B(1)#2-B(1)-F(2)	84(6)	
44	F(4)#2-B(1)-F(2)	23.1(11)	
45 46	F(3)#2-B(1)-F(2)	135(2)	
47	F(3)-B(1)-F(2)	112.1(19)	
48	F(1)-B(1)-F(2)	109.9(14)	
50	F(4)-B(1)-F(2)	105.9(9)	
51	B(1)#2-B(1)-F(2)#2	80(6)	
52 53	F(4)#2-B(1)-F(2)#2	114.5(7)	
54	F(3)#2-B(1)-F(2)#2	118(2)	
55 56	F(3)-B(1)-F(2)#2	124 4(19)	
57	$F(1)_{R}(1) F(2)^{2}$	80.5(15)	
58	$\Gamma(1)$ -D(1)- $\Gamma(2)$ #2 $\Gamma(4)$ D(1) $\Gamma(2)$ #2	07.3(13)	
59 60	Г(4)-D (1)-Г(2)#2	22.0(10)	

2		
3	F(2)-B(1)-F(2)#2	107.2(17)
5	B(1)#2-B(1)-F(1)#2	12(6)
6	F(4)#2-B(1)-F(1)#2	98.2(16)
8	F(3)#2-B(1)-F(1)#2	96.4(12)
9	F(3)-B(1)-F(1)#2	62.7(10)
10 11	F(1)-B(1)-F(1)#2	173 0(13)
12	F(4)-B(1)-F(1)#2	69 4(10)
13 14	F(2)-B(1)-F(1)#2	76 4(13)
15	$F(2)#2_B(1)_F(1)#2$	91 4(13)
16 17	$P(2)\pi 2 - D(1) - P(1)\pi 2$ P(1) = E(1) = E(2) + 2	18 7(6)
17	D(1)-F(1)-F(3)#2	46.7(0)
19	B(1)-F(1)-B(1)#2	3.3(17)
20 21	F(3)#2-F(1)-B(1)#2	47.7(6)
22	F(4)#2-F(2)-B(1)	61(3)
23	F(4)#2-F(2)-B(1)#2	77(3)
24 25	B(1)-F(2)-B(1)#2	15.6(14)
26	F(3)#2-F(3)-B(1)#2	79.3(11)
27 28	F(3)#2-F(3)-B(1)	65.5(10)
29	B(1)#2-F(3)-B(1)	15.8(14)
30	F(3)#2-F(3)-F(1)#2	131.8(15)
32	B(1)#2-F(3)-F(1)#2	54.2(9)
33	B(1)-F(3)-F(1)#2	69.6(9)
34 35	F(2)#2-F(4)-B(1)#2	96(3)
36	F(2)#2-F(4)-B(1)	81(3)
37	R(1)#2- $F(4)$ - $R(1)$	15 2(16)
39	C(1) = N(1) = C(3)	110.8(3)
40	C(1) - N(1) - C(3)	126 2(2)
41 42	C(1)-N(1)-C(4)	120.2(3)
43	C(3)-IN(1)-C(4)	123.0(2)
44 45	C(1)-N(2)-C(2)	110.9(2)
46	C(1)-N(2)-C(10)	126.2(3)
47	C(2)-N(2)-C(10)	122.9(3)
48 49	N(2)-C(1)-N(1)	104.5(2)
50	N(2)-C(1)-Ir(1)	126.6(2)
51 52	N(1)-C(1)-Ir(1)	128.7(2)
53	C(3)-C(2)-N(2)	107.1(3)
54	C(3)-C(2)-H(2)	126.5
56	N(2)-C(2)-H(2)	126.5
57	C(2)-C(3)-N(1)	106.7(3)
58 59	C(2)-C(3)-H(3)	126.6
60	× / × / × /	

N(1)-C(3)-H(3)	126.6
C(9)-C(4)-C(5)	121.4(3)
C(9)-C(4)-N(1)	118.6(3)
C(5)-C(4)-N(1)	120.0(3)
C(6)-C(5)-C(4)	119.1(3)
C(6)-C(5)-H(5)	120.4
C(4)-C(5)-H(5)	120.4
C(7)-C(6)-C(5)	120.5(4)
C(7)-C(6)-H(6)	119.7
C(5)-C(6)-H(6)	119.7
C(6)-C(7)-C(8)	120.0(3)
С(6)-С(7)-Н(7)	120.0
С(8)-С(7)-Н(7)	120.0
C(7)-C(8)-C(9)	120.7(3)
C(7)-C(8)-H(8)	119.6
C(9)-C(8)-H(8)	119.6
C(4)-C(9)-C(8)	118.2(3)
C(4)-C(9)-H(9)	120.9
C(8)-C(9)-H(9)	120.9
N(2)-C(10)-H(10A)	109.5
N(2)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
N(2)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(1)-C(11)-Ir(1)	178.0(4)

Table S3 Crystal data and structure refinement for Ir complex 5d.

Identification code	5d	
Empirical formula	C24 H24 B F4 Ir N4 C)4
Formula weight	711.48	
Temperature	173(2) K	
Wavelength	1.34138 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 16.1278(10) Å	$\Box \alpha = 90^{\circ}.$
	b = 12.7211(8) Å	$\Box\beta=90^{\circ}.$
	c = 25.0778(16) Å	$\Box \gamma = 90^{\circ}.$
Volume	5145.0(6) Å ³	
Z	8	
Density (calculated)	1.837 mg/m^3	
Absorption coefficient	7.051 mm ⁻¹	
F(000)	2768	
Crystal size	0.260 x 0.200 x 0.150	mm ³
Theta range for data collection	3.066 to 58.995°.	
Index ranges	-20<=h<=20, -16<=k<	=16, -32<=l<=32
Reflections collected	80819	
Independent reflections	5612 [R(int) = 0.0469]	
Completeness to theta = 53.594°	99.7 %	
Absorption correction	Semi-empirical from e	equivalents
Max. and min. transmission	0.752 and 0.536	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	5612 / 0 / 347	
Goodness-of-fit on F ²	1.236	
Final R indices [I>2sigma (I)]	R1 = 0.0327, wR2 = 0	.0727
R indices (all data)	R1 = 0.0330, wR2 = 0	.0728
Extinction coefficient	n/a	
Largest diff. peak and hole	1.185 and -1.485 e.Å ⁻³	

Table S4 Bond lengths [Å] and angles [°] for Ir complex **5d**.

5			
6 7	Ir(1)-C(24)	1.884(5)	
8	Ir(1)-C(23)	1 888(5)	
9	Ir(1) C(23)	2.091(4)	
10	If(1)-C(12)	2.081(4)	
12	Ir(1)-C(1)	2.086(4)	
13	B(1)-F(4)	1.369(6)	
14	B(1)-F(2)	1.375(6)	
15 16	B(1)-F(3)	1 379(7)	
17	B(1) F(1)	1 303(7)	
18	$D(1)-\Gamma(1)$	1.353(7)	
19	N(1)-C(1)	1.353(5)	
20 21	N(1)-C(3)	1.390(5)	
22	N(1)-C(4)	1.435(5)	
23	N(2)-C(1)	1.359(5)	
24	N(2)-C(2)	1 374(5)	
26	N(2) C(11)	1.461(5)	
27	N(2)-C(11)	1.401(3)	
28	N(3)-C(12)	1.353(5)	
29 30	N(3)-C(14)	1.388(5)	
31	N(3)-C(15)	1.446(5)	
32	N(4)-C(12)	1.354(5)	
33	N(4)-C(13)	1 378(5)	
35	N(4) C(13)	1.457(5)	
36	N(4)-C(22)	1.437(3)	
37	O(1)-C(7)	1.364(5)	
38 39	O(1)-C(10)	1.431(6)	
40	O(2)-C(18)	1.368(5)	
41	O(2)-C(21)	1.445(6)	
42	O(3)-C(23)	1 132(6)	
45 44	O(3) C(23)	1.132(6)	
45	O(4) - C(24)	1.130(6)	
46	C(2)-C(3)	1.350(6)	
4/ 48	C(2)-H(2)	0.9500	
49	C(3)-H(3)	0.9500	
50	C(4)-C(5)	1.384(5)	
51	C(4)-C(9)	1 398(5)	
52 53	C(1) C(2)	1.294(5)	
54	C(3)- $C(0)$	1.384(3)	
55	C(5)-H(5)	0.9500	
56 57	C(6)-C(7)	1.397(6)	
58	C(6)-H(6)	0.9500	
59	C(7)-C(8)	1.390(6)	
60			

2		
3	C(8)-C(9)	1.370(6)
4 5	C(8)-H(8)	0 9500
6	C(9) - H(9)	0.9500
7	C(10) H(10A)	0.9900
9	C(10) - H(10R)	0.9800
10	C(10)-H(10B)	0.9800
11 12	C(10)-H(10C)	0.9800
12	C(11)-H(11A)	0.9800
14	C(11)-H(11B)	0.9800
15 16	C(11)-H(11C)	0.9800
17	C(13)-C(14)	1.349(6)
18	C(13)-H(13)	0.9500
19 20	C(14)-H(14)	0 9500
21	C(15)-C(20)	1 377(5)
22	C(15) - C(20)	1.377(5)
23	C(13)-C(10)	1.390(0)
25	C(16)-C(17)	1.386(6)
26	C(16)-H(16)	0.9500
27	C(17)-C(18)	1.388(6)
29	C(17)-H(17)	0.9500
30 31	C(18)-C(19)	1.385(6)
32	C(19)-C(20)	1.400(5)
33	C(19)-H(19)	0.9500
34 35	C(20)-H(20)	0.9500
36	C(21)-H(21A)	0 9800
37	C(21) H(21R)	0.9800
38 39	C(21)- $H(21D)$	0.9800
40	$C(21)-\Pi(21C)$	0.9800
41	C(22)-H(22A)	0.9800
43	C(22)-H(22B)	0.9800
44	C(22)-H(22C)	0.9800
45 46		
47	C(24)-Ir(1)- $C(23)$	89.49(19)
48	C(24)-Ir(1)-C(12)	179.29(19)
49 50	C(23)-Ir(1)- $C(12)$	90.75(17)
51	C(24)-Ir(1)-C(1)	91.87(17)
52	C(23)-Ir(1)-C(1)	178.02(17)
55	C(12) Ir(1) $C(1)$	87.00(15)
55	C(12)-II(1)- $C(1)E(4) D(1) E(2)$	07.70(13)
56 57	F(4) - B(1) - F(2)	111.0(4)
58	F(4)-B(1)-F(3)	109.3(5)
59	F(2)-B(1)-F(3)	109.1(5)
60		

2			
3 4	F(4)-B(1)-F(1)	110.3(5)	
5	F(2)-B(1)-F(1)	109.1(4)	
6	F(3)-B(1)-F(1)	107.9(4)	
8	C(1)-N(1)-C(3)	111.1(3)	
9	C(1)-N(1)-C(4)	127.1(3)	
10	C(3)-N(1)-C(4)	121 7(3)	
12	C(1)-N(2)-C(2)	110.8(3)	
13 14	C(1) - N(2) - C(11)	125 4(4)	
15	C(2)-N(2)-C(11)	123.1(1) 123.8(3)	
16 17	C(2) = N(2) = C(11) C(12) = N(3) = C(14)	123.8(3)	
17	C(12) - N(3) - C(14) C(12) - N(3) - C(15)	111.3(3)	
19	C(12)-N(3)-C(13)	120.1(3)	
20 21	C(14)-N(3)-C(15)	122.6(3)	
22	C(12)-N(4)-C(13)	110.8(3)	
23	C(12)-N(4)-C(22)	125.9(4)	
25	C(13)-N(4)-C(22)	123.3(3)	
26	C(7)-O(1)-C(10)	116.8(4)	
27 28	C(18)-O(2)-C(21)	117.5(3)	
29	N(1)-C(1)-N(2)	104.6(3)	
30 31	N(1)-C(1)-Ir(1)	128.3(3)	
32	N(2)-C(1)-Ir(1)	127.1(3)	
33	C(3)-C(2)-N(2)	107.4(4)	
35	C(3)-C(2)-H(2)	126.3	
36	N(2)-C(2)-H(2)	126.3	
37 38	C(2)-C(3)-N(1)	106.1(4)	
39	C(2)-C(3)-H(3)	127.0	
40 41	N(1)-C(3)-H(3)	127.0	
42	C(5)-C(4)-C(9)	127.3 120.2(4)	
43	C(5) - C(4) - N(1)	120.2(1) 121.2(3)	
44	C(9) C(4) N(1)	121.2(5) 118 6(3)	
46	C(5) - C(4) - I(1)	120.3(4)	
47 48	C(0)-C(3)-C(4)	120.3(4)	
49	C(0)-C(3)-H(3)	119.8	
50 51	C(4)-C(5)-H(5)	119.8	
52	C(5)-C(6)-C(7)	119.4(4)	
53	C(5)-C(6)-H(6)	120.3	
54 55	C(7)-C(6)-H(6)	120.3	
56	O(1)-C(7)-C(8)	115.6(4)	
57 58	O(1)-C(7)-C(6)	124.6(4)	
59	C(8)-C(7)-C(6)	119.8(4)	
60			

-		
3	C(9)-C(8)-C(7)	120.8(4)
5	C(9)-C(8)-H(8)	119.6
6	C(7)-C(8)-H(8)	119.6
7	C(8)-C(9)-C(4)	119 5(4)
9	C(8) - C(9) - H(9)	120.3
10	C(0)-C(0)-H(0)	120.5
12	$C(4)-C(9)-\Pi(9)$	120.3
13	O(1)-C(10)-H(10A)	109.5
14	O(1)-C(10)-H(10B)	109.5
15	H(10A)-C(10)-H(10B)	109.5
17	O(1)-C(10)-H(10C)	109.5
18	H(10A)-C(10)-H(10C)	109.5
20	H(10B)-C(10)-H(10C)	109.5
21	N(2)-C(11)-H(11A)	109.5
22	N(2)-C(11)-H(11B)	109.5
24	H(11A)-C(11)-H(11B)	109.5
25	N(2) C(11) H(11C)	109.5
20	$N(2)-C(11)-\Pi(11C)$	109.5
28	H(11A)-C(11)-H(11C)	109.5
29	H(11B)-C(11)-H(11C)	109.5
31	N(3)-C(12)-N(4)	104.5(3)
32	N(3)-C(12)-Ir(1)	127.9(3)
33	N(4)-C(12)-Ir(1)	127.5(3)
35	C(14)-C(13)-N(4)	107.4(4)
36	C(14)-C(13)-H(13)	126.3
37 38	N(4)-C(13)-H(13)	126 3
39	C(13)- $C(14)$ - $N(3)$	105 9(4)
40	C(13) C(14) H(14)	105.9(4)
41 42	$C(13)-C(14)-\Pi(14)$	127.0
43	N(3)-C(14)-H(14)	127.0
44	C(20)-C(15)-C(16)	121.0(4)
45 46	C(20)-C(15)-N(3)	120.4(3)
47	C(16)-C(15)-N(3)	118.6(3)
48	C(17)-C(16)-C(15)	119.5(4)
50	C(17)-C(16)-H(16)	120.2
51	C(15)-C(16)-H(16)	120.2
52 53	C(16)-C(17)-C(18)	119.8(4)
54	C(16)-C(17)-H(17)	120.1
55	C(18) C(17) U(17)	120.1
50 57	$C(10) - C(11) - \Pi(11)$	120.1
58	U(2)-U(18)-U(19)	124.2(4)
59	O(2)-C(18)-C(17)	115.1(4)
00		

2		
3	C(19)-C(18)-C(17)	120.7(4)
4 5	C(18)-C(19)-C(20)	119.4(4)
б	C(18)-C(19)-H(19)	120 3
7 8	C(20)- $C(19)$ - $H(19)$	120.3
9	C(15) C(20) C(10)	110.5(4)
10	C(15)-C(20)-C(19)	119.3(4)
1	C(15)-C(20)-H(20)	120.2
3	C(19)-C(20)-H(20)	120.2
1	O(2)-C(21)-H(21A)	109.5
5	O(2)-C(21)-H(21B)	109.5
7	H(21A)-C(21)-H(21B)	109.5
	O(2)-C(21)-H(21C)	109.5
)	H(21A)-C(21)-H(21C)	109.5
, 	H(21R) - C(21) - H(21C)	100.5
2	H(21B)-C(21)-H(21C)	109.5
3	N(4)-C(22)-H(22A)	109.5
r j	N(4)-C(22)-H(22B)	109.5
,	H(22A)-C(22)-H(22B)	109.5
	N(4)-C(22)-H(22C)	109.5
	H(22A)-C(22)-H(22C)	109.5
	H(22B)-C(22)-H(22C)	109.5
	O(3)-C(23)-Ir(1)	178 9(5)
	O(4) C(24) Ir(1)	177.2(4)
	O(4)- $C(24)$ -If(1)	1/7.3(4)
,		
,)		
1		

http://chem.scichina.com/english

6. β -Methylation of primary and secondary alcohols with methanol

6.1 Optimization of reaction conditions

Table S5. Optimization of reaction conditions^a

\bigcirc	∕∽он	+ MeOH	[M] base, 24 h	
1		2		3
	Entry	Cat. (eq.)	Base (eq.)	Yield%
	1	4a (0.05)	^t BuONa (2)	74
	2	4b (0.05)	^t BuONa (2)	84
	3	5a (0.05)	^t BuONa (2)	56
	4	5b (0.05)	^t BuONa (2)	57
	5	5c (0.05)	^r BuONa (2)	98
	6	5d (0.05)	^t BuONa (2)	99
	7	5c (0.01)	^r BuONa (2)	59
	8	5d (0.01)	^r BuONa (2)	67
	9	6 (0.05)	^t BuONa (2)	33
	10	7 (0.05)	^t BuONa (2)	10
	11	8a (0.05)	^t BuONa (2)	25
	12	8b (0.05)	^t BuONa (2)	40
	13	9 (0.05)	^t BuONa (2)	64
	14	5d (0.05)	$Cs_2CO_3(2)$	92
	15	5d (0.05)	^t BuOK (2)	90
	16	5d (0.05)	^{<i>t</i>} BuONa (2)	99
	17	5d (0.05)	^t BuONa (1.2)	73
	18	5d (0.05)	-	0
	19	-	^{<i>t</i>} BuONa (2)	0

Science China Chemistry

^a Reactions were carried out with 2-phenyl ethanol (1, 1 mmol), catalyst (0.01- 0.05 mol%), base (1-2 equiv.) and MeOH (1 mL) at 140 °C under N₂ atmosphere for 24 hours and yields were determined by ¹H NMR analysis using mesitoxybenzene as an internal standard.

6.2 Procedure for TON and TOF of β -methylation with methanol

To a sealed tube (120 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.001 mol%), methanol (5 mL), 'BuONa (10 mmol) and 2-phenyl ethanol (610 mg, 5 mmol) were added under nitrogen atmosphere. The solution was heated at 200 °C for 96 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement. The methylated product was obtained in 30.8% yield, giving a TON of 30800.

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.005 mol%), methanol (1 mL), 'BuONa (2 mmol) and 2-phenyl ethanol (122 mg, 1 mmol) were added under nitrogen atmosphere. The solution was heated at 200 °C for 1 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement. The methylated product was obtained in 23.3% yield, giving a TOF of 4640 h^{-1}

6.3 General procedure for β -methylation of primary alcohols with methanol

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.05 mol%), methanol (1 mL), 'BuONa (2 mmol) and primary alcohol (1 mmol) were added under

nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

Pure products were obtained by column chromatography over silica gel using ethyl acetate/petroleum ether mixture as eluent.

Yield of substrate **30** was determined by GC-MS without isolated because of its low boiling point.

2-phenylpropan-1-ol (3) S16

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.30-7.38 (m, 2H, ArCH), 7.21-7.28 (m, 3H, ArCH), 3.69 (d, 2H, *J* = 6.8 Hz, CH₂), 2.90-3.01 (m, 1H, CH), 1.29 (d, 3H, *J* = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 143.8, 128.7, 127.6, 126.8, 68.8, 42.5, 17.7 ppm.

2-(o-tolyl)propan-1-ol (10) S16

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.18-7.23 (m, 2H, ArCH), 7.10-7.17 (m, 2H, ArCH), 3.66-3.80 (m, 2H, CH₂), 3.22-3.32 (m, 1H, CH), 2.37 (s, 3H, CH₃), 1.34-1.44 (m, 1H, OH), 1.25 (d, 3H, *J* = 7.0 Hz, CH₃) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 142.0, 136.6, 130.8, 126.6, 126.5, 125.6, 68.2, 37.4, 19.8, 17.7 ppm.

2-(m-tolyl)propan-1-ol (11) ^{S16}

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.19-7.25 (m, 1H, ArCH), 7.01-7.09 (m, 3H, ArCH), 3.70 (d, 2H, J = 6.7 Hz, CH₂), 2.85- 2.98 (m, 1H, CH), 2.36 (s, 3H, CH₃), 1.33-1.47 (m, 1H, OH), 1.27 (d, 3H, J = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 143.6, 138.2, 128.6, 128.3, 127.5, 124.5,

68.7, 42.4, 21.5, 17.6 ppm.

2-(p-tolyl)propan-1-ol (12) S17

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.15 (s, 4H, ArCH), 3.68 (d, 2H, J = 6.1 Hz, CH₂), 2.87- 2.97 (m, 1H, CH), 2.34 (s,

3H, CH₃), 1.36-1.46 (m, 1H, OH), 1.27 (d, 3H, *J* = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 140.8, 136.4, 129.5, 127.6, 69.0, 42.3, 21.2, 17.9 ppm.

2-(4-methoxyphenyl)propan-1-ol (13) S16

¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 7.16 (d, 2H, *J* = 8.7 Hz, ArCH), 6.88 (d, 2H, *J* = 8.7 Hz, ArCH), 3.80 (s, 3H, OCH₃), 3.61-3.72 (m, 2H, CH₂), 2.85-2.96 (m, 1H, CH),

1.28-1.35 (m, 1H, OH), 1.25 (d, 3H, J = 7.0 Hz, CH₃) ppm.
¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 158.3, 135.6, 128.4, 114.0, 126.5, 68.8, 55.2, 41.5, 17.7 ppm.

2-(4-fluorophenyl)propan-1-ol (14) S16

¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 7.15-7.24 (m, 2H, ArCH), 6.96-7.05 (m, 2H, ArCH), 3.64-3.74 (m, 2H, CH₂), 2.95 (dd, 1H, *J* = 13.8 and 6.9 Hz, CH), 1.26 (d, 3H, *J* = 7.0 Hz, CH₃)

ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 162.8 (*J* = 245.2 Hz), 139.3 (*J* = 3.2 Hz), 128.9 (*J* = 7.9 Hz), 115.4 (*J* = 21.1 Hz), 68.6, 41.7, 17.7 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃, 298 K) δ = 116.58 ppm.

2-(2-fluorophenyl)propan-1-ol (15) S18

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.17-7.29 (m, 2H, ArCH), 7.08-7.15 (m, 1H, ArCH), 7.00-7.07 (m, 1H, ArCH), 3.68-3.84 (m, 2H, CH₂), 3.25-3.37 (m, 1H, CH), 1.41 (t, 1H, *J* = 6.0 Hz, OH), 1.30

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 162.4 (*J* = 246.0 Hz), 130.61 (*J* = 14.5 Hz), 128.6 (*J* = 5.2 Hz), 128.1 (*J* = 8.4 Hz), 124.3 (*J* = 3.5 Hz), 115.7 (*J* = 22.9 Hz), 67.4 (*J* = 1.2 Hz), 35.7, 16.7 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃, 298 K) δ = 118.40 ppm.

2-(4-chlorophenyl)propan-1-ol (16) S16

¹**H** NMR (400 MHz, CDCl₃, 298 K) $\delta = 7.27-7.33$ (m, 2H, ArCH), 7.15-7.21 (m, 2H, ArCH), 3.64-3.74 (m, 2H, CH₂), 2.88-2.98 (m, 1H, CH), 1.28-1.35 (m, 1H, OH), 1.26 (d, 3H, J =

7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.2, 132.3, 128.8, 128.7, 68.5, 41.8, 17.5 ppm.

2-(3-bromophenyl)propan-1-ol (17) S19

Br OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.35-7.42 (m, 2H, ArCH), 7.15-7.23 (m, 2H, ArCH), 3.70 (d, 2H, *J* = 6.3 Hz, CH₂), 2.93 (dd, 1H, *J* = 13.8 and 6.9 Hz, CH), 1.30-1.40 (m, 1H, OH), 1.27 (d, 3H, *J* = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 146.5, 130.8, 130.4, 130.0, 126.4, 123.0, 68.6, 42.5, 17.7 ppm.

2-(2-bromophenyl)propan-1-ol (18) S20

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.35-7.42 (m, 2H, ArCH),
7.15-7.23 (m, 2H, ArCH), 3.70 (d, 2H, J = 6.3 Hz, CH₂), 2.93 (dd,
1H, J = 13.8 and 6.9 Hz, CH), 1.35-1.45 (m, 1H, OH), 1.27 (d, 3H,

J = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.6, 133.1, 128.0, 127.7, 127.6, 125.2, 67.3, 40.7, 17.0 ppm.

2-(4-iodophenyl)propan-1-ol (19) S21

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.62-7.68 (m, 2H, ArCH), 6.96-7.04 (m, 2H, ArCH), 3.62-3.74 (m, 2H, CH₂), 2.90 (dd, 1H, *J* = 13.8, 6.9 Hz, CH), 1.29-1.36 (m, 1H, OH), 1.25 (d,

 $3H, J = 7.0 Hz, CH_3$) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 143.5, 143.4, 137.6, 129.5, 113.0, 91.8, 68.4, 42.0, 17.4 ppm.

2-(4 -trifluoromethylphenyl)propan-1-ol (20) S16

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.59 (d, 2H, J = 8.1 Hz, ArCH), 7.36 (d, 2H, J = 8.1 Hz, ArCH), 3.74 (d, 2H, J = 6.8 Hz, CH₂), 3.03 (dd, 1H, J = 13.8 and 6.9 Hz, CH),

1.35-1.46 (m, 1H, OH), 1.30 (d, 3H, J = 7.0 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 148.0, 129.1 (J = 32.5 Hz), 127.8, 125.5 (J = 3.5 Hz), 122.9, 68.3, 42.3, 17.4 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃, 298 K) δ = 62.43 ppm.

2-(4 -hydroxylphenyl)propan-1-ol (21) S22

¹**H** NMR (400 MHz, D₂O, 298 K) δ = 7.22 (d, 2H, *J* = 8.3 Hz, ArCH), 6.90 (d, 2H, *J* = 8.3 Hz, ArCH), 3.67 (d, 2H, *J* = 6.9 Hz, CH₂), 2.84-2.96 (m, 1H, CH), 1.21 (d, 3H, *J* = 7.0 Hz,

CH₃) ppm.

¹³**C NMR** (101 MHz, D₂O, 298 K) δ = 153.8, 136.3, 128.6, 115.3, 67.5, 40.6, 17.2 ppm.

2-(naphthalen-1-yl)ethan-1-ol (22)^{S16} ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 8.16 (d, 1H, *J* = 8.4 Hz, ArCH), 7.84-7.92 (m, 1H, ArCH), 7.76 (d, 1H, *J* = 8.0 Hz,

S31

http://chem.scichina.com/english

ArCH), 8.37-7.59 (m, 4H, ArCH), 3.93-3.99 (m, 2H, CH₂), 3.88 (dd, 1H, *J* = 9.4 and 4.2 Hz, CH), 1.29-1.36 (m, 1H, OH), 1.45 (d, 3H, *J* = 6.7 Hz, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 139.7, 134.2, 132.1, 129.1, 127.2, 126.2, 125.7, 123.2, 68.3, 36.5, 18.0 ppm.

to Review Only

 2-(thiophen-2-yl)propan-1-ol (23) S17

¹**H** NMR (400 MHz, CDCl₃, 298 K) $\delta = 7.19$ (dd, 1H, J = 5.1 and 1.1 Hz, ArCH), 6.97 (dd, 1H, J = 5.1 and 3.5 Hz, ArCH), 6.88-6.92 (m, 1H, ArCH), 3.62-3.78 (m, 2H, CH₂), 3.17-3.33 (m, 1H, CH), 1.47-1.56 (m, 1H, OH), 1.36 (d, 3H, J = 7.0 Hz, CH₃) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 147.5, 127.0, 124.0, 123.7, 69.1, 38.3, 18.7 ppm.

2-(1H-indol-3-yl)propan-1-ol (24) S16

¹H NMR (400 MHz, CDCl₃, 298 K) $\delta = 8.05$ (s, 1H, NH), 7.67 (d, 1H, J = 8.0 Hz, ArCH), 7.38 (d, 1H, J = 8.0 Hz, ArCH), 7.18-7.25 (m, 1H, ArCH), 7.10-7.17 (m, 1H, ArCH), 7.07 (d, 1H, J = 2.4 Hz, ArCH), 3.77-3.89 (m, 2H, CH₂), 3.27-3.37 (m, 1H, CH), 1.41 (d, 3H, J = 7.0 Hz, CH₃), 1.35-1.40 (m, 1H, OH) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 136.6, 126.7, 122.2, 121.2, 119.4, 119.2, 118.0, 111.2, 67.9, 33.9, 17.2 ppm.

2-methyl-3-phenylpropan-1-ol (25) S17

OF

OH **¹H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.24-7.33 (m, 1H,

(dd, 1H, *J* = 13.4 and 6.3 Hz, CH₂), 2.42 (dd, 1H, *J* = 13.4 and 8.1 Hz, CH₂), 1.87-2.01 (m, 1H, CH), 1.39 (s, 1H, OH), 0.92 (d, 3H, *J* = 6.7 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 140.6, 129.1, 128.2, 125.9, 67.6, 39.7, 37.7, 16.4 ppm.

3-(furan-2-yl)-2-methylpropan-1-ol (26) S23

ОЛОН

¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 7.31 (d, 1H, *J* = 1.2 Hz, ArCH), 6.28 (dd, 1H, *J* = 2.8 and 2.0 Hz, ArCH), 6.02 (d, 1H, *J* =

ArCH), 7.13-7.23 (m, 3H, ArCH), 3.42-3.58 (m, 2H, CH₂), 2.76

2.6 Hz, ArCH), 3.50 (d, 2H, J = 5.5 Hz, CH₂), 2.73 (dd, 1H, J = 14.9 and 6.2 Hz,

http://chem.scichina.com/english

CH₂), 2.55 (dd, 1H, *J* = 14.9 and 7.3 Hz, CH₂), 1.97- 2.09 (m, 1H, CH), 1.46-1.73 (br, 1H, OH), 0.95 (d, 3H, *J* = 6.8 Hz, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 154.7, 141.2, 110.3, 106.3, 67.6, 35.6, 31.7,

16.6 ppm.

2-methylhexan-1-ol (27) S17

OH **1H NMR** (400 MHz CDCl₃, 298 K) δ = 3.50 (dd, 1H, *J* =10.4 and 5.8 Hz, CH₂), 3.41 (dd, 1H, *J* =10.5 and 6.6 Hz, CH₂), 1.54-1.67

(m, 1H, CH), 1.18-1.45 (m, 6H, CH₂), 1.04-1.16 (m, 1H, OH), 0.77-0.94 (m, 6H, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 68.6, 35.9, 33.0, 29.3, 23.1, 16.7, 14.2 ppm.

2-methyloctan-1-ol (28) S17

^{OH} ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 3.47-3.55 (m, 1H, CH₂), 3.37-3.46 (m, 1H, CH₂), 1.56- 1.67 (m, 1H, CH),

1.19-1.47 (m, 10H, CH₂), 1.05-1.18 (m, 1H, OH), 0.84-0.95 (m, 6H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 68.4, 35.8, 33.2, 31.8, 29.6, 26.9, 22.6, 16.6, 14.1 ppm.

2-methyldecan-1-ol (29) ^{S17}

OH ¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 3.46-3.56 (m,

1H, CH₂), 3.37-3.45 (m, 1H, CH₂), 1.53- 1.66 (m, 1H,

CH), 1.17-1.46 (m, 14H, CH₂), 1.02-1.16 (m, 1H, OH), 0.83-0.95 (m, 6H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 68.4, 35.8, 33.2, 31.9, 30.0, 29.3, 27.0, 22.7, 16.6, 14.1 ppm.

2,7-dimethyloctane-1,8-diol (31) S17

S34

http://chem.scichina.com/english

CH), 1.19-1.47 (m, 8H, CH₂), 1.05-1.18 (m, 2H, OH), 0.84-0.95 (m, 6H, CH₃) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 68.4, 68.3, 35.7, 33.0, 27.2, 27.2, 16.6, 16.5 ppm.

2,5-dimethylhexane-1,6-diol (32) S17

HO (H NMR (400 MHz, CDCl₃, 298 K) δ = 3.38-3.58 (m, 4H, CH₂), 1.53-1.67 (m, 4H, CH₂), 1.35-1.54 (m, 2H, CH), 1.06-1.22 (m, 2H, OH), 0.87-0.96 (m, 6H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 68.1, 68.0, 35.3, 35.9, 30.2, 30.2, 16.7, 16.5 ppm.

2-(p-isobutyl)propan-1-ol (33) S17

OH ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.07-7.17 (m, 4H, ArCH), 3.64-3.73 (m, 2H, CH₂), 2.86-3.00 (m, 1H, CH), 2.93 (d, 2H, *J* = 7.0 Hz, CH₂), 1.79- 1.92 (m, 1H, CH), 1.30-1.39 (m, 1H, OH), 1.27 (d, 3H, *J* = 7.0 Hz, CH₃), 0.91 (d, 6H, *J* = 6.6 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 140.7, 140.1, 129.4, 127.2, 68.8, 45.1, 42.0, 30.20, 22.4, 17.6 ppm.

6.4 Preparation of ibuprofen from precursor 33 using self-supported Ru catalyst

To a sealed tube (15 mL) equipped with a stir bar, self-supported **Ru** catalyst^[24] (0.5 mol%), KOH (4 mmol), ibuprofen precursor **33** (1 mmol) and toluene (1 mL) were added under nitrogen atmosphere at 140 °C for 24 h. The product was obtained in a yield of 34%.

Scheme S1 Preparation of ibuprofen from precursor 33

6.5 General procedure for β -methylation of secondary alcohols with methanol

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.1 mol%), methanol (1 mL), 'BuONa (3 mmol) and secondary alcohol (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

Pure products were obtained by column chromatography over silica gel using ethyl acetate/petroleum ether mixture as eluent.

Yield of substrate **43** and **47** was determined by GC-MS without isolated because of its low boiling point.

2-methyl-1-phenylpropan-1-ol (34) S17

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.24-7.38 (m, 5H, ArCH),
4.37 (dd, 1H, J = 6.9 and 3.2 Hz, CH), 1.91- 2.02 (m, 1H, CH), 1.82 (d, 1H, J=3.2 Hz, OH), 1.01 (d, 3H, J = 6.8 Hz, CH₃), 0.80 (d, 3H, J

= 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 143.6, 128.2, 127.4, 126.5, 80.0, 35.2, 19.0, 18.2 ppm.

2-methyl-1-(o-tolyl)propan-1-ol (35) S17

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.39-7.47 (m, 1H, ArCH), S36

http://chem.scichina.com/english

7.09-7.25 (m, 3H, ArCH), 4.32 (d, 1H, *J* = 6.9 Hz, CH), 2.35 (s, 3H, CH₃), 1.89- 2.01 (m, 1H, CH), 1.71-1.80 (m, 1H, OH), 1.01 (d, 3H, *J* = 6.8 Hz, CH₃), 0.79 (d, 3H, *J* = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.1, 135.0, 130.3, 127.0, 126.0, 126.0, 75.7, 34.5, 19.4, 17.8 ppm.

2-methyl-1-(m-tolyl)propan-1-ol (36) S25

¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 7.23 (t, 1H, *J* = 7.5 Hz, ArCH), 7.10 (dd, 3H, *J* =14.3 and 7.5 Hz, ArCH), 4.32 (dd, 1H, *J* =6.7 and 2.5 Hz, CH), 2.36 (s, 3H, CH₃), 1.87-2.03 (m, 1H, CH),

1.83-1.80 (m, 1H, OH), 1.01 (d, 3H, *J* = 6.8 Hz, CH₃), 0.80 (d, 3H, *J* = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 143.8, 137.9, 128.3, 128.2, 127.4, 123.8, 80.2, 35.3, 21.6, 19.2, 18.4 ppm.

2-methyl-1-(p-tolyl)propan-1-ol (37) S17

¹**H** NMR (400 MHz, CDCl₃, 298 K) δ = 7.20 (d, 2H, *J* = 8.0 Hz, ArCH), 7.15 (d, 2H, *J* = 8.0 Hz, ArCH), 4.32 (d, 1H, *J* = 6.9 Hz, CH), 2.35 (s, 3H, CH₃), 1.89- 2.01 (m, 1H, CH), 1.71-1.80 (m, 1H,

J=3.2 Hz, OH), 1.01 (d, 3H, *J* = 6.8 Hz, CH₃), 0.79 (d, 3H, *J* = 6.8 Hz, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 140.7, 137.0, 128.9, 126.5, 80.0, 35.2, 21.1, 19.0, 18.3 ppm.

1-(4-methoxyphenyl)-2-methylpropan-1-ol (38) S17

OH

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 7.20-7.25$ (m, 2H, ArCH), 6.90-6.85 (m, 2H, ArCH), 4.29 (dd, 1H, J = 7.2 and 2.8 Hz, CH), 3.80 (s, 3H, OCH₃), 1.87- 2.00 (m, 1H, CH), 1.80 (d,

1H, J = 3.2 Hz, OH), 1.01 (d, 3H, J = 6.8 Hz, CH₃), 0.77 (d, 3H, J = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 158.9, 135.8, 130.3, 127.7, 113.5, 79.7, 55.2, 35.2, 19.0, 18.5 ppm.

1-(4- bromophenyl)-2-methylpropan-1-ol (39) S26

^{OH} ^IH NMR (400 MHz, CDCl₃, 298 K) $\delta = 7.42-7.49$ (m, 2H, ArCH), 7.15-7.21 (m, 2H, ArCH), 4.35 (d, 1H, J = 6.6 Hz, CH), 1.82- 1.92 (m, 2H, CH&OH), 0.97 (d, 3H, J = 6.8 Hz, CH₃), 0.80

(d, 3H, *J* = 6.8 Hz, CH₃) ppm.

Br

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.6, 131.3, 128.3, 121.1, 79.3, 35.3, 18.9, 18.0 ppm.

2-methyl-1-(naphthalen-1-yl)propan-1-ol (40) S27

OH

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 8.10-8.18$ (m, 1H, ArCH), 7.85-7.92 (m, 1H, ArCH), 7.79 (d, 1H, J = 8.2 Hz, ArCH), 7.60 (d, 1H, J = 6.0 Hz, ArCH), 7.44-7.56 (m, 3H,

ArCH), 5.18 (d, 1H, *J* = 6.0 Hz, CH), 2.20- 2.34 (m, 1H, CH), 2.05-2.19 (m, 1H, OH), 1.05 (d, 3H, *J* = 6.8 Hz, CH₃), 0.95 (d, 3H, *J* = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 139.7, 133.9, 130.8, 128.9, 127.8, 125.8, 125.4, 125.3, 124.0, 123.6, 76.5, 34.5, 20.1, 17.6 ppm.

2-methyl-1-(naphthalen-2-yl)propan-1-ol (41) S17

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 7.81-7.86$ (m, 3H, ArCH), 7.75 (s, 1H, ArCH), 7.43-7.53 (m, 3H, ArCH), 4.53 (dd,

1H, J = 6.8 and 2.7 Hz, CH), 2.02-2.14 (m, 1H, CH), 2.00 (d,

1H, J = 3.2 Hz, OH), 1.05 (d, 3H, J = 6.8 Hz, CH₃), 0.84 (d, 3H, J = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 141.2, 133.3, 133.1, 128.1, 128.1, 127.8, 126.2, 125.9, 125.5, 124.8, 80.3, 35.3, 19.3, 18.4 ppm.

1-(benzo[b]thiophen-5-yl)-2-methylpropan-1-ol (42)

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.84 (d, 1H, *J* = 8.3 Hz, ArCH), 7.77 (d, 1H, *J* = 0.8 Hz, ArCH), 7.45 (d, 1H, *J* = 5.4 Hz, ArCH), 7.28-7.36 (m, 2H, ArCH), 4.49 (dd, 1H, *J* = 6.8 and 1.5

Hz, CH), 1.97-2.09 (m, 1H, CH), 1.92 (d, 1H, *J* =2.5 Hz, OH), 1.04 (d, 3H, *J* = 6.8 Hz, CH₃), 0.82 (d, 3H, *J* = 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 140.1, 139.7, 139.0, 126.9, 124.0, 123.2, 122.4, 121.7, 80.3, 35.6, 19.2, 18.5 ppm.

HRMS (ESI), *m/z*: [M+H]⁺ calculated for C₁₂H₁₄SO: 206.0765, found: 206.0732.

2-methyl-1-phenylpropan-1-ol (44) S17

OH **1H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 7.24-7.38$ (m, 5H, ArCH), 4.37 (dd, 1H, J = 6.9 and 3.2 Hz, CH), 1.91- 2.02 (m, 1H, CH), 1.82 (d, 1H, J = 3.2 Hz, OH), 1.01 (d, 3H, J = 6.8 Hz, CH₃), 0.80 (d, 3H, J

= 6.8 Hz, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 143.6, 128.2, 127.4, 126.5, 80.0, 35.2, 19.0, 18.2 ppm.

2-methyl-1-phenylbutan-1-ol (45) S28

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.22-7.36 (m, 5H, ArCH), 4.51 (dd, 0.5H, *J* = 5.9 and 3.5 Hz, CH), 4.42 (dd, 0.5H, *J* = 7.0 and

3.2 Hz, CH), 1.87-1.92 (m, 0.5H, OH), 1.83-1.86 (m, 0.5H, OH), 1.63-1.80 (m, 1.5H, CH₂), 1.32-1.45 (m, 0.5H, CH₂), 1.14-1.23 (m, 0.5H, CH), 1.02-1.13 (m, 0.5H, CH), 0.82-0.97 (m, 4.5H, CH₃), 0.73 (d, 1.5H, *J* = 6.8 Hz, CH₃) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ = 144.0, 143.8, 128.3, 127.5, 127.3, 126.8, 78.9, 78.2, 42.1, 41.8, 26.0, 25.0, 15.2, 14.1, 11.8, 11.4 ppm.

2-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (46) S17

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\text{(mesitoxybenzene)}} = 6.09$ (s, 3H), $\delta_{\text{(product)}} = 4.55$ (1H, CH), 4.32 (1H, CH), 1.12 (d, 3H, J = 6.7 Hz, CH₃).

6.6 General procedure for β -alkylation of 2-phenyl ethanol with primary alcohols

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.05 mol%), primary alcohols (1 mL), 'BuONa (3 mmol) and 2-phenyl ethanol (1 mmol) were added under nitrogen atmosphere. The solution was heated at 150 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

Pure products were obtained by column chromatography over silica gel using ethyl acetate/petroleum ether mixture as eluent.

2-phenylbutanol (48) S29

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.28-7.37 (m, 2H, ArCH), 7.17-7.27 (m, 3H, ArCH), 3.65-3.80 (m, 2H, CH₂), 2.64-2.73 (m, 1H, CH), 1.69-1.84 (m, 1H, CH₂), 1.53-1.65 (m, 1H, CH₂), 0.84 (t,

 $3H, J = 8.4 Hz, CH_3$) ppm.

OH

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.4, 128.7, 128.2, 126.8, 67.4, 50.6, 25.1, 12.1 ppm.

4-methyl-2-phenylpentan-1-ol (49) S30

OH

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 7.33$ (t, 2H, ArCH), 7.18-7.27 (m, 3H, ArCH), 3.63-3.77 (m, 2H, CH₂), 2.83-2.94 (m, 1H, CH), 1.51-1.63 (m, 1H, CH), 1.36-1.49 (m, 2H, CH₂), 1.27-1.34

(m, 1H, OH), 0.83-0.89 (m, 6H, CH₃) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.6, 128.8, 128.2, 126.8, 68.4, 46.6, 41.3, 25.4, 23.7, 22.0 ppm.

2,3-diphenylpropan-1-ol (50) S20

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 7.27-7.34 (m, 2H, ArCH), 7.19-7.26 (m, 1H, ArCH), 7.12-7.18 (m, 1H, ArCH), 7.05-7.11 (m, 2H, CH₂), 3.79 (d, 2H, *J* = 5.5 Hz, CH₂), 2.98-3.14 (m, 2H, CH₂), 2.91 (dd, 1H, *J* = 12.8 and 7.4 Hz, CH) , 1.24-1.33 (m, 1H, OH) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.0, 140.0, 129.2, 128.8, 128.4, 128.2, 127.0, 126.2, 66.5, 50.3, 38.8 ppm.

2-phenyl-3-(p-tolyl)propan-1-ol (51) S31

¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta = 7.27-7.33$ (m, 2H, ArCH), 7.18-7.25 (m, 3H, ArCH), 6.95-7.05 (m, 4H, ArCH), 3.74-3.82 (m, 2H, CH₂), 3.02-3.11 (m, 1H, CH₂), 2.93-3.01 (m, 1H, CH₂), 2.87 (dd, 1H, J = 13.2 and 7.4 Hz, CH), 2.28 (s, 3H,

CH₃), 1.27-1.33 (m, 1H, OH) ppm ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 142.2, 136.9, 135.6, 129.1, 129.0, 128.8, 128.2, 126.9, 66.6, 50.4, 38.4, 21.1 ppm.

3-(4-methoxyphenyl)-2-phenylpropan-1-ol (52) S31

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.28-7.35 (m, 2H, ArCH), 7.18-7.27 (m, 3H, ArCH), 6.98-7.03 (m, 2H, ArCH), 6.74-6.79 (m, 2H, ArCH), 3.78 (dd, 2H, J = 6.4 and 2.4 Hz, CH₂), 3.76 (s, 3H, OCH₃), 2.94-3.10 (m, 2H, CH₂), 2.86 (dd,

2H, *J* = 13.6 and 7.5 Hz, CH₂) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 158.0, 142.1, 132.1, 130.1, 128.8, 128.2, 126.9, 113.8, 66.5, 55.3, 50.5, 37.9 ppm.

2-phenyl-3-(pyridin-3-yl) propan-1-ol (53)

¹**H NMR** (400 MHz, CDCl₃, 298 K) δ = 8.35 (dd, 1H, *J* = 4.8 and 1.6 Hz, ArCH), 8.29 (d, 1H, *J* = 2.0 Hz, ArCH), 7.25-7.35 (m, 3H, ArCH), 7.19-7.25 (m, 1H, ArCH), 7.06-7.18 (m, 3H, ArCH), 3.81

(d, 2H, *J* = 6.2 Hz, CH₂), 3.01-3.17 (m, 2H, CH₂), 2.87 (dd, H, *J* = 13.1 and 8.1 Hz, CH) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 150.4, 147.4, 141.1, 136.7, 135.6, 128.8, 128.2, 127.2, 123.3, 66.2, 50.2, 35.8 ppm.

HRMS (ESI), *m/z*: [M+H]⁺ calculated for C₁₄H₁₆NO: 214.1232, found: 214.1221.

7. Control experiments

7.1 Procedure for β -methylation of 2-arylethanol with TEMPO

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.05 mol%), methanol (1 mL), 'BuONa (2 mmol), 2-arylethanol (1 mmol) and TEMPO (2,2,6,6-tetramethyl-1-piperinedinyloxy) (234 mg, 1.5 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

7.2 Procedure for β -methylation of 2-arylethanol with Hg

To a sealed tube (35 mL) equipped with a stir bar, NHC-Ir catalyst **5d** (0.05 mol%), methanol (1 mL), 'BuONa (2 mmol), 2-arylethanol (1 mmol) and two drops of Hg were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

7.3 Reaction profile for β -methylation of 2-arylethanol

To a sealed tube (35 mL) equipped with a stir bar, Ir-NHC catalyst **5d** (0.05 mol%), methanol (1 mL), 'BuONa (2 mmol) and 2-arylethanol (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for different time intervals of 0.25 h, 0.5 h, 1 h, 2 h, 4 h, 6 h, 8 h, and 12 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR

measurement to detect the starting material, product and possible intermediate.

Figure S17. Conversion and yield/time profile for the β -methylation of 2-arylethanol.

7.4 Procedure for β -methylation of acetophenone with methanol

To a sealed tube (35 mL) equipped with a stir bar, catalyst **5d**, **6**, **7**, **8a-b** or **9** (0.1 mol%), methanol (1 mL), 'BuONa (3 mmol) and acetophenone (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement.

7.5 Procedure for hydrogen transfer of di-methylated-ketone with methanol

To a sealed tube (35 mL) equipped with a stir bar, catalyst **5d**, **6**, **7**, **8a-b** or **9** (0.1 mol%), methanol (1 mL), 'BuONa (3 mmol) and di-methylated-ketone (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, mesitoxybenzene was added as an internal

standard, and sent for NMR measurement.

Scheme S2 Comparison of catalytic activity of viable complexes 5d and 6-9.

7.6 Procedure for β -methylation of acetophenone with CD₃OD

To a sealed tube (35 mL) equipped with a stir bar, NHC-Ir catalyst **5d** (0.1 mol%), deuterated methanol (1 mL), 'BuONa (3 mmol) and acetophenone (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, the isolation of pure product was carried out using column chromatography over silica gel using ethyl acetate/petroleum ether (1:15) mixture as eluent.

7.7 Procedure for β-methylation of 2-arylethanol with CD₃OD

To a sealed tube (35 mL) equipped with a stir bar, NHC-Ir catalyst **5d** (0.05 mol%) deuterated methanol (1 mL), 'BuONa (2 mmol) and 2-arylethanol (1 mmol)

were added under nitrogen atmosphere. The solution was heated at 140 °C for 24 h. After cooling to room temperature, the isolation of pure product was carried out using column chromatography over silica gel using ethyl acetate/petroleum ether (1:15) mixture as eluent.

Scheme S3 Control experiment of β -methylation of catalyzed by NHC-Iridium complex.

7.8 Procedure for KIE experiment of β -methylation with CH₃OH or CD₃OD.

To a sealed tube (35 mL) equipped with a stir bar, NHC-Ir catalyst **5d** (0.05 mol%), methanol/ deuterated methanol (1 mL), 'BuONa (2 mmol) and 2-arylethanol (1 mmol) were added under nitrogen atmosphere. The solution was heated at 140 °C for different time intervals of 0.25 h, 0.5 h, 1 h, 1.25 h, 1.5 h. After cooling to room temperature, mesitoxybenzene was added as an internal standard, and sent for NMR measurement. Yield was determined by ¹H NMR spectrum. The time-yield profiles were fitting to straight lines. For methanol: y = 28.51x + 7.14; for deuterated methanol: y = 12.61x + 9.26 and k_H/k_D is 2.26.

Figure S18. KIE experiment of β -methylation with CH₃OH or CD₃OD.

8. ¹H NMR spectra of reaction mixtures after β -methylation of

alcohols

Figure S19. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of the mixtures of 46.

9. NMR spectra of isolated products

Figure S20. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 3.

S48

http://chem.scichina.com/english

S49

S54

http://chem.scichina.com/english

S56

S80

Figure S90. ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 45.

Figure S94. ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 49.
Page 107 of 118

References

- S1 Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem, 2019, 11: 872
- S2 Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L. *Eur.J. Inorg. Chem*, 2009, 1759-1766
- S3 Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett, 1996, 77: 3865-3868
- S4 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys, 2010, 132
- S5 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem, 2011, 32: 1456-1465
- S6 Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Mantzaris J. J. Chem. Phys, 1988, 89: 2193-2218
- S7 Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM. Mol.
 Phys, 1993, 78: 1211-1224
- S8 Kuchle W, Dolg M, Stoll H, Preuss H. J. Chem. Phys, 1994, 100: 7535-7542
- S9 Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P. J. Chem. Phys, 1996, 105: 1052-1059
- S10 Cioslowski J. J. Am. Chem. Soc, 1989, 111: 8333-8336
- S11 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV,

S89

Cioslowski J, Fox DJ. Gaussian 16, Revision B. 01. Wallingford, CT: Gaussian, Inc.; 2016.

- S12 Wu JJ, Shen LY, Chen ZN, Zheng QS, Xu X, Tu T. Angew. Chem. Int. Ed, 2020, 59: 10421-10425
- S13 Sharninghausen LS, Campos J, Manas MG, Crabtree RH. *Nat. Commun*, 2014, 5: 5084
- S14 Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH. J. Am. Chem. Soc, 2011, 133: 7547-7562
- S15 Berding J, Paridon JA, Rixel VHS, Bouwman E. Eur. J. Inorg. Chem, 2011, 2450-2458
- S16 Li Y, Li HQ, Junge H, Beller M. Chem. Commun, 2014, 50: 14991-14994
- S17 Kaithal A, Bonn P, Holscher M, Leitner W. Angew. Chem. Int. Ed, 2020, 59: 215-220
- S18 Qu B, Tan R, Herling MR, Haddad N, Grinberg N, Kozlowski MC, Zhang X, Senanayake CH. J. Org. Chem, 2019, 84: 4915-4920
- S19 Mazet C, Gerard D. Chem. Commun, 2011, 47: 298-300
- S20 Bettoni L, Gaillard S, Renaud JL. Org. Lett, 2019, 21: 8404-8408
- S21 Cook MJ, Khan TA, Nasri K. Tetrahedron, 1986, 42: 249-258
- S22 Tobiesen HN, Leth LA, Iversen MV, Naeborg L, Bertelsen S, Jorgensen KA. Angew. Chem. Int. Ed, 2020, 59: 18490-18494
- S23 Chen Y, Leonardi M, Dingwall P. Labes R, Pasau P, Blakemore DC, Ley SV. J. Org. Chem, 2018, 83: 15558-15568
- S24 Sun ZM, Liu YQ, Chen JB, Huang CY, Tu T. ACS Catal, 2015, 5: 6573-6578
- S25 Sappino C, Promitivo L, Angelis M, Righi F, Di Pietro F, Iannoni M, Pilloni L, Ciprioti SV, Suber L, Ricelli A, Righi G. *RSC Adv*, 2020, 10: 29688-29695
- S26 Hasegawa M, Endo J, Iwata S, Shimasaki T, Mazaki Y. Beilstein J. Org. Chem, 2015, 11: 972-979
- S27 Iuliano A, Barretta GU, Salvadori P. Tetrahedron: Asymmetry, 2000, 11: 1555-1563

S90

1	
2	
3 4	S28 Barker G, Brien PO, Campos KR. Org. Lett, 2010, 12: 4176-4179
5	
6	S29 Magre M, Pattennoiz E, Maity B, Cavallo L, Rueping M. J. Am. Chem. Soc, 2020,
8	142: 14286-14294
9	S30 Guduguntla S. Mastral MF. Feringa BL. I. Org. Chem. 2013, 78: 8274-8280
10 11	550 Sudugunda 5, Mastar Mir, Teringa DE. 5. 67g. Chem, 2015, 76. 6274 6266
12	S31 Cano R, Yus M, Ramon DJ. Chem. Commun, 2012, 48: 7628-7630
13	
14	
16	
17	
18	
20	
21 22	
23	
24	
25 26	
27	
28	
29 30	
31	
32	
34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57	
50 59	

Figure 2 Catalysts screening

164x97mm (300 x 300 DPI)

Figure 3 a) Crystal structures of complexes 5a, 5c and 5d, and the corresponding CCO-Ir bond lengths (Colour code: Ir, cyan; O, red; N, blue; C grey. Hydrogens are omitted for clarity). b) Percent buried volumes and steric maps of complexes 5a, 5c and 5d.

2.25

1.50

0.75

0.00

-0.75

-1.50

-2.25

120x75mm (300 x 300 DPI)

Figure 4 a) Comparison of the catalytic activity of selected viable catalysts in methylation of acetophenone or di-methylated-ketone. b) The plausible mechanism of the β-methylation of alcohols.

191x189mm (300 x 300 DPI)