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Abstract

By taking the spin and polarization of the electrons, positrons and photons into account in the
strong-field QED processes of nonlinear Compton emission and pair production, we find that the
growth rate of QED cascades in ultra-intense laser fields can be substantially reduced. While this
means that fewer particles are produced, we also found them to be highly polarized. We further
find that the high-energy tail of the particle spectra is polarized opposite to that expected from
Sokolov–Ternov theory, which cannot be explained by just taking into account spin-asymmetries
in the pair production process, but results significantly from ‘spin-straggling’. We employ a kinetic
equation approach for the electron, positron and photon distributions, each of them
spin/polarization-resolved, with the QED effects of photon emission and pair production
modelled by a spin/polarization dependent Boltzmann-type collision operator. For photon-seeded
cascades, depending on the photon polarization, we find an excess or a shortage of particle
production in the early stages of cascade development, which provides a path towards a controlled
experiment. Throughout this paper we focus on rotating electric field configuration, which
represent an idealized model and allows for a straightforward interpretation of the observed
effects.

1. Introduction

The ongoing development of high-power petawatt class lasers [1] has already opened new avenues for

high-intensity laser-plasma physics. Already with present day laser technology the effect of QED process can

be observed in high-intensity laser-matter interactions [2–4]. With the upcoming generation of multi-10

PW laser systems [5, 6] it is expected that laser-plasma interactions will enter a novel regime of QED plasma

physics where strong-field QED process such as high-energy photon emission via nonlinear Compton

scattering and electron-positron photo-production will play an important role for the overall dynamics of

the plasmas [7].

One of the most striking predictions of strong-field QED [8, 9] is the formation of avalanche-type QED

cascades [10] at laser intensities approaching 1024 W cm−2. In these cascades the prolific generation of

high-energy photons and electron–positron pairs can convert an initially strong laser field into a hot and

dense plasma of electrons, positrons and photons. One of the conclusions drawn from these predictions was

that the Schwinger field ES = 1.3 × 1018 V m−1 is then difficult to reach because of laser field depletion

during the cascade [11–13].

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft



New J. Phys. 23 (2021) 053025 D Seipt et al

In a cascade, efficient pair production is facilitated by hard photons which have a quantum parameter

χγ � 1. A particle with four-momentum pμ has quantum parameter χ = e|Fμνpν |/m3, where Fμν is the EM

field strength tensor, e the elementary charge and m the electron mass. Those photons, in turn, are emitted

by leptons, i.e. electrons and positrons, with χe � 1, leading to exponential increases in particle number

[10, 14–19]. A renewable supply of sufficiently many leptons with χe � 1 necessarily can be provided if the

electric field of the laser is capable of accelerating low-energy leptons with χe ≪ 1 to χe � 1.

This is one of the decisive features in avalanche-type cascades, which can occur, for instance, in rotating

electric fields at the magnetic nodes for two counter-propagating circularly polarized laser pulses [10, 20].

Such an avalanche-type cascade exhibits an exponential growth in particle number, limited by the available

(laser) field energy. By contrast, in shower-type cascades that occur in interactions of high-energy particle

with non-accelerating field configurations, such as in collisions with (nearly) plane-wave laser pulses, the

leptons are not reaccelerated to χe � 1, and therefore the cascade multiplicity is limited by the maximum

initial particle energy [21–23].

QED pair-cascades are important in extreme astrophysical environments, where they may develop in

matter, photon gas and magnetic field backgrounds [24]. In the latter case of cascades in strong magnetic

fields, as found in pulsar atmospheres [25, 26], the same basic theoretical framework to describe the

quantum processes is used for describing laser-plasma interactions [27]. There has been significant recent

progress in understanding important physics details of cascades, including aspects of laser polarization, field

structure [28–30] and seeding [31, 32].

Lepton spin- and polarization effects in strong-field QED(-plasma) processes have gained some

significant recent interest [33–40], (even though some fundamental scattering cross sections in strong laser

fields were calculated much earlier [41, 42]). It was shown that electron beams colliding with bi-chromatic

laser pulses can self-polarize due to hard-photon emission [36], and that positrons generated by these

photons are polarized as well [38]. Alternatively, it was proposed to collide electron beams with elliptically

polarized laser pulses to generate polarized lepton jets [37, 39]. The radiative self-polarization of electrons

in rotating electric fields in analogy to the Sokolov–Ternov effect [43, 44] was studied e.g. in [33, 34]. An

interesting scenario is the impact of particle polarization on the formation of avalanche-type cascades,

which may be expected to potentially be a large effect due to its exponential nature.

In this paper, we study the influence of lepton and photon spin and polarization on the formation of

QED cascades. We find that the inclusion of particle polarization does affect the growth rates of cascades,

and that all particle species in the developing cascades are highly polarized. Moreover, the high-energy tails

of the lepton energy spectra are polarized opposite to what is expected from Sokolov–Ternov theory. In

photon-seeded cascades we also find an excess of pairs in the early stages when the cascade is seeded by

⊥-polarized photons (compared to unpolarized or ‖-polarized photons), which presents a path towards an

experimental confirmations of the theoretical results.

Our paper is organized as follows: in section 2 we first develop the theoretical model based on a

Boltzmann-type kinetic equation with a polarization dependent collision operator. In section 3 numerical

results are presented and discussed. Our findings are summarized and concluded in section 4. Technical

details and background are provided in the appendix, including details on the numerical method.

2. Theoretical model

So far, in simulations of cascades only the photon polarization was taken into account in [45], but lepton

polarization was neglected. That means, in each generation the leptons emit polarized photons, but without

any influence from previous generations because leptons are and stay unpolarized. Here, the full

polarization evolution is taken into account consistently over many generations. The laser field is described

as a rotating electric field E(t) = E0(cos ωt, sin ωt, 0), which is a suitable model for colliding laser pulses

widely used in the literature [10, 11, 17, 18, 20, 46, 47] and is generated at the magnetic nodes of colliding

laser pulses. The rotating electric field represents a simplified model of a real high-intensity laser plasma

interaction which allows for a straightforward analysis of the observed particle polarization properties.

We model evolution of the polarized QED cascades by a Boltzmann-type kinetic equation [17, 18, 48,

49] for the one-particle distribution functions f s
q of of electrons (q = −1), positrons (q = +1) and photons

(q = 0), where q is the particle’s charge in units of e, and in a polarization state s. The transport equations

for f s
q in a rotating electric background field are derived in appendix A. At high intensity, a0 ≫ 1, where

a0 = eE0/mω is the normalized laser vector potential, the coherence length for the quantum processes λ/a0

becomes much shorter than the laser wavelength λ [8]. This scale separation allows for the quantum

processes to be described as local collisions by a Boltzmann collision operator, where the rates for quantum

processes calculated in a constant crossed field. In the rotating electric field, the leptons can be

spin-polarized up (↑) or down (↓) along the spin-quantization axis ez‖E × p, which is the magnetic field

2
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direction in the rest frame of the leptons. This represents a global non-precessing spin quantization axis

(SQA) which means that the spin vectors of particles polarized along the z-axis do not process according to

the T-BMT equation [33, 50]. (The spin-polarization components perpendicular to ez do not have to be

treated explicitly, see appendix A for details.) In our model the background field is homogeneous so

Stern–Gerlach forces are not present. Further, they can be neglected because they are much weaker than the

Lorentz force if field gradients occur on length scales much longer than the Compton wavelength [34, 40,

51]. Quantum radiation reaction and its spin dependence is included in the calculations automatically

through the photon emission. Photons can be in a polarization eigenstate ‖ or ⊥ to the plane of the rotating

electric field. Additional details can be found in appendix A.

Throughout the paper we use natural Heaviside–Lorentz units with � = c = ǫ0 = 1. We further

introduce normalized (dimensionless) time ωt → t, momentum p/m → p and electric field eE/mω→ E.

Thus, the normalized E0 has the same numerical value as a0. For the Minkowski metric we use the sign

convention (+,−,−,−).

The normalized Boltzmann equation can then be written as
(

∂

∂t
+ qE · ∇p

)

f s
q (p, t) = Cs

q[{f s′
q′ }], (1)

where Cs
q are the collision operators describing all relevant strong-field QED processes, with the charge q

labelling different particle species. The Cs
q are linear functionals of the spin and polarization dependent

differential rates for nonlinear Compton scattering and pair production [8, 45, 52, 53]. The rates were

calculated from first-order high-intensity QED Feynman diagrams in the Furry picture within the local

constant crossed field approximation [54–56], see also appendix B.

The lepton collision operators Cs
±1 describe the energy losses due to radiation emission and

accompanying spin-flip transitions, as well as a gain term due to pair production by photons. The photon

collision operator C j
0 contains terms for the absorption of j-polarized photons during pair production and

the generation of photons by non-linear Compton emission off of electrons and positrons. The explicit

expressions for the polarization dependent collision operators are given below in section 2.2.

The classical advection operator on the left-hand side of equation (1) does not mix different polarization

states (because of the choice of the non-processing SQA, see appendix A). Only the Boltzmann collision

operator on the rhs of equation (1) mixes different spin states and, thus, can lead to a change of the

polarization of the particles. There is no mixing of different photon polarization states due to vacuum

polarization effects since the ‖ /⊥ states are eigenstates of the photon polarization tensor [57, 58].

2.1. Characteristics

The characteristics of the left-hand-side of (1) describing the classical trajectory can be found analytically by

solving the equation of motion in the rotating electric field:

p(t) = q

∫ t

t0

dt′ E(t′) + p(t0), (2)

which means, for leptons with q = ±1, p(t) = (px(t), py(t), 0) lies on a circle with radius a0 around the

centre P = p(t0) + qa(t0), where a = −
∫

dt E is the normalized vector potential and P is the conserved

canonical momentum. Leptons starting with zero momentum can be accelerated up to |p| = 2a0, where

a0 = eE0/mω. For the photons, with q = 0, equation (2) is just free ballistic motion with constant

momentum.

For a numerical solution of the Boltzmann equation it is convenient to introduce the angle ϕ between E

and p for all particle species [17]. The equations of motion for the characteristics in terms of the new

variables p = |p| and ϕ read

dp

dt
= qa0 cos ϕ, (3)

dϕ

dt
= −q

a0

p
sin ϕ− 1, (4)

with the completely analytical solution,

p =

√

p2
0 + c2

0 + 2qc0p0 cos

(

ϕ0 −
∆t

2

)

, (5)

ϕ = arctan

(

p0 sin ϕ0 + qc0 sin ∆t
2

p0 cos ϕ0 + qc0 cos ∆t
2

)

−∆t, (6)

3
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with c0 = 2a0 sin ∆t
2

. Here p0,ϕ0 means those quantities are taken at t0. The characteristics are written in

terms of the time-step ∆t = t − t0. Note that equations (5) and (6) are exact to all orders in ∆t. For the

sake of completeness, we also write down the Boltzmann equation in the new variables:

[

∂

∂t
+ qa0 cos ϕ

∂

∂p
−
(

q
a0

p
sin ϕ+ 1

)

∂

∂ϕ

]

f s
q = Cs

q. (7)

2.2. Polarization dependent collision operators

The benefit of introducing ϕ becomes apparent when considering the quantum transitions; ultrarelativistic

particles emitted during the quantum processes are kinematically restricted to be collinear to the emitting

particle and therefore involve transitions at constant ϕ such that only the magnitude of momentum, p,

changes. The angle ϕ enters the collision operator only parametrically via the quantum parameters

χq =
a0

aS

√

q2 + p2 sin2 ϕ, (8)

which determine the probabilities of the QED processes, and with the normalized Schwinger vector

potential aS = m/ω.

Quantum transitions leave the momentum angle ϕ unchanged. This greatly simplifies the numeric

calculations. The polarization dependent collision operators for electrons, positrons and photons can be

written down as

Cs
−1(p) = −f s

−1(p)
∑

s′ ,j

W
ss′ j
−1 (p) +

∑

j,s′

∫ ∞

p

dp′
p′

p
f s′
−1(p′)ws′sj

−1(p′ → p)

+
∑

j,s′

∫ ∞

p

dk
k

p
f

j
0(k)w

s′ sj
0 (k → k − p), (9)

Cs
+1(p) = −f s

+1(p)
∑

s′ ,j

W
ss′ j
+1(p) +

∑

j,s′

∫ ∞

p

dp′
p′

p
f s′
+1(p′)ws′sj

+1(p′ → p)

+
∑

j,s′

∫ ∞

p

dk
k

p
f

j
0(k)w

ss′ j
0 (k → p), (10)

C j
0(k) = −f

j
0(k)

∑

s,s′
W

ss′ j
0 (k) +

∑

q=±1

∑

s,s′

∫ ∞

k

dp
p

k
f s
q (p)wss′ j

q (p → p − k) (11)

The collision operators (9)–(11) are a generalization of both the collision operators to describe the

evolution of unpolarized cascades [17, 18, 48, 49], as well as the collision operator for the radiative

spin-polarization of electron beams [36]. They are functionals of the differential rates for nonlinear

Compton scattering w±1 and nonlinear Breit–Wheeler pair production by a photon w0, as well as the

corresponding total (momentum integrated) rates (see appendix B for details)

W ss′ j
q (p) =

∫ p

0

dkwss′ j
q (p → k), (12)

as well as the polarized one-particle distribution functions of all particle species f s
q . We should emphasize

again that these collision operators furnish transitions between different momentum of the particles, but

only with regard to their magnitude. The angle ϕ enters only parametrically, and the quantum rates depend

on ϕ only via their respective quantum parameters χq(p,ϕ), equation (8). In that sense, these collision

operators are effectively 1D (i.e. one momentum integral) because the momentum direction does not

change in a quantum transition in the ultrarelativistic approximation (when collinear emission is assumed

as usual). The momentum ratios, such as p/k appearing in the last term of equation (11), are reflections of

this reduced dimensionality. The details of the reduction of the full 3D collision operator to the 1D ones for

the rotating field case are discussed in the literature, see e.g. references [17, 18]. Let us now briefly discuss

the physical meaning of the individual terms in the collision operators.

The first two terms in each of equations (9) and (10) describe the radiative energy loss of the leptons

during photon emission, i.e. quantum radiation reaction [18, 59, 60]. These terms include both the

possibility of spin-flip and non-flip transitions and thus are also responsible for the radiative lepton

polarization, and they had been used already in [36]. In addition, they describe the spin-dependence of

4
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Figure 1. Snapshot of the electron (a), (c) and positron (b), (c) distribution functions in an up (a), (b) or down (c), (d)
polarization state for a0 = 103 and ωt = 10 in a rotating radial frame. Green curves are χ isocontours. Black dashed curves
represent the separatrix of the classical advection p = −2qa0 sinϕ, and black crosses are the corresponding fixed points at
ϕ = −qπ/2, p = a0.

quantum radiation reaction. The last term in each of (9) and (10) is for the generation of up/down

polarized electrons and positrons from photons of arbitrary polarization, respectively.

For the photon collision operator C j
0(k) in equation (11) the first term describes the absorption of

j-polarized photons during pair production and the second term describes the generation of j-polarized

photons by non-linear Compton emission from both electrons and positrons (summed over charge q).

3. Results and discussion

Numeric solutions of equation (1) for the up and down electron and positron distributions in the presence

of both the quantum processes and the classical motion are shown in figure 1, for a0 = 1000 and

ω = 1.55 eV. In figure 1 we also plot the χ±1 isocontours, which greatly vary over the phase space. In

particular, at the lines ϕ = ±π/2, where the particle momentum and the electric field are perpendicular,

the quantum parameters are χq ≈ a0p/aS. A characteristic value of χq can be defined at the fixed points,

ϕ = −qπ/2, p = a0, of the lepton phase-spaces as χFP ≃ a2
0/aS. For the parameters used in figure 1,

χFP = 3.03.

Photons are predominantly generated with ‖-polarization. Leptons of both polarization states are

dominantly produced by photons that reach ϕ = ±π/2 because χ0 is largest there. Leptons produced at

ϕ = qπ/2 (i.e. outside the separatrix) are accelerated to large p by the electric field as they orbit to

ϕ = −qπ/2 and hence large values of χ±1 exceeding 2a2
0/aS. When χ±1 � 1, photon emission is efficient,

and therefore leptons, while they are being accelerated, are most likely to radiate photons. As a consequence,

they lose sufficient energy to enter the closed orbits inside the separatrix, where they accumulate. Note that

no classical orbits cross the separatrix and the quantum transitions only take leptons from outside the

separatrix to inside, so once inside the separatrix, leptons are trapped. Spin-flip transitions occurring

during photon emission lead to further polarization of the leptons. A movie of the evolution of the

distribution functions is provided in the supplementary material (https://stacks.iop.org/NJP/23/053025/

mmedia).
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Figure 2. Momentum spectra (blue/green curves) and differential degree of polarization (pink curve) for electrons (a), positrons
(b) and photons (c). Same parameters as in figure 1.

The shape of the distribution and their location inside the separatrix are determined by a balance of

classical acceleration, feeding due to pair production, and photon emission. The latter two processes are

spin dependent. Therefore, it is not surprizing that the shapes of the up and down particle distributions are

different. For instance, the values of χ±1 at the maximum of the distributions are 1.04 for up electrons, but

only 0.70 for down electrons. The position of the distribution’s peak, ϕ̂, is also an indicator for the

magnitude of radiation reaction effects. In figure 1 we find a difference in the angular shift of

ϕ̂↓ − ϕ̂↑ ≃ 0.1, signalling a spin-dependence of radiation reaction. By treating radiation reaction

semiclassically as a continuous friction force (and neglecting pair production) [61, 62], the angle deviation

is proportional to the strength of the radiation reaction force in a lowest order perturbative analysis.

Figure 2 shows the spectra of electrons (a), positrons (b) and photons (c) at ωt = 10 for a0 = 1000,

seeded by an unpolarized electron. The plots also show the degree of polarization for each case, i.e.
∫

(f
↑
±1 − f

↓
±1)dϕ/

∫

(f
↑
±1 + f

↓
±1)dϕ for electrons and

∫

(f
‖

0 − f ⊥0 )dϕ/
∫

(f
‖
0 + f ⊥0 )dϕ for photons. These plots

show that the positron polarization is opposite to the electron polarization. Slight deviations occur because

the cascade is seeded by electrons. For the leptons the main peak extends roughly up to about 2a0, which

mostly corresponds to particles accumulating inside the separatrix. Those particles are dominantly

polarized, as predicted by Sokolov–Ternov theory, with electrons more likely in a spin-down state (and

positrons in an up-state). Interestingly, in the high-energy tail above p� 2a0 the electrons and positrons are

oppositely polarized to the expected Sokolov-Ternov polarization. Looking at the spin and polarization

dependent pair production spectra one finds that there is indeed an asymmetry in the lepton spectra where

parallel polarized photons tend to produce up electrons (down positrons) at larger energies than the

opposite polarization state [56]. However, this is only a small contribution to the observed effect in figure 2.

The majority of the effect can be explained by the phenomenon of ‘spin-straggling’ where one polarization

state is more likely to reach the highest values of χ, analogous to straggling effects previously observed

without spin [63]. Straggling means that the highest energy leptons in the spectrum most likely have not

emitted a photon since their creation by the decay of a previously generated photon. For leptons with χ ∼ 1

the emitted photons carry a large fraction of the lepton’s momentum such that at each emission the leptons

lose a large fraction of their momentum. The photon emission rate for up electrons,
∑

s′jW
↑s′j
−1 , is smaller

than that for down electrons,
∑

s′jW
↓s′j
−1 , such that they are less likely to emit and hence have a larger

probability to reach higher energies than down electrons. This is contrary to the explanation of the

Sokolov–Ternov effect, where the difference of spin-flip transition rates
∑

jW
↓↑j
−1 and

∑

jW
↑↓j
−1 was decisive

[43].

The important findings of previous studies of cascades [10, 11, 17, 18] was that they eventually reach

exponential growth in particle number, n =
∫

dϕdp p f ∝ eΓt. Our numerically calculated growth rates are

in reasonable agreement with the analytical models of [30, 64]. The evolution of the particle yields are

shown in figure 3 for an unpolarized electron seeded cascade for parameters a0 = 600 and ω = 1.55 eV. We

compare a calculation of a polarized cascade with an unpolarized cascade, simulated using only unpolarized

distribution functions and rates in the collision operator (see e.g. [17]). Figure 3(a) shows that the yields of

up electrons decreases initially. This is because of spin flip transitions in the photon emission

(Sokolov–Ternov effect). Later in the evolution of the cascade, pair production becomes more relevant and

all particle yields enter an exponential growth phase, eventually reaching a common growth rate Γ. In the

exponential growth phase there are 5 times more down than up electrons (opposite for positrons).

Moreover, a factor of four more ‖-polarized photons are emitted compared to ⊥-polarized photons. Thus,

the particle distributions produced in a QED cascade are highly polarized.

The growth rate is calculated as Γs
q = d ln nqs/dt, with Γs

q → Γ as t →∞, and shown as a function of a0

in figure 4(a) We find that the growth rate of a polarized cascade when electron spin and photon

6
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Figure 3. Time evolution of electron (a), positron (b) and photon (c) yields during a cascade seeded by unpolarized electrons,
and for a0 = 600 and ω = 1.55 eV. Results for a polarized cascade are compared to an unpolarized cascade simulation.

Figure 4. Cascade growth-rates Γ (a) as a function of a0 at fixed ω = 1.55 eV and the corresponding relative difference between
polarized and unpolarized growth-rates (b), and for χFP = 1 = const. (c).

polarization are properly taken into account is typically smaller than in an unpolarized cascade calculation

by about 3% to 8%, with the maximum discrepancy around a0 = 600 in this case, see figure 4(b). It is

worth noting that a reduction in the growth rate of ∼5% at a growth rate of ∼1 (i.e. a0 ∼ 2000)

corresponds to a reduction in particle yield by an order of magnitude in less than ten (laser) cycles. For

fixed laser frequency ω, the effective value of χ at the fixed point of the classical advection χFP = a2
0Ω. It is

also of interest to examine the behaviour at fixed χFP = a2
0/aS = const. = 1, which is shown in figure 4(c).

Here, the growth rate differences increase with increasing a0 and reach 25% for the longest wavelengths

simulated, which is a considerable reduction.

These changes in the growth rates can be traced back to the collision operators for particle species q,

summed over all polarization degrees, Cq ≡
∑

sCs
q. The operators Cq govern the quantum transitions for the

distribution function of a particle species summed over all polarization states fq =
∑

sf
s

q . We now isolate the

polarization dependent terms in the collision operators Cq and pinpoint the differences to the unpolarized

collision operators Cunpol
0 used so far for the description of unpolarized QED cascades.

The unpolarized collision operators Cunpol
q contain only the polarization averaged rates of photon

emission and pair production,

wq ≡
1

2

∑

ss′ j

wss′ j
q (13)

and their momentum-integrated counterparts Wq =
∫ k

0
dpwq(k → p). Until now, only the unpolarized

collision operators Cunpol
q have been used in simulations of QED cascades almost exclusively, see e.g.

references [17, 18, 48, 49, 59], with the exception of reference [45] where the effect of photon polarization

was included. However, they represent only a part of the full collision operators when all the particle

polarization is taken into account.

7
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Figure 5. Time evolution of the electron yield of photon seeded cascade for a0 = 400 and seed photon momentum k = 103mc,
with the seed photon initially either ‖- or ⊥-polarized.

The derivation of the full Cq from the expressions in equations (9)–(11) is lengthy, but straightforward,

and the final result reads

C−1(p) = Cunpol
−1 (p) −Π−1(p)V−1(p) +

∫

dk
k

p
Π0(k) v0(k → p) +

∫

dk
k

p
Π−1(k) v−1(k → k − p), (14)

C+1(p) = Cunpol
+1 (p) −Π+1(p)V+1(p) +

∑

q=0,+1

∫

dk
k

p
Πq(k) vq(k → p) (15)

C0(k) = Cunpol
0 (k) −Π0(k)V0(k) +

∑

q=±1

∫

dp
p

k
Πq(p) vq(p → p − k). (16)

We see that the difference between the Cs and the unpolarized collision operators Cunpol
0 contain terms that

couple the polarization imbalances of the lepton, Π±1 = f ↑±1 − f ↓±1, and photon, Π0 = f
‖

0 − f ⊥0 , distribution

functions to the rates’ polarization disparities vq. The latter are defined as the difference of the scattering

rates between the initial particle polarizations, summed over all final state polarization

v±1(p′ → p) =
1

2

∑

ss′ j

sw
ss′ j
±1(p′ → p) =

1

2

∑

s′j

(

w
↑s′j
±1 − w

↓s′j
±1

)

, (17)

v0(k → p) =
1

2

∑

ss′ j

jw
ss′ j
0 (k → p) =

1

2

∑

ss′

(

w
ss′‖
0 − wss′⊥

0

)

, (18)

with s = +1 ⇔↑, s = −1 ⇔↓, j = +1 ⇔‖, and j = −1 ⇔ ⊥. Moreover, we defined the corresponding total

rate disparities as, e.g. V0(k) =
∫

dp v0(k → p).

In our model with polarization taken into account, the rate disparities vq couple to the particle

polarizations Πq, and this affects even the polarization summed collision operators and therefore causes a

change in the growth rates.

Seeding for the cascade is an important consideration [30–32]. With the methods developed here, we

can also study the evolution of a QED-cascade with an initially polarized seed particle distribution to make

an experimentally verifiable prediction. We choose to examine a polarized photon seed, since polarized

photons could be readily generated and their polarization controlled by inverse Compton scattering [65].

The basic idea could, however, equally work with an initially polarized electron seed.

These calculations were performed with a0 = 400 and a seed photon momentum k = 103mc, with the

seed photon initially either ‖- or ⊥-polarized. Figure 5(a) shows the time evolution of the particle yields,

depending on the polarization of the seed photons. It shows a significantly higher yield of produced pairs

for ⊥-polarized seed photons in the early stage.

Moreover, the electron spin distribution depends strongly on the seed photon polarization, see

figure 5(b). ⊥-Polarized photons produce polarized pairs directly, with a very high abundance of down

electrons (up positrons). By contrast, ‖-polarized photons produce equal amounts of up and down

electrons and only later are they self-polarized via spin-flip photon emission. For ⊥-polarized seeds the

yield of down electrons alone exceeds the total electron yield predicted in an unpolarized calculation.

These findings suggest an intriguing experimental scheme to investigate the polarization dependence in

strong-field QED-cascades with soon-to-be available lasers: two counter-propagating, circularly-polarized

8
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tightly focussed 10 PW laser pulses collide and set up a standing wave. A highly polarized gamma-photon

beam is injected into the magnetic nodes of the plane wave where the field is a rotating electric field.

Rotating the polarization of the gamma-rays from parallel to perpendicular to the axis of the standing wave

will lead to measurable variations in the particle yield, see figure 5(a).

4. Conclusions

In conclusion, we have shown that QED-cascades will lead to highly polarized particle generation and that

the growth rates are reduced by the spin-dynamics, leading to orders of magnitude differences in particle

yield compared with calculations with unpolarized rates under certain conditions. This raises the prospect

of generating polarized lepton beam perhaps useful for laser-wakefield driven particle colliders [66], or the

production of highly polarized γ-photons [65, 67]. However, addressing the fundamental role of particle

polarization in QED cascades, as we have here, could have wide-ranging implications. For example, QED

cascades may occur in extreme astrophysical environments such as magnetars and are expected to dominate

the behaviour of upcoming high intensity laser interactions with matter as intensities increase and we move

into the QED-plasma regime. We have shown that polarization dynamics, which is usually neglected, must

be included in the modelling of this state. Note that these calculations were performed using an idealized

rotating electric field model, which allows to describe the lepton spin in terms of discrete states with respect

to a global non-processing basis. Our model does not include a magnetic component or the field gradients

expected in near-future high-power laser experiments. In that case, the 3D field configuration requires to

generalize the description of the spin degrees of freedom to the full three-dimensional mean spin vector

(Stokes vector). It is left for further work to explore the impacts of these effects on the interaction, and how

the 3D effects impact the effects predicted in this manuscript.
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Appendix A. Boltzmann equation

In this Appendix we outline the derivation of the Boltzmann kinetic equations for polarized particles,

equation (1). For charged spinless or unpolarized particles the relativistic Vlasov–Boltzmann transport

equation is given by6

(

∂

∂t
+

p

ε
· ∇x + qe

(

E +
p

ε
× B

)

· ∇p

)

fq(x, p, t) = C[fq, fq′ , fq′′ . . . ], (A.1)

for the phase space distribution function fq for species q, where q = ±1 represents the charge of the

particles, depending on position x and momentum p and dynamically evolving in macroscopic (statistically

smoothed) fields E and B, with ε = (p2 + m2)1/2. The collision operator C[fq, fq′ , fq′′ . . . ] describes brief,

short-range interactions between particles of species q and with other species q′, q′′ . . . etc which occur over

time- and space-scales negligible compared to those of the macroscopic fields and are therefore treated

independently (separation of scales). The kinetic equation for (unpolarized) photons has the same

structure, by taking into account that their charge q = 0 and mass m = 0.

The collision operators relevant to QED cascades are the strong-field QED processes of nonlinear

Compton scattering and nonlinear Breit–Wheeler pair production, which represent the emission of a

high-energy photon by a lepton and decay of a photon into a electron–positron pair respectively and are

mediated by the classical background electromagnetic fields. The rates for these processes are taken in the

locally-constant field approximation (LCFA; see for instance references [17, 18] for explicit expressions). It

is assumed that the interactions are collinear, i.e. the photons are emitted with their momentum parallel to

6 Note that we use un-normalized units in this appendix.
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the emitting particle. The local constant field approximation (LCFA) is usually a good approximation for

ultrarelativistic particles, but see also the discussion below in appendix B. We assume that direct

high-energy particle-particle interactions, such as Møller/Bhabha scattering or spin-depolarizing collisions,

as well as photon absorption and annihilation processes are negligible due to the relatively dilute

high-energy particle density. Such processes are usually neglected in QED cascade simulations since they are

assumed to become important only at very late times when the produced plasma becomes dense enough

[68–70].

In order to solve the equations governing the QED cascade dynamics for polarized particles, for the sake

of convenience, we immediately specify the case of a rotating electric field, which is a commonly used model

[10, 11, 17, 18, 20, 46, 47], and allows for considerable simplifications. In particular, the advantage of this

particular choice of system is that the spin states may be defined projected on a non-processing basis. A

path towards a possible generalization to arbitrary field configurations will be discussed below, where we

will also comment on the limitations of applicability of our model.

In this work, for electrons and positrons circulating in a rotating electric field, E = E0(cos ωt, sin ωt, 0)

and B = 0, with momentum p = (px, py, 0), there exists a global non-processing spin basis, parallel to

p × E, i.e. the z-axis, which is the direction of the magnetic field in the (instantaneous) rest frame of the

particles [35], and which we choose as SQA. A particle initially in a state with its spin (anti)-aligned with

that direction remains in that state during its classical propagation. In the kinetic approach, it is therefore

suitable to consider two distributions functions f s
q for each value of q, where s = ±1 distinguishes their spin

state as up or down with regard to the nonprocessing axis. Thus, the Vlasov equation for polarized leptons

in a rotating electric field in the absence of the quantum interactions reads

(

∂

∂t
+ qeE · ∇p

)

f s
q = 0. (A.2)

For photons, the two independent polarization states are j = ⊥ (polarization vector perpendicular to the

plane of E) and j =‖ (polarization vector lies in the plane in which E rotates). The polarization four-vectors

associated to those polarization states are Λμ
‖ = Fμνkν/|Fμνkν | and Λ

μ
⊥ = F̃μνkν/|F̃μνkν |, which are by

construction transverse to the photon four-momentum kμ, i.e. Λ
μ
j kμ = 0 [71]. F̃μν is the dual

electromagnetic field strength tensor. These polarization vectors Λj are eigenvectors of the photon

polarization tensor [57, 58]. The corresponding photon transport equation is just ∂f
j

0/∂t = 0. The

quantum processes can be included in the dynamical evolution of f s
q by the addition of appropriate collision

operators to the right-hand-side.

The collision operator for polarized particles has the same general structure and approximations as the

corresponding unpolarized collision operator [17, 18]. However, we now use the spin- and polarization

resolved rates for nonlinear Compton scattering and nonlinear Breit–Wheeler pair production within the

locally-constant field approximation. One could suspect that the collision operator has to take into account

the possibilities that spin polarization (Stokes) vector can be oriented into an arbitrary direction after a

quantum transition. This is in fact not the case. It is sufficient to consider only the component of the

leptons’ Stokes vector along the non-processing axis. In this situation the lepton polarization properties can

be represented by a mixture of the spin states discussed above, and we only have to consider transitions

between those discrete spin states. This can be seen directly by investigating the form of the spin-and

polarization dependent rates, which have been recently calculated for arbitrary directions of the polarization

directions of all involved particles [72].

Let us first assume that, at the moment of photon emission, the electron Stokes vector components

perpendicular to the SQA vanish. That means the initial electrons for the scattering are either unpolarized

or have a certain degree of polarization along the magnetic field in the particle’s rest frame as defined above.

The electron collision operator for Compton scattering must contain the rates summed over the final

photon polarization states, see equation (9). It can be shown by direct calculation that the scattered

electrons Stokes vector in this case is also strictly pointing along the SQA [35, 72]. Thus, the leptons tend to

polarize along the SQA, and their Stokes vector will not develop other components perpendicular to the

SQA. Thus, their distribution can be described by two functions f±1, with the degree of polarization given

by f+1 − f−1. (Because in a rotating electric field the SQA is globally non-processing the Stokes/polarization

vector will remain aligned along that axis.) Moreover, it is known from the literature [35, 72], that the

probability of finding an electron in an up or down spin state parallel to the SQA is completely independent

of the Stokes vector components perpendicular to the SQA. Thus, the interesting polarization dynamics

along the SQA is completely decoupled from the polarization perpendicular to the SQA, and it is by no

means necessary to treat the latter explicitly, even for arbitrarily polarized initial electrons. Similar

calculations can be performed for the contribution of the Compton scattering rates to the photon collision
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operator, where one has to sum over the final lepton spin states. It reveals leptons polarized along the SQA

produce photons in one of the polarization states Λj discussed above. Due to crossing symmetry of the

strong-field S-matrix elements, the same arguments must hold for the parts of the collision operator

describing nonlinear Breit–Wheeler pair production as well. We thus can conclude that it is sufficient and

consistent to consider, also in the quantum collision operators, only lepton the polarization degree along

the SQA, and photons being polarized along the directions Λ
μ
j .

In summary, in a rotating electric field the Boltzmann equations for the six distribution functions f s
q for

polarized particles can be compactly written as

(

∂

∂t
+ qeE · ∇p

)

f s
q = Cs

q[{f s′
q′ }], (A.3)

with q ∈ (−1, 0, 1) is the charge denoting different particle species, and s distinguishing the polarization

states. The collision operators Cs
q describe all relevant strong-field QED processes for polarized particles, and

possible transitions between polarized particle species: polarized photon emission by polarized leptons and

pair production by polarized photons. The explicit form of the collision operators is given in equations (9)

and (10). The LCFA transition rates in the collision operator are all functions of their respective quantum

parameters

χq =
e

m3

√

ε2E2 − (p · E)2 =
e|E|
m3

√

q2m2 + p2 sin2 ϕ, (A.4)

where ϕ = ∠(E, p) is the angle between the particle momentum and the instantaneous direction of the

electric field vector. Going to normalized parameters yields equation (8). Polarized leptons are produced by

the collision operators with their spins aligned to the global non-processing SQA axis ez. Thus, the spins of

the produced leptons do not precess according to the T-BMT equation [50] in the rotating electric field

configuration. Spin-gradient (Stern–Gerlach) forces are not present in the rotating electric field model. For

general field configurations, there is no global non-processing SQA. The model to be used for generalized

fields would be similar to the quasiclassical approach used for particle accelerators with inhomogeneous

magnetic fields: point-like local quantum transitions causing spin flips (and pair production) with arbitrary

direction of the spin, with the distribution processing classically otherwise [73, 74]. The classical part of the

kinetic equation for relativistic spin-1/2 particles in an extended phase space f (x, p, s, t), depending also on

the (continuous) spin variable s can be given as

(

∂

∂t
+

p

ε
· ∇x + qe

(

E +
p

ε
× B

)

· ∇p +
qe

ε

[

s ×
(

B − p × E

ε+ m

)]

· ∇s

)

fq(x, p, s, t) = 0. (A.5)

Here the transport operator in first line is the same as in equation (A.1), the term given in the second line

describes the spin precession. In general fields the precession introduces advection in the spin-sector of the

extended phase space, i.e. coupling different s. Equation (A.5) coincides with quasiclassical part of the

quantum kinetic equation in reference [51], where it was derived as the ‘spin transform’ of the Wigner

function [75–77] 7. As such, the spin precession term in equation (A.5) involves a gyromagnetic ratio of 2,

consistent with the Dirac equation. It it straightforward to phenomenologically include also the anomalous

magnetic moment μe stemming from loop corrections [37, 78]. Special algorithms for the accurate

simulation of nine-dimensional phase space evolution have been developed, see e.g. [79].

Spin-precession can lead to a depolarization of the distributions if individual electrons process

incoherently. For instance, in reference [40] a worst case scenario for the depolarization time TD was

estimated as ωTD ∼ π/[(6μe + 4/γ)a0], but it is argued that TD could be much larger for field

configurations with certain symmetries. In order to estimate the effect of depolarization we have run a

numerical simulation for parameters of figure 4 and a0 = 600 with the lepton distribution forcibly

depolarized every timestep, as a representation of the worst case scenario that spin-precession completely

depolarizes the lepton distributions. The growth rate reduction calculated with these parameters was 7.6%

instead of 8.3%, a small effect. The quantum collision operator in the extended phase space in general must

also include quantum spin-flip transitions between arbitrary spin-states. Here one has to describe the

7 The O(�)-terms reported in reference [51] are the quantum corrections to the interaction of the fermions with long-range fields that,

e.g., couple field gradients to the spin-dynamics giving rise to Stern–Gerlach type forces, but do not include the quantum transitions

due to nonlinear Compton scattering and pair production. By comparing the magnitude of the coefficients of the operators of the

quantum corrections it can be argued that these extra terms are negligible under the conditions Em/(ESε) ≪ 1, and ∆RF ≫ λC. The

first condition is easily fulfiled since we assume that the field strength E < ES, where ES is the Schwinger field strength, and the particles

are ultrarelativistic. The second condition requires that the spatial inhomogeneities ∆RF of the electromagnetic field have length scales

much larger than the Compton wavelength λC, which is also typically fulfiled for high-power laser plasma interactions. These estimates

can also be derived directly from the quantum transport equations in the Wigner formalism, as presented e.g. in reference [77].
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dynamics of all components of the lepton Stokes vector during quantum transitions consistently since all

Stokes vector components are coupled due to the classical spin precession. Thus, collision integrals’ kernels

then must containing the spin-and polarization resolved LCFA rates for the nonlinear Compton and

Breit–Wheeler processes with arbitrary direction of the polarization of all involved particles [72, 80]. The

explicit construction is left for future work.

Appendix B. Completely polarized rates for quantum processes

Here we provide the full analytic expressions for the fully polarized rates of photon emission and pair

production that enter the collision operator (9)–(11). The rates noted here are the probabilities for the

process to happen per unit normalized time ωt.

The fully polarized differential photon emission probability for an electron with normalized momentum

p to emit a photon with momentum k, and go to a momentum state p′ = p − k is given by [56]

w
ss′ j
−1 (p → p′) = −αaS

4p2

[

{1 + ss′ + jss′(1 − g)
)

} Ai1(z)

+ {ys + us′ + j(us + ys′)} Ai(z)√
z

+

{

g + ss′ + j
1 + gss′

2

}

2Ai′(z)

z

]

, (B.1)

where α is the fine structure constant, y = k/p = 1 − p′/p, u = y/(1 − y), and g = 1 + uy/2. Ai is the Airy

function with argument z = (u/χ−1)2/3, Ai′ its derivative and Ai1 the integral Ai1(z) =
∫∞

z
dx Ai(x). j is the

photon polarization index, j = +1 for the ‖ state and j = −1 for the ⊥ state. For the electron spin-states

s = +1 for up electrons and s = −1 for down electrons. For instance, w↑↓⊥
−1 is the probability rate that an up

electron emits a photon that is polarized perpendicularly to the electric field in a spin–flip transition going

to a spin down state. The rates for positrons emitting photons in equation (10) can be obtained from the

electron rates by inverting all lepton spin variables, w
ss′ j
+1(p → p′) = w

s̄̄s′ j
−1(p → p′). The overall prefactor

differs from reference [56] because here the rate refers to the probability per unit normalized time instead of

laser phase, and a different normalization of momenta.

The rates for the non-linear Breit–Wheeler pair production by a high-energy photon with momentum k

in a polarization state j are given by [56]

w
ss′ j
0 (k → p) =

αaS

4k2

[

{1 + ss′ + jss′(1 − g̃)} Ai1(z̃)+

{

s

r
− s′

1 − r
+ j

(

s′

r
− s

1 − r

)}

Ai(z̃)√
z̃

+

{

(g̃ + ss′) + j
1 + g̃ss′

2

}

2Ai′(z̃)

z̃

]

, (B.2)

with the Airy function argument z̃ =

(

1
χ0r(1−r)

)2/3

, g̃ = 1 − 1
2r(1−r)

, with r = p/k with p being the generated

positron momentum and p′ the electron momentum. The approximate momentum conservation now reads

k = p + p′. Here, s = ±1 is the positron spin and s′ = ±1 the electron spin.

These spin and polarization dependent rates are derived from strong-field QED process in a general

plane-wave laser pulse in the Furry picture by applying the LCFA [56]. The LCFA generally is considered a

good approximation of the full strong-field QED processes if the formation length for the emission of the

photon λ/a0 is short compared to λ. This is usually the case for a0 ≫ 1, but additional constraints, e.g.

a3
0/χ ≫ 1 are required [81]. Moreover, it is known that the LCFA can break down for the emission of

low-energy photons as for those the coherence length for the formation of the process is ∼λ even for

a0 ≫ 1. The assumption of localized emission is accurate for the emission high-energy photons with

energies k/p�χ/a3
0 [54, 55, 82]. Low-energy photons violating that condition are not of high relevance for

the formation of cascades since (i) electrons emitting soft photons lose only very little energy and thus

radiation reaction effects are described with reasonable accuracy within the LCFA even though the photon

number spectrum might not be correct at very low k; (ii) low-energy photons cannot produce pairs for

subsequent generations of cascade particles and thus are expected to affect the growth rates only weakly at

most. In addition, collinear emission can be assumed for ultrarelativistic particles with γ ≫ 1 (see also [55]

for a discussion non-collinearity effects and its energy dependence). Strictly speaking, the momentum

conservation laws found from analysing the strong-field QED S-matrix elements for the scattering in a

plane wave background with four-wavevector κμ are exact for three light-front components of the respective

momenta, κ.p′ = κ.p + κ.k and p′⊥ = k⊥
+ p⊥. In the ultra-relativistic scattering case energy and linear

momentum are typically conserved up to terms of the order 1/γ ≪ 1, and the LCFA rates may be used for

ultrarelativistic particles interacting with an arbitrary field since in the particle’s rest frame the field is

boosted to look almost exactly like a crossed field.
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Appendix C. Numerical methods

The Boltzmann-type kinetic equations are solved numerically on a rotating radial momentum-space mesh,

with typically 300 × 400 grid points both p and ϕ. The time-evolution is calculated using a time-centered

operator-splitting method [83]. A time-step of ∆t = 0.005 is used for all simulations presented in the main

text. Numerical convergence of the momentum space discretization and the time step was verified.

To solve the classical advection we use a semi-Lagrangian algorithm similar to those developed for 1D1P

Vlasov systems [84], which is very efficient because the characteristics are known analytically, i.e.

equations (5) and (6), and the distribution functions f s
q are constant along the characteristics. For each grid

point of discretized momentum space (pn,ϕk) we employ the characteristics equations (5) and (6) in order

to determine the origin (p′n,ϕ′
k) of the parcel at time t −∆t arriving at (pn,ϕk) at time t. The distribution

functions are interpolated onto (p′n,ϕ′
k) using bi-cubic splines, where the periodicity in ϕ is ensured.

The action of the collision operator onto the discretized distribution functions can be described by

matrix multiplications after discretizing p onto the radial grid (pn,ϕk). Those matrices act only on the

magnitude pn; the angle ϕk appears only parametrically via the quantum parameters χq. Thus,

independently for each value of ϕk we have ∆f s
q (pm) = (Cs

q(pm))discr∆t =
∑

n,q′,s′(Mss′
qq′)mnf s′

q′ (pn)∆t. For

instance, the matrix for electron spin–flip from down to up during photon–emission and the up–up

non-flip transition are given by

(M
↑↓
−1,−1)mn =

∑

j

∆p
pn

pm

w
↓↑j
−1(pn → pm) (C.1)

(M↑↑
−1,−1)mn =

∑

j

∆p
pn

pm

w
↑↑j
−1(pn → pm) − δmn∆p

∑

s′ ,j

∑

k�n

w
↑s′j
−1 (pn → pk), (C.2)

for n � m, and zero otherwise. For more details on the discretization of the collision operator see for

instance reference [85]. Our numerical scheme is charge conserving, i.e. the total charge Q =
∑

s,qq
∫

dp

dϕ pf s
q = const.

As initial distributions for calculations of electron seeded cascades (with initially unpolarized electrons)

we used the identical distributions for up and down electrons, f
↑
−1(p,ϕ, t = 0) = f

↓
−1(p,ϕ, t = 0) = N ×

e−p2/2w2
, where the normalization constant N is chosen such that the initial distributions are each

normalized to 1/2. We did run simulations with width w = 100 and w = a0/4, with almost negligible

differences in the cascade evolution. For photon seeded cascades the initial distributions are

f
j

0(k,ϕ, t = 0) = N e−(k−k0)2/2w2
e−4ϕ2

, normalized to 1, for either j =‖ or j = ⊥, and with k0 = 1000 and

w = 100.
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