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19 Abstract

20 Following the environmental problems caused by non-degradable plastics there is a 

21 need to synthesise greener and more sustainable polymers. In this work we describe, 

22 for the first time, the facile enzyme-catalysed synthesis of linear polyesters using 

23 dimethyl malonate as the diester. These polymers, containing a different aliphatic diol 

24 component (C4, C6 or C8), were synthesised in solventless conditions using 

25 immobilized Candida antarctica lipase B as the biocatalyst. The potential of enzymes 

26 for catalysing this reaction is compared with the unsuccessful antimony- and titanium-

27 catalysed synthesis (T>150 °C). The application of the synthesized polymers as 

28 effective metal chelators in biphasic, green solvent systems was also described, 

29 together with the characterisation of the synthesised materials.

30

31 Keywords: biobased polyesters, enzymatic synthesis, sustainable solvents, metal 

32 chelation, water detoxification

33

34 Introduction

35 Due to the functionality limitations and the pollution caused by fossil-derived 

36 polymers,1 the chemical industry urges the development of greener routes to produce 

37 novel bio-based, degradable (or compostable) materials. Several steps in this direction 

38 were recently made, especially in the polyesters field, with the development of 

39 poly(ethylene 2,5-furandicarboxylate) (PEF) as a poly(ethylene terephthalate) (PET) 

40 substitute due to its similar mechanical and barrier properties2,3 and better 

41 biodegradability.4,5 Other furan- and pyridine-based polymers potentially useful for 

42 packaging and film applications were developed, but their synthesis remains limited to 

43 laboratory-scale.6 
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44 Recently, the potential of enzymes as green and selective biocatalysts has 

45 been demonstrated on several aromatic and aliphatic monomers, which is of great 

46 interest when the polycondensation of monomers carrying lateral functionalities is 

47 desired, as highlighted in several review articles.7, 8 Such functionalities - the vinyl 

48 group of itaconic acid, the secondary hydroxy group of glycerol, sorbitol or mucic acid, 

49 etc. - are prone to a wide array of side reactions (such as Ordelt saturation, radical 

50 crosslinking, etc.) when traditional metal- or acid-catalyzed polymerization reactions 

51 are carried out.9, 10 In fact, previously synthesized metal-chelating polymers based on 

52 a diethylenetriaminepentaacetic acid pendant group required a Michael addition of a 

53 thiol to be carried out in a second reaction step, and the double bond of the itaconate 

54 moiety was preserved only thanks to the use of very toxic chemicals such as 2-

55 furanmethanethiol and a phosphazene base as the initiator.11 

56 In this work, attention was focused on malonate-derived aliphatic polyesters. Malonic 

57 acid is a source of bio-based 1,3-diketone functionality, and it is produced 

58 commercially by Lygos using engineered yeast strains.12 To the best of our knowledge, 

59 malonate-derived polyesters were reported before in the literature only in the form of 

60 short oligomers having a maximum DP of around 513. In fact, the reports dealing with 

61 malonate polymers describe mainly the synthesis of aliphatic hyperbranched 

62 polyesters (HBPE) from various monomers derived in one step from commercial 

63 diethyl malonate.14 The acid- and metal- catalyzed polycondensation of malonate 

64 derivatives bearing aliphatic residues15 was also reported together with the sequential 

65 anionic polymerization of ethylene oxide and methylidene malonate to obtain 

66 poly(ethylene oxide)-block-poly(methylidene malonate 2.1.2) block copolymers 

67 bearing a primary amino group at the PEO chain end.16 The only work where the 

68 malonate unit was changed from a malonic acid or dialkyl ester to being part of the 
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69 main chain, is the work of Doğan and Küsefoğlu, published in 2008, that reported the 

70 1,4-diazabicyclo[2.2.2]octane-catalyzed synthesis of a biodegradable polymeric foam 

71 from epoxidized soybean oil and malonic acid.17 

72 There has been increased interest in elemental sustainability in recent years. 

73 Commonly used metals such as cobalt, nickel, copper and zinc have reserves 

74 expected to last only 50-100 years. Recovery of these metals from waste streams is 

75 vital to maintain supplies of these dwindling resources.18 One method of recovering 

76 metals from aqueous waste streams is solvent-based hydrometallurgy.19, 20 This 

77 involved contacting an organic solution containing metal chelators with an aqueous 

78 metal solution. A biphasic system emerges, in which metal ions can pass from the 

79 aqueous phase to the metal chelators in the organic phase. The metals can be 

80 recovered from the organic phase by re-extraction by an acidic solution, allowing the 

81 free chelators in the organic phase to be reused.20 However, issues of toxicity, 

82 bioaccumulation and persistence in the environment of chelators are common.21 In 

83 addition, most currently available chelators are petroleum-derived with few examples 

84 of bio-based products (Nouryon Dissolvine range being a rare example).22 As such, 

85 bio-based, safe, water-insoluble metal chelators are sought after. 

86 Many functional groups can be used as chelators, such as oximes, 

87 carboxylates, phosphorous acids, and 1,3-diketones. 1,3-Diketones such as LIX54 

88 (Figure 1) are commercially available for this purpose,19, 23 but naturally occurring other 

89 1,3-diketones such as 14,16-hentriacontanedione are present in plant waxes.24, 25 

90 Indeed, biphasic extraction systems have been proposed in the past using bio-derived 

91 lipophilic chelators sourced from wheat straw wax,25 as well as modified wax products 

92 to produce super-chelators.24
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95 Figure 1. Structures of the previously described 1,3-diketone chelators LIX54, 14,16-

96 hentriacontanedione and the malonate-based polymers described in this work.

97

98 Herein we present the facile enzyme-catalyzed synthesis of dimethyl malonate-

99 based linear polyesters having a different aliphatic diol component (C4, C6 or C8). The 

100 reaction was conducted in solventless conditions using immobilized Candida 

101 antarctica lipase B as the biocatalyst. The potential of enzymes for catalysing this 

102 reaction is compared with the largely unsuccessful chemo-catalytic metal-catalyzed 
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103 synthesis. The application of the synthesized polymers as effective metal chelators in 

104 biphasic, solvent-based hydrometallurgy is also described together with a detail 

105 characterization of the synthesized materials. Moreover, these aliphatic polyesters are 

106 known to be easily degraded to their constituent monomers (diacids and polyols) using 

107 a variety of hydrolytic enzymes (eg. lipases, cutinases),26, 27 therefore allowing the 

108 recovery of such building blocks and the re-synthesis of the polymer in a closed-loop 

109 circular economy concept.

110

111 Synthesis of malonate-based aliphatic polymers

112 Quite surprisingly, very few reports describing the use of malonic acid (or its esters) 

113 as the diacid component of polyesters were found in the literature28, 29 and none of 

114 them focuses on the chelating properties of these polymers. We therefore initially 

115 attempted to synthesize malonate polyesters using the most commonly known metal 

116 catalysts for polycondensation reactions: antimony oxide and titanium butoxide, 

117 catalysts widely known for the synthesis of PET,30 PEF31 and a wide range of other 

118 aliphatic and aromatic polyesters.32 Unfortunately, when using dimethyl malonate 

119 (DMM) as the diester in combination with various aliphatic polyols, the metal-catalyzed 

120 synthesis was unsuccessful, with obtained Mns between 1000 and 2600 Da (DP of 6 

121 and 16 respectively, Table 1).

122 The rather low molecular weights obtained in this work using metal catalysts 

123 can be explained with the fact that β-diketones, such as malonates, are known 

124 chelating agents and can therefore competitively chelate the catalyst metal ions, 

125 reducing their capacity to promote the transesterification reaction. This idea is 

126 supported by the fact that titanium forms complexes with dimethyl malonate33 creating 

127 a useful catalyst for the polymerization of polypropylene.34 One of the few available 
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128 reports on malonate polyesters is the P2O5-catalyzed synthesis of poly(1,3-propyl 

129 malonate), but also in this case the obtained molecular weights were really limited 

130 since the maximum achieved DP was approximately 5.13 

131

Table 1. Metal-catalyzed synthesis of malonate 
polyesters.

Diol Catalyst
Mn

[Da]*

Mw

[Da]* Đ*

Sb2O3 2100 4000 1.90

Ti(OtBu)₄ 2600 4600 1.791,4-BDO

1000 2400 2.28

1,8-ODO
Sb2O3 1600 2800 1.68

* Calculated via GPC

132

133 Taking inspiration from recent papers on environmentally friendly synthesis of 

134 polymers, and due to the impossibility to obtain polymers using traditionally-used 

135 methods, an enzymatic approach was used in order to synthesize a series of 

136 malonate-containing aliphatic polyesters using diols having a chain length from 4 to 8 

137 carbon atoms. For the synthesis performed in this work, an immobilized preparation 

138 of Candida antarctica lipase B (iCaLB) was used as the biocatalyst since this enzyme 

139 was reported to be an excellent candidate for such synthesis reactions7, 35. The 

140 polycondensation reaction progressed at very mild (85 °C, 1000/20 mbar, 6+18 h) 

141 solventless conditions. The application of such environmentally-friendly synthesis 

142 protocol was possible since DMM is a liquid at the used operational temperature while 

143 the corresponding diacid, malonic acid, has a melting temperature reported to be 

144 between 135 °C and 137 °C.

145 The enzymatic synthesis experiments show similar Mn values of around 

146 6000 Da for all the used diols while the Mw values increase from 9000 Da to 12-14K Da 

147 with the increase of the diol’s chain length (Figure 1). The reported values are in line 

148 with previous reports of solvent-free enzymatic polycondensations where the used 
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149 diester was dimethyl adipate that also showed similar Mn (~7000 Da) and increasing 

150 Mw (from 11 to 14K Da) when the same three aliphatic diols having increasing carbon 

151 chain length were used35. The decrease of the DP as the diol increases, as seen for 

152 both the malonate and the adipate polyesters, is also a common trait (Figure 2).7, 35 

153

154

155 Figure 2. Enzymatic synthesis of linear malonate-based polyesters. Number average molecular 

156 weights (Mn, white bars) and weight average molecular weights (Mw, grey bars) were determined via 

157 gel permeation chromatography using polystyrene standards. The degree of polymerization (DP, white 

158 circles) was determined dividing the Mn by the M0 (weight of the repetitive unit of the polymer). All 

159 experiments were performed in duplicates and shown ± the standard deviation.

160

161 All synthesized malonate-based polyesters have 29<DP<38, therefore presenting 

162 molecular masses significantly higher in comparison of the short oligomers previously 

163 synthesized using P2O5 and our own chemocatalytic synthesis approach (Table 1). 

164 The polymers were recovered using a simple vacuum filtration that allowed the 

165 removal of the immobilized enzyme and the work-up solvent was then removed via 

166 rotary evaporation. All isolated polyesters were colourless viscous liquids and 

167 subsequently used for the chelation experiments without further purification.

168 Polymer structures and relative monomer conversions were elucidated via 1H-NMR 

169 spectroscopy (Figures S1-S5 in ESI). Upon reaction, the -CH2-CH2-OH signal from the 
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170 diol has a characteristic change of chemical shift from 3.65 ppm to 4.14 ppm, proving 

171 the formation of an ester bond. Additionally, the -OCH3 signal from the malonate, 

172 observable at 3.75 ppm disappears due to the release of MeOH with the progression 

173 of the reaction. The signals at 3.38 ppm (C-CH2-C of the malonate) and in the 1.3-

174 1.8 ppm range (-CH2-CH2-OH of the diols) do not noticeably change chemical shift 

175 upon elongation of the polymer chain. 13C-NMR spectroscopy of the polymer reveals 

176 the typical signals for these aliphatic polyesters (Figure S6 in ESI).

177

178 Metal chelation in biphasic systems based on green solvents.

179 The malonate polyesters were assessed for their ability to extract metal ions from 

180 aqueous streams in a biphasic system. The biphasic system involved dissolving the 

181 polyester in an organic solvent and mixing it with a metal-containing aqueous solution. 

182 Upon contact between the two phases, metal transfer occurs from the aqueous phase 

183 to the diketone chelating points on the polyester in the organic phase, purifying the 

184 aqueous phase. Separation of the two phases and re-extraction of the organic phase 

185 with an acidic stripping solution can recover the metal from the polyester for reuse, 

186 and also regenerate the diketone chelating point on the polyester.

187 Copper was chosen as the target metal for chelation using the polyesters due 

188 to it being a common pollutant in metallurgy waste streams36. Cl- was selected as the 

189 counter ion as it has previously been shown to be effective in the chelation of copper 

190 using diketone species due to it being a strong inner-sphere ligand.24, 25 The chelation 

191 tests were carried out across as pH range of 8.4–12.3.

192
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195 Figure 3. Keto-enol tautomerism of 1,3-diketones followed by deprotonation to form negatively charged 

196 bidentate ligand. 

197

198 Several requirements exist for the choice of organic solvent for this purpose. It must 

199 partition well with water; the chelating agent must favour solubility in the organic 

200 solvent over water; it must facilitate enol formation; and it must not be reactive in the 

201 extraction conditions. As the solvent does not need to be evaporated at any stage of 

202 the extraction process, a low boiling point is not necessary. In fact, a higher boiling 

203 point will reduce losses to the atmosphere, improving the economics of such an 

204 extraction process. In addition, it will add to the green credentials of the process, as 

205 emissions, exposure to workers and solvent demand are reduced. The CHEM21 

206 solvent selection guide recommends a boiling point of between 70-139 °C.37 

207 Three candidate solvents were ultimately selected using the CHEM21 solvent 

208 guide37: para-cymene, ethyl levulinate and anisole. para-Cymene and anisole have 

209 boiling points within the ideal range (70-139 °C), while that of ethyl levulinate is206 °C. 

210 However, as the solvent/polymer mixture can be used repeatedly, this higher than 

211 preferred boiling point is not a significant issue. All three candidates are aprotic, 
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212 meaning the enol form is more likely to be favoured25 which is a prerequisite for 

213 chelation ability (keto form is stabilised by intermolecular hydrogen-bonding in protic 

214 solvents)38. Polymer insolubility in BDO MAL polymer prevented para-cymene from 

215 being tested, while ethyl levulinate likely chelated with metal ions during extraction, 

216 indicated by a green complex being formed when mixed with copper solutions. Anisole 

217 could dissolve all polymers, and also scores well in the CHEM21 solvent selection 

218 guide, being classified as “recommended”37. As such, anisole was chosen as the most 

219 appropriate solvent for this process. 

220 The 1,3-diketones functionality can exist in keto and enol forms (Figure 3). In 

221 basic conditions, deprotonation of the acidic proton in the 2-position forms an anionic 

222 bidentate ligand which are weak chelators. A square planar complex is suggested, 

223 similar to that of bis(acetylacetonato)copper(II), as previously determined by single 

224 crystal X-ray diffraction39. As the polymers existed as a viscous liquid, possibly due to 

225 residual solvent that could not be removed in vacuo, powder XRD could not be carried 

226 out to confirm the square planar complex in the malonate polymers of this work.

227 The polymers with the highest (ODO MAL) and lowest (BDO MAL) M0 were 

228 chosen as model to perform chelation tests with CuCl2. A pH range of 8.4–12.3 was 

229 used for the tests. Chelation tests were carried out in a biphasic system consisting of 

230 a CuCl2-rich aqueous phase (0.05 M CuCl2, 0.25 M NH3) and an organic solution of 

231 the chelating polymer (0.05 M). Interestingly, the density of the aqueous metal 

232 solutions at higher pH (10.4-12.3) changed such that the layers switched in the 

233 biphasic system when the BDO MAL was used. This is due to the proximity of the 

234 density of pure anisole (0.995 g mL-1) to that of water (1.000 g mL-1), which must be 

235 taken into consideration in an industrial process. 
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236 Figure 4 shows that optimal pH for extraction was similar in both cases, with 

237 ~pH 10 being optimal for ODO MAL and BDO MAL polymers (specific pH’s and 

238 absorbances for chelation tests are shown in Table S2 and S3 in ESI). This is 

239 consistent with previous observations of 1,3-diketones being more effective in basic 

240 conditions17. Superior extraction was obtained with the ODO MAL, with mean Cu 

241 extraction of 22.7% compared to 15.7% for the BDO MAL polymer. Extraction with the 

242 malonate polymers is comparable with the commercial LIX54 (18% in a 50:50 mix of 

243 LIX54/kerosene, 40% using pure LIX54),23 demonstrating the potential of such a 

244 chelating polymer for use in an industrial setting. Further work is required on optimising 

245 the conditions for extraction (polymer loading, further solvent investigation, more 

246 robust pH control), their stability over multiple uses and their affinities for other metals 

247 in mixed aqueous streams which will be the focus of a subsequent full article.

248

249

250 Figure 4. The % extraction of Cu(II) from ammoniacal solutions using “BDO” MAL and “ODO” MAL at 

251 different pHs and 1:1 by weight loading of chelator:Cu(II). The pH shown in the graph has been rounded 

252 to the nearest whole number for visual clarity. Exact pH values are shown in the electronic 

253 supplementary information.

254
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255 Conclusions

256 A series of malonate polymers were successfully synthesized using environmentally-

257 friendly conditions (enzymatic catalyst, T<90 °C, solvent for the workup: MeTHF) and 

258 used to achieve the efficient chelation of copper, a common pollutant in metallurgy 

259 waste streams. A superior extraction efficiency of 23% was obtained with the ODO 

260 MAL polymer that is comparable with commercially-available LIX54 (18% in a 50:50 

261 mix of LIX54/kerosene, 40% using pure LIX54), demonstrating the potential of this 

262 new class of polyesters for use in an industrial setting. Enzymatic catalysis, showing 

263 high selectivity, low operational temperatures and benign reaction conditions, is 

264 emerging as a useful tool to complement chemo-catalytic routes for the synthesis of 

265 multifunctional polymers having structures that are otherwise not possible to obtain 

266 using traditional metal- and acid based-methods.

267
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