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a b s t r a c t

The transfer matrix method (TMM) is a common method for the modelling of acoustical systems.

Traditionally, this method requires each unique layer within a system to be defined by a transfer matrix

and then for each matrix to be multiplied together in the sequential order of the system. Whilst the

resulting matrix can be used to find the effective material properties of the modelled system, the result-

ing analytical expressions of these properties are often unwieldy for use. Here, a simplified approach is

proposed to obtain simple analytical expressions in the low frequency regime for the effective properties

of acoustical systems based on the components of the TMM and inspired by the Champoux and Stinson

model. It was shown that the proposed approximation of TMM matches the effective fluid properties of a

cylindrical rigid tortuous pore derived with the Champoux and Stinson model. Using this approach, ana-

lytical expressions for the effective fluid properties of a waveguide of constant cross section, side-loaded

by an arbitrary number of Helmholtz resonators, were derived. These expressions were validated against

the traditional transfer matrix method and with numerical computation. The result of this work offers a

validated general approach that provides simple analytical low frequency approximations of the acous-

tical properties of media which consist of complicated networks of pores or side-branches.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The transfer matrix method (TMM) is a simple and powerful

method to model acoustical systems. Using this method it is possi-

ble to analyse the sound absorption/transmission properties of one

and two port systems [1], assess effects due to periodicity [2,3] and

derive effective property expressions for porous layers [4]. Addi-

tionally, it has proven to be a popular technique in order to model

multilayered porous materials [5], parallel assemblies of porous

materials [6] and sound absorbing acoustic metamaterials consist-

ing of waveguide structures side-loaded by Helmholtz resonators

[7,8].

In the acoustics of porous materials, sound propagation in rigid

tortuous pores is modelled with the linear superposition of the

macroscopic pressure gradient and the averaged velocity within

pore segments of constant cross-section. This approach of dis-

cretising pores into segments was used in the Champoux and Stin-

son model [9] to determine the effective density and

compressibility and thus enables the building of simple acoustical

models.

In this paper, a general methodology is proposed to obtain

simple analytical expressions for the effective material properties

for systems that can be modelled with the TMM. The proposed

method utilises the linear superposition of terms derived from

the transfer matrix components of a system to obtain the total

effective properties of the system. This method differs from the tra-

ditional transfer matrix method as it is not reliant upon the matrix

multiplication of each segment’s transfer matrices. As such, simple

analytical expressions for complex systems can be derived using

this method, allowing for an insight into the underlying physics

of these systems.

The proposed methodology is validated for two scenarios.

Firstly, the effective properties are obtained for a single rigid tortu-

ous pore consisting of cylindrical sections of varying cross sectional

area. The obtained effective properties are simplified to succinct

analytical expressions which match the well established Cham-

poux and Stinson model [9]. These expressions are validated

against the traditional TMM. Secondly, simple general expressions

for the effective dynamic density and complex compressibility are

obtained for a waveguide side-loaded by an arbitrary number of

Helmholtz resonators. These expressions are validated against

results obtained using the traditional TMM and numerically.
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The paper is organised as follows. All the required supplemen-

tary theory is presented in Section 2. The TMM and linear superpo-

sition approach are bridged together to express the effective

properties of an acoustical system in Section 3. The proposed

model is compared with the traditional TMM for a rigid tortuous

pore in Section 4 and with a waveguide sideloaded with Helmholtz

resonators in Section 5.

2. Background theory

2.1. Basic equations

Consider a one-dimensional harmonic plane wave with eixt

time dependence, where i ¼
ffiffiffiffiffiffiffi

�1
p

, which propagates in a duct of

stationary ideal gas with a cross sectional area Sa. The macroscopic

pressure gradient �@p=@x is applied to a medium in the x direction,

where p is the complex acoustic pressure amplitude at any point.

The equation of motion is written as follows [9]:

� @p

@x
¼ ixqðxÞv; ð1Þ

where qðxÞ is the effective frequency dependent dynamic fluid

density, x is the angular frequency and v is the complex average

macroscopic fluid velocity in the x direction. For a small perturba-

tion in the medium, the following expressions can be written based

on the continuity and thermodynamic state equations [9],

respectively:

q0

@v

@x
þ ixdq ¼ 0; ð2Þ

dq
q0

¼ CðxÞp: ð3Þ

Here we adopt notations similar to those used in Ref. [9] so that q0

is the equilibrium density, dq is the perturbation density and CðxÞ
is the effective complex compressibility of the fluid. Note that the

effective bulk modulus KðxÞ is simply the inverse of the complex

compressibility, i.e. 1=CðxÞ. The combination of Eqs. (2) and (3)

leads to:

� @v

@x
¼ ixCðxÞp: ð4Þ

Subsequently, the effective dynamic fluid density and complex

compressibility can be used to obtain the characteristic impedance,

ZðxÞ, and acoustic wavenumber, kðxÞ, respectively:

ZðxÞ ¼ 1

Sa

ffiffiffiffiffiffiffiffiffiffiffiffi

qðxÞ
CðxÞ

s

; ð5Þ

kðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðxÞCðxÞ
p

: ð6Þ

The speed of sound, cðxÞ, can then be found simply as:

cðxÞ ¼ qðxÞCðxÞ½ ��1=2
: ð7Þ

2.2. Viscothermal losses

Viscothermal losses within a duct are accounted for by evaluat-

ing the complex frequency dependent density and bulk modulus

for a plane wave propagating through a section of constant cross

section [10]. For a circular duct of radius r:

qðxÞ ¼ q0 1� 2J1ðrGrÞ
rGrJ0ðrGrÞ

� �

; ð8Þ

KðxÞ ¼ K0 1þ ðc� 1Þ 2J1ðrGkÞ
rGkJ0ðrGkÞ

� �

: ð9Þ

Here Gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ixq0=g
p

and Gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ixq0Pr=g
p

, in which q0 is the

equilibrium density, K0 ¼ cP0 is the adiabatic bulk modulus, c is

the ratio of specific heats, P0 is the equilibrium pressure, Pr is the

Prandtl number and g is the dynamic viscosity.

For a rectangular duct of width, a, and height, b:

qðxÞ ¼ � q0a
2b

2

4G2
q

X

1

k¼0

X

1

m¼0

a2
kb

2
m a2

k þ b2
m � G2

q

� �h i�1
; ð10Þ

KðxÞ ¼ K0

cþ 4ðc� 1ÞG2
K=a

2b
2
X

1

k¼0

X

1

m¼0

a2
kb

2
m a2

k þ b2
m � G2

K

� �h i�1
; ð11Þ

where Gq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ixq0=g
p

;GK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ixq0Pr=g
p

;ak ¼ 2ðkþ 1=2Þp=a and

bm ¼ 2ðmþ 1=2Þp=b. The infinite sums are computed numerically

with a truncation number of 100 and an accuracy of 5 significant

figures for a range of duct dimensions. Using these expressions it

is then possible to calculate the characteristic impedance and

acoustic wavenumber for a fluid layer.

2.3. Champoux and Stinson model for rigid frame porous materials

The methodology developed in this paper is validated against

the model of rigid frame porous materials by Champoux and Stin-

son [9] which is recalled in this section. Consider a bulk sample of

identical pores with total cross section S and total length L. Here L

is sufficiently large to cover all variation of pore cross section.

Within a single pore, there are M segments. Each segment, m,

has a length l
ðmÞ

and an area SðmÞ
a . A schematic of a single tortuous

pore can be seen in Fig. 1. It has been shown from the linear super-

position of terms within each segment that the effective dynamic

Fig. 1. Schematic of a sample containing a single tortuous pore.
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density qeff ðxÞ and complex compressiblity Ceff ðxÞ can be obtained

as follows [9]:

qeff ðxÞ ¼ a1

X

M

m¼1

qðxÞðmÞl
ðmÞ

=SðmÞ
a

X

M

m¼1

l
ðmÞ

=SðmÞ
a

; ð12Þ

Ceff ðxÞ ¼

X

M

m¼1

CðxÞðmÞSðmÞ
a l

ðmÞ

X

M

m¼1

SðmÞ
a l

ðmÞ
: ð13Þ

Provided the geometry, dynamic density and complex com-

pressibility are known for each pore section, it is possible to obtain

the effective properties for the total system. Finally, the character-

istic impedance of the bulk material is given by

Zeff ðxÞ ¼ 1

XS

qeff ðxÞ
Ceff ðxÞ

� �1=2

; ð14Þ

where X ¼PM
m¼1S

ðmÞ
a l

ðmÞ
=ðSLÞ is the porosity of the sample.

2.4. The transfer matrix method

2.4.1. Basic formulation

The transfer matrix method (TMM) provides the relationship

between the initial sound pressure, p, and volume flux, V ¼ vSa,

where Sa is the cross sectional area, at the start (x ¼ 0) and at the

end (x ¼ L) of a medium in a duct [5]. To differentiate between

the initial and end properties, the subscripts 0 and L are used,

respectively. The transfer matrix, T, is derived under the assump-

tion that only plane waves propagate through the medium in the

x direction, meaning it provides the solution for a 1D wave propa-

gation problem. The general formulation of the transfer matrix is as

follows;

p

V

� �

x¼o

¼ T
p

V

� �

x¼L

¼ T11 T12

T21 T22

� �

p

V

� �

x¼L

: ð15Þ

This is graphically depicted for a single fluid layer within Fig. 2.

The transfer matrix for a single fluid layer is constructed as

p

V

� �

x¼o

¼
cosðkLÞ iZ sinðkLÞ
i
Z
sinðkLÞ cosðkLÞ

" #

p

V

� �

x¼L

¼
T11 T12

T21 T22

� �

p

V

� �

x¼L

:

ð16Þ

Here, Z ¼ qc=Sa is the characteristic impedance, k is the acoustic

wavenumber and L is the length of the fluid layer. For a multilay-

ered structure, as shown in Fig. 3, the relationship between the

input and output pressure and acoustic flux are obtained by the

multiplication of the transfer matrices of each layer. This is

expressed as

T ¼
Y

M

m¼1

TðmÞ; ð17Þ

where M denotes the total amount of layers.

2.4.2. Effective material properties through TMM multiplication

Consider the transfer matrix that is the result of a series of

matrix multiplications to model a system of many layers. The

result is a 2x2 matrix which can be thought of as a single effective

fluid layer of finite length, L. From this, the four transfer matrix ele-

ments can be directly related to the effective fluid properties [4].

Specifically, the effective wavenumber can be found as

keff ðxÞ ¼ 1

L
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�T12T21

p

� �

; ð18Þ

and the characteristic impedance as

Zeff ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T12=T21

p

: ð19Þ

From these two equations, the effective dynamic density and

complex compressibility can be obtained.

2.4.3. Transmission properties of an acoustical system using TMM

For a non-isotropic and asymmetric system, where the trans-

mission and reflection of the incident plane wave are dependent

on the direction of entry to the system, expressions can be

obtained for the transmission, reflection and absorption coeffi-

cients [4]. When the incident wave propagates in the �ikx direc-

tion, these are:

R� ¼ T11 þ T12=Z0 � Z0T21 � T22

T11 þ T12=Z0 þ Z0T21 þ T22

: ð20Þ

T� ¼ 2eikL

T11 þ T12=Z0 þ Z0T21 þ T22

; ð21Þ

a� ¼ 1� jR�j2 � jT�j2: ð22Þ

Similarly, when the incident wave propagates in the ikx direc-

tion, these are:

Rþ ¼ �T11 þ T12=Z0 � Z0T21 þ T22

T11 þ T12=Z0 þ Z0T21 þ T22

: ð23Þ

Tþ ¼ 2eikLðT11T22 � T12T21Þ
T11 þ T12=Z0 þ Z0T21 þ T22

; ð24Þ

aþ ¼ 1� jRþj2 � jTþj2: ð25Þ

Here, Z0 is the characteristic impedance of the surrounding med-

ium. Furthermore, if a system is isotropic and homogeneous, then

the layer is reciprocal. As such, the determinant of the transfer

matrix is equal to unity. i.e.:

T11T22 � T21T12 ¼ 1: ð26Þ
Fig. 2. Graphical depiction of the TMM applied to a single fluid layer.

Fig. 3. Graphical depiction of the TMM approach applied to a multilayered fluid.
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Additionally, if the system is symmetric, i.e. the reflection coef-

ficient is independent of the direction of wave propagation, then

the following condition holds true:

T11 ¼ T22: ð27Þ

From these conditions, it is evident that if the system becomes

isotropic and symmetric, then Eqs. (21)–(23) reduce to Tþ ¼ T� and

Rþ ¼ R�. i.e. The acoustic transmission and reflective properties of

the system are independent on the direction of incidence. This

leads to the following transmission and reflection coefficients:

T ¼ 2eikL

T11 þ T12=Z0 þ Z0T21 þ T22

; ð28Þ

R ¼ T11 þ T12=Z � Z0T21 � T22

T11 þ T12=Z0 þ Z0T21 þ T22

: ð29Þ

2.4.4. Obtaining the impedance of a Helmholtz resonator using the

TMM

The methodology developed in this paper can be applied to

derive effective properties of a waveguide side loaded with Helm-

holtz resonators (see Fig. 6 for clarification). The impedance of each

resonator needs to be obtained in order to account for the effects of

resonance. In order to calculate the impedance of a single Helm-

holtz resonator, the transfer matrix method is used. The full matrix,

T, is derived from the following expression [11]:

T ¼ MnMDlMc: ð30Þ

The transfer matrices for the neck, Mn, and the cavity, Mc , take

the form of a standard fluid layer, represented in Eq. (16). The char-

acteristic impedance and acoustic wavenumber of the neck and

cavity for a cylindrical resonator are calculated using Eqs. (8) and

(9). The transfer matrix for the length correction,MDl, is written as:

MDl ¼
1 iZnknDl

0 1

� �

; ð31Þ

where Dl is arrived at from the addition of two correction lengths,

Dl ¼ Dl1 þ Dl2. Dl1 is due to pressure radiation at the discontinuity

from the neck to the cavity [12] and Dl2 comes from the pressure

radiation at the discontinuity from the neck to the surrounding

medium [13] given by:

Dl1 ¼ 0:82 1� 1:35
rn
rc

þ 0:31
rn
rc

� �3
" #

rn ð32Þ

and

Dl2 ¼ 0:82 1� 0:235
rn
rw

� 1:32
rn
rw

� �2

þ 1:54
rn
rw

� �3

� 0:86
rn
rw

� �4
" #

rn:

ð33Þ

Here, rw is the hydraulic radius of the waveguide, rn is the neck

radius and rc is the cavity radius. To determine the characteristic

impedance for the resonator, the final T matrix is multiplied by

½1; 0�T . This accounts for the velocity termination. Therefore, the

characteristic impedance of the Helmholtz resonator at x ¼ 0 can

be found as follows:

ZHR ¼ Px¼0

vx¼0

¼ T11

T21

: ð34Þ

This yields the expression:

ZHR ¼ �i
cosðkn lnÞ cosðkc lcÞ � ZnknDl cosðkn lnÞ sinðkc lcÞ=Zc � Zn sinðkn lnÞ sinðkc lcÞ=Zc

sinðkn lnÞ cosðkc lcÞ=Zn � knDl sinðkn lnÞ sinðkc lcÞ=Zc þ cosðkn lnÞ sinðkc lcÞ=Zc

:

ð35Þ

3. General model for effective material properties through TMM

summation

The transfer matrix method provides a system of two equations

which relates the acoustic pressure, p, and the volume flux, V, at

x ¼ 0 and x ¼ L, where L is the length of the system. For a two-

port system these are:

p0 ¼ T11pL þ T12VL; ð36Þ

and

V0 ¼ T21pL þ T22V L: ð37Þ

The subscripts 0 and L denote the respective variable value at

x ¼ 0 and x ¼ L of the system. Consider a system discretised into

M segments, each with a cross section SðmÞ
a and length l

ðmÞ
, where

ðmÞ denotes the mth segment. By applying the velocity–pressure

relationship V L ¼ pL=ZL, where ZL is the characteristic impedance

at the local coordinate x ¼ L of a segment, Eqs. (36) and (37) can

be modified to model the change in pressure and particle velocity

within the mth segment. These expressions are:

p
ðmÞ
0 ¼ T

ðmÞ
11 þ T

ðmÞ
12

Z
ðmÞ
L

 !

p
ðmÞ
L ; ð38Þ

and

v
ðmÞ
0 ¼ 1

Sa
T
ðmÞ
21 þ T

ðmÞ
22

Z
ðmÞ
L

 !

p
ðmÞ
L : ð39Þ

For further clarification, Fig. 4 shows themth segment of an arbi-

trary system. Continuing this notion of a discretised system and

utilising the equation of motion (1), the equation of motion for

the mth segment of a system can be described as:

� @p

@x

� �ðmÞ
¼ ixqðxÞðmÞ

v
ðmÞ: ð40Þ

Here the pressure gradient of the fluid within the mth segment,

@p =@xð ÞðmÞ, can be expressed as ðpðmÞ
L � p

ðmÞ
0 Þ=lðmÞ

, assuming l
ðmÞ

is

sufficiently small with respect to the wavelength. The average fluid

velocity across the mth segment, v ðmÞ, is taken to be v
ðmÞ
L to capture

velocity variation along the segment. Assuming that the tortuosity

of the mth segment is equal to unity due to the constant cross sec-

tion, by inputting these substitutions from Eqs. (38) and (39) and

some algebraic manipulation, the effective dynamic density of the

fluid within the mth segment of a system can be obtained as:

qðmÞ
eff ðxÞ ¼

ðTðmÞ
11 � 1ÞZðmÞ

L þ T
ðmÞ
12

� �

SðmÞ
a

ixl
ðmÞ : ð41Þ

To determine the effective density of the total system, the effec-

tive densities for all segments are superimposed. Each term is mul-

tiplied by the acoustic inertance weighting factor,

l
ðmÞ

=SðmÞ
a

� �

=
PM

m¼1 l
ðmÞ

=SðmÞ
a

� �

, to account for density terms from nar-

row cross sections being dominant in the total effective dynamic

density. The tortuosity of the total system, a1, is then included

as a factor on the superimposed expression. This is defined as [14]:

a1 ¼
PM

m¼1S
ðmÞ
a l

ðmÞ

PM
m¼1l

ðmÞ
� �2

X

M

m¼1

l
ðmÞ

SðmÞ
a

: ð42Þ

Therefore, the total effective density of the fluid within the sys-

tem is calculated using the following expression:
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qeff ðxÞ ¼
a1
X

M

m¼1

qðmÞ
eff ðxÞlðmÞ

=SðmÞ
a

X

M

m¼1

l
ðmÞ

=SðmÞ
a

¼
a1
X

M

m¼1

ðTðmÞ
11 � 1ÞZðmÞ

L þ T
ðmÞ
12

� �

ix
X

M

m¼1

l
ðmÞ

=SðmÞ
a

: ð43Þ

Using the same logic and applying this to Eq. (4), the rate of

change in the acoustic velocity for the fluid in the mth segment

can be described as:

� @v

@x

� �ðmÞ
¼ ixCðxÞðmÞpðmÞ: ð44Þ

Here, the velocity gradient of the fluid within the mth segment

@v=@xð ÞðmÞ can be expressed as ðv ðmÞ
L � v

ðmÞ
0 Þ=lðmÞ

, where

v
ðmÞ
L ¼ p

ðmÞ
L =ðZðmÞ

L SaÞ, assuming l
ðmÞ

is sufficiently small with respect

to the wavelength. The acoustic pressure pðmÞ is taken to be p
ðmÞ
L to

capture pressure variation along the segment. Again, by inputting

these substitutions from Eqs. (38) and (39), the following expres-

sion can then be obtained for the effective complex compressibility

of the fluid in the mth segment of a system:

C
ðmÞ
eff ðxÞ ¼ T

ðmÞ
21 Z

ðmÞ
L þ T

ðmÞ
22 � 1

ixl
ðmÞ

Z
ðmÞ
L SðmÞ

a

: ð45Þ

By multiplying the effective complex compressibility of the

fluid within each segment by the volumetric weighting factor,

SðmÞ
a l

ðmÞ
=
PM

m¼1S
ðmÞ
a l

ðmÞ
, to account for compressibility terms from

large cross sections being dominant in the total effective complex

compressibility, and superimposing all terms, the total effective

complex compressibility of the fluid within the system can be

expressed as:

Ceff ðxÞ ¼

X

M

m¼1

C
ðmÞ
eff ðxÞSðmÞ

a l
ðmÞ

X

M

m¼1

SðmÞ
a l

ðmÞ

¼

X

M

m¼1

T
ðmÞ
21 Z

ðmÞ
L þ T

ðmÞ
22 � 1

� �

Z
ðmÞ
L

� ��1

ix
X

M

m¼1

SðmÞ
a l

ðmÞ
: ð46Þ

A simple approach is now available to obtain analytical expres-

sions for systems modelled by the TMM. The above expressions can

be used to assess how the complex compressibility, dynamic den-

sity, speed of sound, effective wavenumber and characteristic

impedance varies within a complex system.

4. Effective material properties of a rigid frame porous material

A simple theoretical model that describes the sound propaga-

tion through pores of known cross-sectional area and shape is pro-

posed by Champoux and Stinson in Ref. [9]. A brief outline of this

method is presented in Section 2.3. This same rigid pore system

is modelled using the proposed TMM summation method and

results are compared with those from the TMM multiplication

method.

4.1. Application of the TMM summation method to model a rigid frame

porous material

Consider a single pore composed of M distinct cylindrical seg-

ments which are constant in cross section. Each segment, m, has

a length l
ðmÞ

and a radius rðmÞ (see Fig. 1 for a schematic of this

geometry). The total transfer matrix of the system, T, is:

T ¼ MX �Mð1Þ �Mð2Þ
. . .MðM�1Þ �MðMÞ �M�1

X
; ð47Þ

where MðmÞ is the transfer matrix for the mth segment fluid layer.

Here, the acoustic wavenumber, k
ðmÞ

, and characteristic impedance,

ZðmÞ, are obtained with Eqs. (8) and (9) to account for the viscother-

mal losses of each segment. MX accounts for the porosity of the sys-

tem and is defined as:

MX ¼
1 0

0 1
X

" #

: ð48Þ

From this total matrix, the effective fluid properties can be

obtained by with the TMM multiplication method using Eqs. (18)

and (19).

For the TMM summation method, the effective density and

compressibility of the system can be obtained by utilising Eqs.

(43) and (46) upon each matrix in the system. This results in the

following expressions:

qeff ðxÞ ¼
a1
X

M

m¼1

cos k
ðmÞ

l
ðmÞ

� �

þ i sin k
ðmÞ

l
ðmÞ

� �

� 1
� �

ZðmÞ

ix
X

M

m¼1

l
ðmÞ

=SðmÞ
a

� �

ð49Þ

and

Ceff ðxÞ ¼

X

M

m¼1

cos k
ðmÞ

l
ðmÞ

� �

þ i sin k
ðmÞ

l
ðmÞ

� �

� 1
� �

ZðmÞ
� ��1

ix
X

M

m¼1

SðmÞ
a l

ðmÞ
� �

: ð50Þ

Fig. 4. Graphical depiction of the application of the modified transfer matrix

equations to the mth segment of an arbitrary system.
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By taking the low frequency limit, k
ðmÞ

l
ðmÞ � 1, the series expan-

sion of the common expression present in Eqs. (49) and (50) can be

calculated. The result of this is:

cos k
ðmÞ

l
ðmÞ

� �

þ i sin k
ðmÞ

l
ðmÞ

� �

� 1

¼ ik
ðmÞ

l
ðmÞ þ O k

ðmÞ
l
ðmÞ

� �2
	 


: ð51Þ

Therefore, utilising the leading order term from the series

expansion, the total dynamic density and complex compressibility

of the fluid within the tortuous pore can be defined as:

qeff ðxÞ ¼ a1

X

M

m¼1

qðxÞðmÞl
ðmÞ

=SðmÞ
a

X

M

m¼1

l
ðmÞ

=SðmÞ
a

ð52Þ

and

Ceff ðxÞ ¼

X

M

m¼1

CðxÞðmÞSðmÞ
a l

ðmÞ

X

M

m¼1

SðmÞ
a l

ðmÞ
; ð53Þ

where qðxÞðmÞ and CðxÞðmÞ are the dynamic density and complex

compressibility of the fluid in the mth segments calculated with

Eqs. (8) and (9). It can be seen that these expressions match the

Champoux and Stinson model.

4.2. Results

In this section, a single pore of four distinct segments of varying

cross section is modelled using the proposed TMM summation

method and then validated against the traditional TMMmultiplica-

tion method. The geometric parameters for the pore can be seen in

Table 1. The resulting tortuousity of the system is a1 ¼ 3:26 and

the sample cross sectional area can be selected as an arbitrary

Table 1

Geometric properties of rigid framed pore structure. All units are [mm].

rð1Þ rð2Þ rð3Þ rð4Þ l
ð1Þ

l
ð2Þ

l
ð3Þ

l
ð4Þ L

2 0.75 3 1.5 1 2.5 2 1 6.5

Fig. 5. The effective density qðxÞ [kg/m3], bulk modulus KðxÞ [Pa], normalised acoustic impedance ZðxÞ, wavenumber kðxÞ [1/m] and speed of sound cðxÞ [m/s] computed

using the proposed effective property model (TMM summation) and the traditional TMM method (TMM Multiplication).
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value as the above methods obtain the effective properties for the

fluid within the pore. The plots of the real and imaginary compo-

nents of effective material properties, normalised acoustic impe-

dance, wavenumber and speed of sound can be seen in Fig. 5.

From Fig. 5 it is evident that there is excellent agreement

between the TMM summation and TMM multiplication models

in the low frequency regime, with a mean absolute percentage

error (MAPE) of 0:6% for the effective density and MAPE of

0:032% for the effective bulk modulus, within the first 1000 Hz.

Past this it can be seen that the two methods begin to deviate from

one another, as evidenced in the dynamic density and wavenum-

ber of this system. As Eqs. (52) and (53) are experimentally vali-

dated by Champoux and Stinson [9], with a similar pore

geometry for up to 5 kHz, it is thought this deviation is associated

with a limitation in the retrieval of the effective properties using

the TMM multiplication method. Finally, if one wanted to increase

the scale of the system by an order of magnitude whilst retaining

the same tortuousity, radiation effects would then have to be

accounted for [15]. This approach can be implemented with addi-

tional transfer matrices for the TMM summation and mutliplica-

tion methods.

5. Effective material properties of a waveguide sideloaded by

Helmholtz resonators

In this section, the effective fluid properties are obtained for a

waveguide sideloaded by M Helmholtz resonators. This is done

using the TMM summation method presented within Section 3.

The obtained effective fluid properties are compared with those

obtained using the TMM multiplication method presented in

Section 2.4.2.

5.1. Application of the TMM sumattion method to model a waveguide

sideloaded by Helmholtz resonators

Consider a waveguide section of constant cross-section, Sa, and

length, L, side-loaded by M Helmholtz resonators periodically

space by l ¼ L=ðM � 1Þ. As shown in Fig. 6. The transfer matrix

for the whole system is expressed as:

T ¼ M
ð1Þ
HR �MWG �Mð2Þ

HR2 . . .MWG �MðM�1Þ
HR �MWG �MðMÞ

HR ; ð54Þ

where the waveguide transfer matrix, MWG, is the transfer matrix of

a fluid layer of length l. Within this matrix, Z ¼ qc=Sa, is the charac-

teristic impedance for plane wave propagation within the fluid of

the waveguide, and k is the wavenumber of the fluid within the

waveguide. These quantites are determined with the use of Eqs.

(10) and (11). The resonators are introduced as point scatterers

within the transfer matrix, which is facilitated for the mth resonator

by the following matrix:

M
ðmÞ
HR ¼

1 0
1

Z
ðmÞ
HR

1

" #

: ð55Þ

To calculate the effective material properties using the tradi-

tional method of matrix multiplication, it is a simple manner of

utilising the equations set out in Section 2.4.2 upon the final trans-

fer matrix, T, of the system.

Through the application of Eq. (43) upon the transfer matrices

in Eq. (54), the total effective dynamic density of the fluid within

the system can be explicitly written as:

qeff ðxÞ ¼ ZSa
ixL

X

M�1

m¼1

cos klð Þ þ i sin klð Þ � 1ð Þ: ð56Þ

Through the application of Eq. (46) upon the transfer matrices

in Eq. (54), the total effective compressibility of the fluid within

the system can be explicitly expressed as:

Ceff ðxÞ ¼ 1

ixLSa

1

Z

X

M�1

m¼1

cos klð Þ þ i sin klð Þ � 1ð Þ þ
X

M

m¼1

1

Z
ðmÞ
HR

( )

: ð57Þ

By taking the low frequency limit, kl � 1, the total dynamic

density and complex compressibility of the fluid within the system

can be defined as:

qeff ðxÞ ¼ qðxÞ; ð58Þ

Ceff ðxÞ ¼ CðxÞ þ 1

ixLSa

X

M

m¼1

1

Z
ðmÞ
HR

; ð59Þ

where qðxÞ and CðxÞ are the dynamic density and complex com-

pressibility of the waveguide.

5.2. Results

To assess the validity of Eqs. (58) and (59), a system of two

cylindrical Helmholtz resonators side-loading a square waveguide

is modelled. This system contains two distinct resonances resulting

from variation in geometry between the Helmholtz resonators.

Namely, a difference in the cross sectional area of the necks. A lim-

iting factor in using an effective fluid layer transfer matrix to com-

pute the reflection coefficient is due to the assumption that the

system is a symmetric absorber, i.e. T11 ¼ T22. When this is not

the case, such as in a degenerate coupling of Helmholtz resonators

[16], the use of effective properties as presented within this paper

is unfit for purpose in obtaining the reflection and absorption coef-

ficients. This does not apply to the transmission coefficient due to

the reciprocal nature of this type of system, i.e. T11T22 � T12T21 ¼ 1.

As such, the following example has been selected as to min-

imise asymmetry in the reflection coefficient. This has been done

with an asymmetric geometry which is possible due to very weak

Fig. 6. Schematic for a system of M equispaced cylindrical HRs sideloading a square waveguide.
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coupling between the Helmholtz resonators. The length of the sys-

tem is L ¼ 34mm, the width, a, and height, b, of the waveguide are

a ¼ b ¼ 50mm. The geometry of the modelled Helmholtz res-

onators can be seen in Table 2 with these quantities graphically

represented in Fig. 6.

The plots of the effective dynamic density, effective bulk mod-

ulus, normalised acoustic impedance, acoustic wavenumber and

the speed of sound computed using the effective property model

and the TMM multiplication method can be seen in Fig. 7. From

Fig. 7 it is evident that there is good agreement in all terms,

although fluctuations within the effective density are evident in

the TMM multiplication model which have not been captured with

the TMM summation model. The physical nature of these fluctua-

tions is uncertain and could either be a result of the resonances of

the Helmholtz resonators or numerical errors in the retrieval of the

effective wavenumber and impedance with the TMM multiplica-

tion method. Nonetheless, it can be seen that these fluctuations

play no significant role in subsequent terms derived from the

dynamic density and as such, regardless of the physical meaning

of these fluctuations, they can be deemed negligible. To support

this, the effective dynamic density has a MAPE of 2:4% and the

effective bulk modulus also has a MAPE of 2:4%. Therefore, the

TMM summation model can be deemed as a valid approach to

derive analytical approximations for symmetric or near-

symmetric systems composed of Helmholtz resonators. To corrob-

orate this claim, it has been shown that through the use of the

modal expansion method [17], an analytical approximation for

the effective dynamic density of a waveguide side-loaded by Helm-

holtz resonators matches that of Eq. (58) obtained using the TMM

summation method.

The transmission, reflection and absorption coefficients of the

system have been computed using the TMM method, numerically

and with the TMM summation method. The equations used to

obtain the transmission and reflection coefficients were (28) and

(29). These equations were applied to the total transfer matrix of

the system for the TMM method and to the transfer matrix of an

effective fluid layer for the TMM summation method. The numer-

ical calculations were done using COMSOL 5.0 using the Acoustics

Pressure Module. The model was 3D with the viscothermal losses

being accounted for in every region of the structure. The system

used for the computation had two Intel(R) Xeon(R) 8 core CPUs

@2.60 GHz with 128 GB of RAM. The plots of these coefficients

Table 2

Geometric properties of the modelled Helmholtz resonators. All units are ½mm�.

HR rn rc ln lc

1 3 15 10 40

2 1.5 15 10 40

Fig. 7. The effective dynamic density qðxÞ ½kg=m3�, effective bulk modulus KðxÞ [Pa], normalised impedance ZðxÞ, acoustic wavenumber kðxÞ [1/m] and speed of sound cðxÞ
[m/s] computed using the effective property model (TMM summation) and the traditional TMM method (TMM Multiplication).
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for the three methods can be seen in Fig. 8. From Fig. 8 it is evident

that there is good agreement between the three methods when

computing the transmission properties of the selected system.

Due to the near-symmetry in the system, it can be seen that the

reflection and absorption coefficients obtained with the TMM sum-

mation method remains consistent with the coefficients obtained

using the TMM and numerical methods. From the results it can

be concluded that the TMM summation method provides valid

analytical approximations to the traditional TMM method, so long

as the modelled system does not exhibit asymmetric reflection

properties and L is not too large compared to the wavelength.

It must be noted that this model only remains valid in the low

frequency regime, below the first Bragg frequency and the first

cross sectional mode of the waveguide. This is due to the models

inability to account for effects associated with periodicity and

the assumption of plane wave propagation within the formulation

of the model. The failure to capture effects due to periodicity can

be seen upon examination of Eq. (59) where the summation term

associated with each resonator is scaled by the total length of

the system, not the separation of each resonator.

To highlight the inability to capture asymmetric reflection phe-

nomenon using the two effective property models presented here,

a set of degenerate Helmholtz resonators have been modelled

using the TMM, TMM summation and TMM multiplication meth-

ods. The geometry of the Helmholtz resonators can be found in

Table 3. The waveguide dimensions and system length are

unchanged. The plots of the absorption coefficient for the two

directions of incidence, aþ and a�, obtained with the TMMmethod,

absorption coefficients obtained using the TMM summation

method and TMM multiplication method are presented in Fig. 9.

From Fig. 9 it can be seen that when using the TMM method, the

effects of strong evanescent coupling can be captured. This is evi-

dent with the large disparity between the amplitude of absorption

between the two directions of incidence. Adversely, when looking

at the plots produced by the two effective property methods, there

is little correlation to the absorption for either direction of inci-

dence. Additionally, there is poor agreement between the two

effective property models too. As such, the two effective property

models are only valid for systems of Helmholtz resonators in which

there is weak evanescent coupling. If evanescent coupling were to

be captured, the effective fluid properties would have to be modi-

fied for each direction of incidence.

6. Conclusion

A general effective property model has been proposed to obtain

explicit analytical expressions for complex systems. By discretising

a system into segments, it is possible to utilise the transfer matrix

method to predict the acoustic properties in these segments.

Through the application of linear superposition, these individual

segment effective properties can be summated to achieve the total

effective properties of the system. Analytical expressions were

derived for two use in order to validate the model.

Firstly, the proposed approach was applied to derive the effec-

tive properties for the fluid in a singular pore consisting of M

unique cylindrical cross sections. This is consistent with the well

established Champoux-Stinson model for rigid pored structures.

These expressions were then used to describe the dynamic beha-

viour of the fluid in a pore of four segments with varying radii

and lengths. The results of this method were also compared with

those obtained with a conventional TMM formulation. It was found

upon examination of all effective properties that there is excellent

agreement between the two models in the low-frequency regime.

Subsequently, using the same methodology, the effective prop-

erties for a waveguide side-loaded by M Helmholtz resonators

were derived. To validate the expressions, the effective fluid prop-

erties of a waveguide side-loaded by two HRs obtained with the

TMM summation method were compared with those obtained

Fig. 8. The transmission (jTj), reflection (jRj) and absorption (a) coefficients computed using the effective property model (TMM summation) in comparison to the coefficients

obtained with the traditional TMM method (TMM) and numerically (Numerical).

Table 3

Geometric properties of the modelled degenerate Helmholtz resonators. All units are

[mm].

HR rn rc ln lc

1 4 15 10 40

2 4 15 10 42
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via the TMM multiplication method. It was found that there is

excellent agreement in all terms except the effective dynamic den-

sity. It is thought these fluctuations are the result of numerical

error and possess no physical meaning. Nonetheless, the influence

these fluctuations play on subsequent terms is negligible. Addi-

tionally, the transmission properties obtained through the effective

property model were compared with those obtained through the

traditional TMM and a numerical FEM model. The selected geom-

etry was asymmetric but it exhibited near-symmetric reflection

properties due to the weak evanescent coupling of the Helmholtz

resonators. It was found that there was excellent agreement

between the methods.
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