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Using multicentre RCT-based individual patient level 
data to populate decision analytic cost-effectiveness 

models for location-specific decision making 

 

Abstract 

 

Objectives: To develop methodology for the analysis of individual patient level data from 
multicentre/multinational randomized controlled trials with the aim of estimating location-specific 
parameters to populate decision models for location-specific decision making. 

Methods: Multilevel or hierarchical modelling is the analytical framework used to handle 
hierarchical cost-effectiveness data. Hierarchical modelling was developed in a Bayesian 
framework and Bayesian shrinkage estimation procedures were used to obtain location-specific 
cost-effectiveness estimates. 

Results: Using data from a recently conducted economic analysis of the RITA 3 trial, location-
specific cost-effectiveness measures were obtained and compared to the trial-wide results. For the 
analysed centres, the centre-specific cost-effectiveness planes showed higher variability in mean 
differential cost and mean differential QALY estimates compared to the trial wide results, with the 
latter having longer left tail estimate distribution. The majority of the location-specific incremental 
cost-effectiveness ratio results show higher cost per QALY for the intervention strategy compared 
to the trial wide results (approx. £41,400/QALY). With respect to centre-specific cost-effectiveness 
acceptability curves, the curves for the selected centres display great variability across centres in 
cost-effectiveness for given  values of the threshold, λ. If the decision maker is willing to pay 
£50,000 for an additional QALY, the probability that the intervention strategy is cost-effective is, 
for instance, 0.34 for centre 37, compared to the 0.65 for the trial wide results. 

Conclusions: This thesis shows how Bayesian hierarchical modelling can be used to estimate more 
appropriate cluster-specific parameters for use in decision analytic models where individual patient 
level data from a multi-location trial are available. Bayesian hierarchical modelling estimates can be 
used to explore correctly the variability between centres/countries of the cost-effectiveness results 
allowing the correct quantification of uncertainty by adjusting the standard errors to reflect the 
estimates variability both within and between locations. 
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1 Introduction 
 

The main purpose of health care economic evaluation (EE) is to assess the economic consequences 
of health interventions, programmes or services with the aim of informing decisions regarding 
resource provision within health systems operating under a fixed budget [1]. Economic analysis of 
health interventions concerns choices that are consequence of financial pressures, budget constraints 
and resource scarcity. The National Institute for Health and Clinical Excellence (NICE) in the UK is 
an example of an institution that uses EE to support efficient resource allocation. 

Cost-effectiveness analysis (CEA) is the most commonly used EE method, where effectiveness is 
commonly measured in terms of Quality Adjusted Life Years (QALYs). The main application of 
CEA is in supporting reimbursement decisions made by health care providers regarding health 
technologies. CEA evaluates technologies to find which one minimizes the cost of generating a 
given level of health, or which one maximizes the level of health within a specified budget [2]. 

In order to inform NICE decision-making process, an EE is required to address two main questions 
[3]. Firstly, with the current evidence, is the technology cost-effective? Secondly, would further 
research correspond to good ‘value for money’? To deal with the former, the methodological 
structure has to follow some specific criteria: (i) the objective function has to be clear and precise; 
(ii) the comparison of the new technology needs to be judged against all relevant comparators and 
needs to include all relevant evidence; (iii) there needs to be consistency in costs and benefits 
perspective (many argue for a societal perspective, however a third party or payer perspective is 
commonly adopted); (iv) and, finally, it needs to assess the costs and effects of an alternative 
treatment strategy within an appropriate time horizon. The second question requires that uncertainty 
regarding an adoption of a decision must be unequivocally characterised [4]. Quantifying the cost of 
making a wrong decision represents the basis for assessing if whether acquiring further evidence 
through funding new research is valuable [5]. 

 

1.1 Assessing cost-effectiveness 

The summary measures of interest to the decision maker are the expected values of both cost and 
effectiveness outcomes for each treatment strategy. These are commonly aggregated in a distinctive 
cost-effectiveness outcome measure as the incremental cost-effectiveness ratio (ICER) =∆C/∆E 
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(∆C-mean differential costs; ∆E-mean differential effects), or its reformulation, the net benefit (NB) 
measure. When a trade-off situation is raised, decision rules should be applied [10]. If the ICER is 
used, it is interesting to assess the probability of its estimates being smaller than fixed values of 
willingness to pay (predefined threshold), ICER < λ (with ∆E>0). In these circumstances, the 
intervention is cost-effective in relation to the comparator. With respect to the NB framework, it is 
attractive to evaluate the probability of its estimates being positive. The new technology would be 
accepted if: NMB = λ ∆E − ∆C > 0 (net monetary benefit (NMB)) or equivalently NHB = ∆E − 
∆C/λ > 0 (net health benefit (NHB)) [13]. 

Subjective decisions can be avoided by using analytic models. As there is uncertainty around the 
cost-effectiveness (CE) estimates, any decision based on CEA will also be uncertain [12]. A 
decision model can explicitly represent this uncertainty and quantify it through the use of 
probabilistic sensitivity analysis (PSA). The objective of probabilistic modelling is to reflect the 
uncertainty in the input parameters and illustrate its consequences on the outputs of interest [11]. 
Decision analytic models (DAM) are used to combine information from various sources of 
information using mathematical relationships [8, 9]. Often the relationship between the inputs is too 
complex to return a ‘closed form’ solution describing the exact distribution of the estimator for the 
CE measure. In that case, Monte Carlo (MC) methods can be used to propagate uncertainty in the 
model over the expected outcome measure. This methodology entails randomly sampling from the 
distribution of the expected input parameters and recording the realisations of the results of the CE 
measure iteratively. The CE pairs accumulated can be used to produce an estimate of the joint 
distribution of the mean difference costs and mean difference benefits. This non-parametric 
approach to MC simulation is adopted in practice and the empirical distribution is used to represent 
the distribution of the CE outcome. 

Figure 1 illustrates possible examples of the joint CE density plotted on the incremental cost-
effectiveness plane (CEP). The CEP is a Cartesian coordinate system used to display cost and 
effectiveness differences in relation to a reference therapy. On the x-axis are effect differences (∆E) 
and on the y-axis cost differences (∆C). 

Considering a reference treatment {R}, interventions located in the NW quadrant (A) are a reflection 
of lower expected incremental benefits and higher incremental costs; therefore the adoption of this 
intervention is not recommended. On the opposite end, alternatives on the SE quadrant lead to gains 
in effectiveness and reduced costs; interventions in this outline, such as D, should be supported due 
to dominance over R. Interventions located on the SW quadrant (C) are often subject of ethical 
debate. Finally, often new technologies, such as B, have incremental results located in the NE 
quadrant of the CEP, which are more effective but with greater associated costs, and as mentioned 
above the trade-off situation arises. 
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Figure 1. Cost-effectiveness scenarios illustrated on the incremental cost-effectiveness plane 

. 

The difficulties to visualize alternative thresholds and to assess the probability of CE are two 
problems faced when considering CEP representation [5]. Considerations on the uncertainty 
surrounding a decision to accept/reject the new technology can be based on a graphical illustration 
named cost-effectiveness acceptability curve (CEAC). The CEAC is more informative than 
confidence intervals, and has a natural Bayesian interpretation. In this framework, the CEAC 
represents the probability of the new therapy being cost-effective [20] and is estimated through the 
proportion of MC samples which lie below a specific threshold. 

 

1.2 Trials vs. models: the false dichotomy 

The development of DAMs is currently seen as vital to the process of Health Technology 
Assessment (HTA) in general, occupying a nuclear position in the technology appraisal process at 
NICE [5]. Because of the specific framework around trial based analysis and the requirements for 
EE for decision making, DAMs are increasingly being used to inform policy decisions regarding the 
optimum allocation of health care expenditures. Models have occasionally been characterised as 
substitute to trials, however such a statement is a reflection of misunderstanding of their particular 
function. Randomized controlled trials (RCT) provide estimates of particular parameters in a 
specific group of patients in a particular health care environment over a particular timeframe. 
Decision models supply a configuration within which data from a variety of sources can be 
focussed to inform a precise decision problem for a defined population and perspective. The 
dissimilarities involving measurement achieved by trials and decision making supported by 
analytical structures highlights that models and trials are complements, not substitutes [8]. 



9 

 

The development of statistical methods in this area has strengthened the advantages of analysing 
patient-level data in CEA. Recent examples of applied work employing regression analysis to 
individual patient data (IPD) from RCTs to populate stochastic DAMs are: Briggs et al [22] using 
the EUROPA trial data, Henriksson et al [23] using the RITA 3 trial data and Briggs et al [24] using 
the GOAL trial data. However, data used to populate DAMs often come from 
multinational/multicentre RCTs. This offers the opportunity to develop location-specific CE models 
and consequently location-specific estimates of CE measures. 

 

1.3 Multicentre / multinational RCTs 

Often, when conducting RCTs, data on resource use and outcomes are gathered in several different 
sites. The common objective is to generate a generalizable CE estimate which can be applied across 
locations. This practice implicitly assumes that resource use and effectiveness data are perfectly 
transferable [7]. The question is how generalizable are the results of a multiple location evaluation 
to specific sites and their individual health care situations [15, 19]. 

If a comparison of health services in different locations is performed, it will disclose important 
differences in a variety of parameters relevant to the decision problem [21]. The emphasis goes to 
economic variables including resource use and factor prices, technical efficiency and preferences 
about health states. The between centre variability is expected to affect the level of resource use, 
unit costs and outcome data observed in the trials. The dataset will therefore have a hierarchical 
structure with potential correlation in costs and outcomes linked to patients treated within the same 
location [6, 19]. 

Studies from various multinational trial-based analyses assume that resource use data are not at all 
exchangeable between locations, while effectiveness data are. However, despite this methodology 
being only feasible when a sufficient number of patients were recruited in the location of interest 
[17], it disregards also that costs and effects are naturally correlated. Consequently, the correct 
quantification of uncertainty surrounding CE estimates is endangered [16]. The use of hierarchical 
models provides an ideal pathway to analyze CE IPD from multiple location trials allowing for 
between-location variability. 

Several analytical methodologies have been proposed to analyse multinational trial data and most of 
these involve regression analysis. Willke et al [15] explored the between-country variability by 
applying a regression model that included country-by-treatment and country-by-outcome interaction 
terms, which facilitated country-specific estimation of mean differential costs and effects. Manca et 
al [6] extended the net benefit regression approach [14] to contain the hierarchical structure of 
economic data in multilocation trials. Hierarchical models were shown to be able to obtain trial-
wide and location-specific estimates of CE measures, while correctly quantifying sampling 
uncertainty around these mean estimates.  
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Pinto et al [18] and Willan et al [17] explored alternative estimation methods to obtain country-
specific estimates of CE from summary data derived from a large multinational trial. Hierarchical 
modelling was used alongside empirical Bayes shrinkage estimation to obtain country-specific 
mean estimates. Manca et al [16] recently investigated the use of Bayesian bivariate hierarchical 
regression modelling to analyze individual patient level CE data collected alongside multinational 
trials using also empirical Bayes shrinkage estimation methodology. 

 

1.4 Motivation and outline of the thesis 

The particular focus of this project is to develop methodology for the analysis of 
multicentre/multinational RCTs with the aim of estimating location-specific parameters to populate 
the decision model. Multilevel or hierarchical modelling is the technique employed in this work to 
analyse the multicentre data and produce input parameters for the model.  

There are various reasons why one might consider a multilevel modelling framework, whether for 
purposes of causal inference, study of variation or prediction of outcomes. Multilevel models (i) 
account for individual- and centre-level variation in estimating centre-level regression coefficients; 
(ii) models variation among individual-level regression coefficients; (iii) estimates regression 
coefficients for particular centres. 

The RITA 3 trial data was used as a case study to illustrate the methodology proposed herein. The 
DAM used in the CE analysis of this trial involved a short-term and a long-term model; with the 
latter having tunnel states used to incorporate time dependency linked to particular health states on 
disease progression. Using IPD from this trial, multilevel regression estimates are obtained using a 
Bayesian approach. Bayesian hierarchical estimates are used to obtain transition probabilities, 
which are employed to define a location-specific Markov model. Location-specific estimates of CE 
were obtained, weighting the information available within each centre through the global estimates.  

This thesis begins by summarizing the features of Markov modelling and subsequently the different 
procedures for obtaining transition probability estimates. It gives a description of single-level and 
multilevel regression models, focussing thereafter on the estimation through Bayesian methods. A 
case study is presented, and the results obtained by Bayesian hierarchical modelling are discussed. 
The final section summarizes the contribution of this written work and discusses possible 
extensions of the present work that can be dealt with in future research. 
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2 Methods  

 

2.1 Model Design: Markov model 

The aim of CE evaluation of health interventions is to evaluate the distribution of the expected 
outcomes. DAMs designs, for which the evaluation of expected outcomes with an explicit 
expression is possible, are denoted as cohort or aggregated models. Examples are decision trees and 
discrete time Markov chains [11]. The majority of applied DAMs in chronic or long-term diseases 
are aggregated Markov chains, typically discrete time models. When the instant of episode 
occurrence is pertinent, when events may happen repetitively throughout time or when time risk is 
integrated in the decision framework, Markov chains are a valuable technique [25]. In EE the use of 
non-homogeneous Markov chains is common. This framework implies that transition probability 
(TP) functions are dependent on time [27, 29].  

A Markov model encompasses a set of mutually exclusive and collectively exhaustive health states. 
Each individual in the model must be in one and only one health state at any point in time. At fixed 
increments of time - Markov cycle length - subjects’ transit among the health states according to a 
set of TPs which can be constant or time-dependent. Health states can be transient (individuals can 
revisit the state at any time), temporary (individuals can stay in the state for only one cycle), or 
absorbing (once entered, individuals can never exit the state) [28]. 

 

2.1.1 Markov Chains: a statistical description 

Markov chains are understood as one of the simplest possible cases of stochastic processes. Given a 
probability space { }, ,F MΩ , a stochastic process (or random process) is a collection of Y-valued 

random variables indexed by a set time T. That is, a stochastic process F is a collection of { }t t T
Y

∈
. 

In a discrete time Markov chain, a one step transition function can be defined as 
, 1
, 1
t t
i j t tM P Y j Y i+

+⎡ ⎤= = =⎣ ⎦ , representing the probability of 1tY +  being in state j S∈ , given that at 

tY  the process was in state i S∈ , where S  is a countable state space { },i jS .  
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Given the present state, the future and past states are independent. This assumption is regularly 
termed as the Markov property or Markovian assumption, meaning that the process is 
“memoryless” for previous cycles [26]. Another assumption in a Markov model is that all 
individuals residing in a health state are identical and any degree of heterogeneity within a health 
state will cause some degree of bias. In practice, when issues of heterogeneity are believed to be 
important, health states should be defined according to the underlying heterogeneity factor [28]. 
Considering estimates of the TP matrix given by the information sources, Markov models are used 
in evaluating the non-conditional probabilities of being in the different states defined.  

 

2.2 Use of statistical modelling to analyse IPD-RCT data to 
estimate model inputs 

In cohort models, the simplest inputs available to estimate TPs are proportions (cumulative 
incidences) or rates (incidence rates) from published sources [30]. However, when IPD is available, 
regression analysis is conducted to estimate transition probabilities. The regression framework used 
to estimate TPs is commonly based on parametric distributional assumptions. One can use models 
such as linear models (section 2.2.1.1), generalized linear models (section 2.2.1.2), longitudinal 
models (section 2.2.2.4) or other modelling methodologies in order to provide adequate inputs to the 
Markov process. Estimation of TPs is most commonly conducted through maximum likelihood, as 
illustrated by Craig et al [31]. 

If patient level resource use from a clinical trial are available one can use standard ordinary least 
squares (OLS) regressions to obtain mean costs for the different alternative technologies or, 
accounting for the usual skewed behaviour of cost data, one can obtain reliable estimates by using a 
Log-Normal distribution or generalised linear models with, for instance, an underlying Gamma 
distribution (distribution constrained on the interval 0 to positive infinity). 

In the case of patient level health-related quality-of-life (HRQoL) , such as the EQ-5D for instance, 
one can analyse these data using the Log-Normal or the Gamma distributions on the disutility scale 
(e.g. 1-utility). Depending on the clinical trial time horizon, one can have utility data at 
randomization and at other pre-defined points in time. Regression analysis of longitudinal data 
approach can be employed in order to obtain estimates of HRQoL changes after randomization. 

In the estimation procedure of TPs or other model inputs it is possible to consider the hierarchical 
nature of the data through the usage of multilevel models, applicable, for instance, in the case of 
multicentre/multinational trials. 

The main estimation procedures used in this thesis are the maximum likelihood estimation and the 
Bayesian framework. In addition to the ordinary least squares estimation, a detailed description of 
these estimation procedures is given in the technical appendix - section A2.  
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2.2.1 Single level regression analysis  

Most econometric efforts in health economics focus on finding the model that appropriately fits the 
available data. Succinctly, regression analysis involves the estimation and the evaluation of the 
relationship between a variable of interest (dependent variable) and one or more other variables 
(independent variables). In this context, several estimation frameworks will be described next. 

 

2.2.1.1 Classical linear regression  

Considering a random sample of n independently and identically distributed (i.i.d.) observations 

1,..., ny y  each of which is normally distributed with mean µ and variance 2σ , but with variant 

means with [ ] 0

K

i k ki
k

E y xβ β= +∑ , with i=1,…,n and k=1,…K. The classical linear regression 

analysis assumes that the relationship between an outcome, or dependent variable, y, and the 
explanatory variables or independent variables, xi’s, can be summarised by a regression function 
[33]. The regression function is typically assumed to be a linear function of the x variables and of a 
random error term, ε. This relationship can be written using the following shorthand notation, 

0i k ki i
k

y xβ β ε= + +∑ , eq. 1 

where the terms kβ  are regression coefficients, and the intercept 0β  is the mean of y when x equals 
zero and kβ  is the change in the mean of y when xk increases by one unit. The random error or 

error term 0i i k ki
k

y xε β β
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑  captures all of the variation in y that is not explained by the xk 

variables. The study of statistical inference of the classical regression model requires the errors to 
be [32]: independent, homoskedastic, uncorrelated, and normally distributed. 

 

2.2.1.2 Generalized Linear Modelling 

Generalized linear modelling (GLM) is a framework for statistical analysis that includes linear and 
logistic regression as special cases. While in linear regression, as it was described in the previous 
section, it is proposed a model with Xµ β=  where the dependent variable is normally distributed 

with mean X β  and covariance matrix format of 2
n kIσ × (identity link), in GLM framework it is 

proposed a model with ( )g Xη µ β= =  where the dependent variable has distribution belonging to 

the Exponential family. It is assumed that additionally to the identity function I  there are other 
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possible functions able to perform the link between µ  and X β . To carry out statistical inference, 
the Normal distribution is not the only one considered given that assumptions are broadened to the 
Exponential family. 

A GLM usually involves the following components [32]: 

(i) a data vector ( )1,..., ny y y= , with distribution belonging to the Exponential family; 

(ii) predictors X and coefficients β : 
11 11 ... ...

... ... ... ... ...
1 ... ...

k

kn kn

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and ( )0 1' , ,..., kβ β β β≡  

(considering 0β  as the intercept term) , obtaining a linear predictor Xη β= ; 

(iii)  a monotonic function g – the link function ( )gη µ= , yielding a vector of transformed data 

( )1ŷ g X β−=  that are used to model the data. 

 

It is common to define the link function g that allows one to have ( )g Xµ β= . The more common 

links are the canonical link or logit, the probit, and the complementary log-log link function. 

It is often the case in health data that the outcome of interest is measured as a binary variable, 
usually taking values of either one or zero. Often this binary variable will indicate whether an 
individual/patient is a participant or a non-participant. The examples include: health care utilisation, 
presence or absence of particular disease under study [34]. 

The next section will focus mainly on the logistic regression which is one of the standard ways to 
model the mentioned binary outcomes.  

 

2.2.1.2.1 Logistic regression 

If a binary outcome y, depends on a set of explanatory variables x, then the conditional expectation 
of y given x, in other words the value of y that individuals with characteristics x are likely to report 
on average, is 

( ) ( ) ( ) ( ) ( )| 0 0 | 1 1| 1 |E y x P y x P y x P y x F x= ⋅ = + ⋅ = = = = , eq. 2 

A simple way to model binary data is to use a linear function: for which one can use the shorthand 
notation of section 2.2.1.2, ( )F x xβ= . However, the possibility of predicted probabilities outside 
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the range [0,1] creates a problem of logical inconsistency. It is common to use a non-linear function 
for F(.). The popular choices are the “S” curves, that are bounded between [0,1] despite the values 
of the independent variables. The most common choices of these “S” curves are the logit and probit 
models. The probability functions for the probit and logit models both are similar in appearance, 
although the logit model gives more weight to the tails of the distribution [34; 36]. 

Logit model (as well as the probit model) is often encouraged in terms of a latent variable 
specification. This assumes that there is some continuous latent variable y* that determines 
participation [34]. Let, 

*     = 1   iff  0
        = 0   otherwise

i iy y >  where, *
i i iy x β ε= + , eq. 3 

and, for a symmetrically distributed error term ε with distribution function F(.), 

( ) ( ) ( ) ( )*1| 0 |i i i i i iP y x P y x P x F xε β β= = > = > − = . eq. 4 

In this specified framework, assuming that iε  follows a standard logistic distribution, gives the logit 
model. The log-likelihood for a sample of independent observations ( )i iy Bernoulli p∼  is, 

( ) ( ) ( )( ) ( )( ){ }| 1 log 1 logi i i i i i
i i

LogL y x y F x y F xβ β β= = − − +∑ ∑ , eq. 5 

or equivalently, using the equalities ( )1|i i iP y x p= =  and ( )logit i k ip Xβ= : 

( ) ( )

( ) ( )( ){ }

0

0 1 1 0 1 1

| ,..., log log 1
1

... log 1 exp ...

i
i k i i

ii i

i i k ki i k ki
i

pLogL y y p
p

y x x x x

β β

β β β β β β

⎧ ⎫⎛ ⎞⎪ ⎪= = + − =⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭

= + + + − + + + +

∑ ∑

∑
. eq. 6 

If there are ni responses associated to the same observation leading to ( ),i i iy Binomial n p∼ , the 

derivations are similar (nipi substitutes pi). 

These models are usually estimated by maximum likelihood estimation (MLE). One usually wants 
to find the values of { }0 ,..., kβ β β≡  that maximize the log-likelihood function. The MLE 

procedure is presented in the technical appendix – section A2.2. 
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The coefficients in a logistic regression can be challenging to interpret because of the non-linearity. 
In the logit model the β coefficients can be interpreted in terms of log-odds ratios, a concept that is 
commonly used in biostatistics and epidemiology. Because of the particular functional form of the 

standard logistic distribution the odds ratio simplifies to 
( )
( ) ( )1|

exp
0 |

l
k

i

P y x
x

P y x
β

=
=

=
 and therefore the 

coefficients can be interpreted in terms of changes in the log odds ratio 
( )
( )

1|
log

0 |
l

k
i

P y x
x

P y x
β

⎛ ⎞=
=⎜ ⎟⎜ ⎟=⎝ ⎠

 

[32, 35]. 

 

2.2.1.3 Survival Analysis 

Some response variables in health economics come in the form of a duration, which is the time 
elapsed from a well-defined time origin until the occurrence of a particular event occurs or end-
point. In applied research, the time origin will often correspond to the recruitment of an individual 
into an experiment study, such as a clinical trial to compare two or more health technologies or 
treatments. If, for instance, the end-point is the death of a patient, the resulting data are literally 
survival times (this is the main reason for the name ‘survival analysis’). However, data of a similar 
form can be obtained when the end-point is not fatal. Examples are the recurrence of disease 
symptoms or the relief of pain. In these cases, observations are usually referred as time to event data 
[37]. 

Two main reasons for survival data not being opened to standard statistical procedures are the fact 
that generally the data is not symmetrically distributed (usually are positively skewed) and also 
because survival times are frequently censored. The survival time of a subject is said to be censored 
when the end-point of interest has not been observed for that individual. The most common 
censoring type is right censoring. This may happen because the data from a study are to be analysed 
at a point in time when some individuals are still alive or because they are lost to follow-up. Two 
other forms of censoring are left-censoring and interval censoring. The former is encountered when 
the actual survival time of an individual is less than that observed. In the latter, individuals are 
known to have experienced an event within an interval of time [37]. 

 

2.2.1.3.1 Survival and hazard functions 

In summarizing survival data, there are two functions of vital importance, namely the survivor 
function and the hazard function. The actual survival time of an individual can be regarded as the 
value of a random variable, T or survival time, which can take any non-negative value. T has a 
probability distribution with underlying p.d.f. f(t). The survivor function, S(t), is defined to be the 
probability that the survival time is greater that or equal to t: 
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( ) ( ) ( )1S t P T t F t= ≥ = − . eq. 7 

The survivor function can be used to represent the probability that an individual survives from the 
origin to some time beyond t. 

The hazard function is widely used to express the risk or hazard of death at some time t, and it is 
obtained from the probability that an individual dies at time t, conditional on he or she having 
survived to that time. Considering the conditional probability that the random variable associated 
with an individual’s survival time T, lies between t and t+δt, the hazard function is defined as: 

( ) ( ) ( ) ( )0

| 1lim
t

P t T t t T t
h t f t

t S tδ

δ
δ→

⎧ ⎫≤ < + ≥⎪ ⎪= ≡ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

. eq. 8 

Methods for estimating the survivor function and hazard function can be non-parametric/ 
distribution-free, semi-parametric or parametric. While the first two methods do not require 
specific assumptions to be made about the underlying distribution of the survival times, the last 
method requires so. The most known non-parametric method to estimate the abovementioned 
functions for a single sample of survival data are the Kaplan-Meier estimates. In most studies that 
give rise to survival data, supplementary information will also be recorded on each individual. A 
typical example would be a clinical trial to compare the survival times of patients who receive one 
or other of two treatments. In order to explore the relationship between the survival experience and 
the (explanatory) variables additionally gathered in the study, an approach based on statistical 
modelling can be used [37]. 

Most of the regression models in survival analysis belong to one of the following two classes: (i) 
Proportional hazard models (PHM), or (ii) Accelerated failure life-time models (AFTM). The 
AFTM is used in circumstances where the proportional hazards assumption (hazard of death at any 
given time for an individual in one group is proportional to the hazard at that time for a similar 
individual in the other group) is not reasonable. Due to its versatility, the Cox-regression model is 
the most widely used regression model in survival analysis. In this type of models, the underlying 
hazard function is not specified (therefore it is considered a semi-parametric method) but is a PHM 
[37].  

Nevertheless, in EE one is interested in specifying parametrically the distribution of T. Therefore, 
the parametric proportional hazards model is described in the next section with emphasis on the 
Weibull distribution setup. 
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2.2.1.3.2  Parametric proportional hazards model – the Weibull distribution 

The PHM applicability is widespread in the analysis of survival data, despite having relatively few 
probability distributions for the survival times that can be used (Weibull and Gompertz distributions 
are the most commonly used).  

Given that the Weibull distribution plays a central role in the analysis of survival data, the PHM 
based on the Weibull distribution is considered in more detail below. 

In applied research, the assumption of an unvarying hazard functions or equivalently, exponentially 
distributed survival times, is rarely plausible. A more general form of the hazard function is such 
that 

( ) 1,    for   0h t t tγλγ −= ≤ < ∞ , eq. 9 

where γ is known as the shape parameter and λ as the scale parameter. In the particular case where 
γ=1, the hazard function takes the constant value λ and the survival times have an exponential 
distribution. For values 0<γ<1 it decreases (decreasing duration dependence) and for values γ>1 it 
increases monotonically (increasing duration dependence). 

The survivor function is given by ( ) ( )expS t tγλ= −  and the corresponding p.d.f. is then 

( ) ( )1 exp ,    for   0f t t t tγ γλγ λ−= − ≤ < ∞ . In the Weibull regression model and under the PHM, the 

hazard of death at time t for the ith individual is given by ( ) ( ) ( )0; exp ,i ih t x x h tβ=  where xi is the 

value of X for the ith individual. The hazard function for a Weibull regression model is 

( ) ( )1; exp ih t x t xγλγ β−= , with scale ( )exp ixλ β  and shape parameter γ . The survival function is 

therefore ( ) ( )( ); exp exp .iS t x t xγλ β= −  

Mathematical details on the survival and hazard functions and on the parametric proportional 
hazards models can be found in the technical appendix - section A1. 
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2.2.2 Multilevel/Hierarchical regression analysis  

 

2.2.2.1 Multilevel linear models 

When dealing with hierarchical data structure, such as data gathered alongside a multicentre RCT, 
multilevel models are the appropriate approach to obtain unbiased estimates of aggregate measures 
[32]. Implicit in hierarchical data structure is cross-group heterogeneity. This type of heterogeneity 
might emerge because of unmeasured factors in group j, where there are { }1,...,j C=  clusters in the 

data. The models discussed in the previous section do not explicitly account for the heterogeneity 
associated with cluster j, but can be extended to this setup [32]. 

When a hierarchical structure of data collection is found one can analyse data through a (i) 
complete-pooling model (single classical regression ignoring the cluster information); (ii) no-
pooling model or ‘fixed-effect’ model (single classical regression that includes group indicators but 
not group-level predictors and where the number of degrees of freedom consumed may be high); 
(iii) separate models (separate classical regressions for each cluster, also constrained by the sample 
size ni); two-step analysis (starts with no-pooling or separate models, then fits a classical group-
level regression), or (iv) a multilevel model [32]. 

In lieu of non-pooling models, researchers are interested in modelling both level-1 (xi) and level-2 
(zj) covariate effects and models may include factors measured at both level and estimate. However, 
with this setup the researcher is limited in interpreting the conditional effects of level-2 factors have 
on level-1 factors, which is often the central interest. The problem with this model is that it fails to 
account for the fact that the overall variance is not only a function of variance among the level-1 
units, but potentially also variation among the level-2 units. The model assumption of deterministic 
or non-stochastic variation is considered a failure with respect to explicitly accounting for this 
cross-level variability [38]. 

 

Random intercept models 

Considerations of multiple levels of variation lead to models with random-effects. Let’s consider the 
following simple random intercept model: 

 0ij j iy β ε= + . eq. 10 

In contrast to the standard regression analysis, the intercept is subscripted by cluster j, implying 0 jβ  

is variable across the j groups. The difference between this model and the previous ‘fixed-effects’ 
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model described in section 2.2.1 is the way 0 jβ  is treated [38, 32]. In this approach 0 jβ  is 

considered a random coefficient, following a pre-defined probability distribution, typically, the 
normal distribution: 

 ( )2
0 , ,     for 1,....,j N j Cβ ββ µ σ =∼ . eq. 11 

The mean effect is estimated, although it is assumed to have some random variability around it, 
attributable to unmeasured level-2 factors. 

Treating 0 jβ  as a function of a systematic and a random component, one has: 

 0 0 0j juβ β= + , eq. 12 

where 0β  is the mean effect across sample and 0 ju  the residual of group j (i.e. of level-2 unit) from 

the mean. One can control for random variation in y due to level-2 factors. In the multilevel 
modelling framework, eq. 10 gives the level-1 model and eq. 12 gives the level-2 model. The 
multilevel model yields [38, 32]: 

 0 0ij j iy uβ ε= + + , eq. 13 

which has a straightforward interpretation: 0β  gives the mean; iε  gives the level-1 errors; and 0 ju  

the level-2 error. This additional error term separates this model from the standard regression model. 
Having now two sources of residual variation, a ratio of these two variances can be constructed. 
This ratio is commonly referred to as the intraclass correlation coefficient (ICC) [6]. ICC is a 
statistic that summarises the degree of dependency in nested observations. For the random intercept 
case: 

 0

0

2

2 2
u

u

ICC
ε

σ
ρ

σ σ
= =

+
. eq. 14 

The ICC can be interpreted as the proportion of the total variance that can be attributed to between-
cluster variation (the level-2 units). Hence, the total variance in the model is 

 ( ) 0

2 2
ij uVar y εσ σ= + , eq. 15 
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and considering the typical distributional assumptions, one has 

 ( )20,i N εε σ∼   and  ( )0

2
0 0,j uu N σ∼   

 

Random intercepts and random slopes 

The next step in complexity of multilevel modelling is to allow the possible relationship between 
the response variable and covariates [32, 38]. Suppose there is one level-1 factor and one level-2 
factor, the unconditional model would be given by: 

 0 1ij j j ij iy xβ β ε= + + , eq. 16 

where 1 jβ  is the slope coefficient for variable ijx . The constant term, 0 jβ , randomly varies across 

units j. Accounting for this, the unconditional model is obtained with 

 0 0 0j juβ β= +    and  1 1 1j juβ β= + , 

and has reduced-form   ( ) ( )0 0 1 1ij j j ij iy u u xβ β ε= + + + + , eq. 17 

where 0β  is the intercept estimate; 1β  the slope coefficient for the relationship between xij and yij; 

0 ju  the level-2 intercept error; u1j the error term for the randomly varying slope coefficient xij; and 

iε  corresponds to the level-1 error term [32]. 

 

2.2.2.2 Multilevel generalized linear models: the multilevel logistic regression 
framework 

Multilevel modelling is applied to logistic regression and other GLMs in the same way as with 
linear regression. Error terms are added to the model corresponding to different sources of variation 
in the data. 
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Random intercept models 

Recalling that in the logistic regression model one has for a sample of independent observations yi , 
for { }0 ,..., kβ β β≡  and for the vector of explanatory variables Xi: 

 ( )log logit
1

i
i i

i

p
p X

p
β

⎛ ⎞
= =⎜ ⎟−⎝ ⎠

. eq. 18 

If a multilevel model is fitted, it allows the prediction of yi within each cluster, while also allowing 
for systematic differences between groups [32]: 

( ) 0log logit ,    for 1,...,   and  1,...,
1

ij
ij j i

ij

p
p X i n j C

p
β β

⎛ ⎞
= = + = =⎜ ⎟⎜ ⎟−⎝ ⎠

 eq. 19 

where ij indexes the cluster correspondent to observation i, Xi is a vector of explanatory variables.  

 

Random intercepts and random slopes 

In a multilevel context, a varying-intercept, varying slope logit model is given by: 

( ) 0 1log logit ,    for 1,...,   and  1,...,
1

ij
ij j j ij

ij

p
p X i n j C

p
β β

⎛ ⎞
= = + = =⎜ ⎟⎜ ⎟−⎝ ⎠

 eq. 20 

where, as in the previous expression, Xij represents the independent variables array. The cluster-
level intercepts and slopes that are themselves modelled given the average cluster uj: 

 
00 0 0 ,    for  1,...,j ju j Cββ β ε= + + =  and 

 
11 1 1 ,    for  1,...,j ju j Cββ β ε= + + = , 

with errors 
0β

ε , 
1β

ε  having mean 0, variances 
0

2
βσ , 

1

2
βσ , and correlation ρ, all estimated from data 

[32]. 
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2.2.2.3 Multilevel survival models 

In a multicentre RCT one may be interested in the treatment effects on the survival of patients. 
Therefore, one has to extend the usual survival analysis to hierarchical survival models with, for 
instance, a PHM with random-effects to investigate the centre effect on the efficacy of the treatment 
as well as on the baseline. This may be understood as a natural extension of the usual mixed-effects 
model to survival analysis [39, 32]. 

The fixed-effect model inherently assumes that the centres comprise the entire population of interest. 
A more realistic assumption is that the centres are random samples from a larger population. For the 
random-effect survival model let’s assume that there are C distinct centres with nj patients from the 
jth centre. Let tij be the survival time for the ith patient from the jth centre (j=1,…,C; i=1,…,nj). A 
PHM is assumed for the effects of covariates and centres: 

( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 1 1| exp .ij ij ij j j ijh t x h t x h t u u xψ β β= = + + +  eq. 21 

In the above model ( )|ijh t −  represents the hazard for the ijth patient conditional on the random-

effects u0j and u1j of the explanatory matrix xij, ( )0h t  is an unknown baseline hazard, β1 is the fixed-

effect corresponding to the covariate xij. The random components u0j and u1j represent the deviation 
of the jth centre from a baseline hazard (baseline risk). Through this PHM framework the PHM 
based on the Weibull distribution is easily derived using the expressions obtained in section 
2.2.1.3.2 [39]. 

With a large number of observations for each centre, one could estimate each centre parameter. 
However, in practice, one has limited data and must borrow strength across centres to make 
inferences about either u0j and u1j, so it is usually assumed that the random-effects are independent 
variables drawn from a family of distributions. This assumption implies that one can learn about 
one centre parameter by understanding the variability in parameters across the population. Thus, the 
model is completed by the distributional assumption about the random-effects and a variety of 
specifications for this distribution can be applied [39].  

Any continuous distribution with positive support, a unit mean, and finite variance can be used, like 
for instance, the Gamma distribution, the Inverse Normal or the Log-Normal distribution. The 
choice of the Gamma distribution is the standard for survival data due to mathematical tractability. 
This group of mixture models are called the Gamma frailty models. The frailty approach therefore 
produces a mixture model in that the conditional distribution can be described, for instance, by the 
Weibull distribution, while the mixture distribution is described by the Gamma distribution [38]. 

Frailty models can be considered as ‘shared’ or ‘unshared’ models. The distinction between the two 
types relies on the assumption of how the frailty is ‘distributed’ in the data. Shared or grouped 
frailty models assume that similar observations share the same frailty, even as that frailty may vary 
from centre-to-centre [38]. 
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2.2.2.4 Multilevel linear mixed models in a longitudinal data framework 

All the models described in section 2.2.1 are applied to cross-section data, where each individual is 
observed only once. With longitudinal data a time element is added to the data and there are 
repeated measurements for each individual observation, for instance, HRQoL data collected at 
several time points alongside RCTs. Longitudinal modelling allows one to look at dynamic 
relationships of individuals and also allows one to control for unobserved cross-section 
heterogeneity. Longitudinal data are closely related to multilevel/hierarchical data, being 
themselves hierarchically structured by individual [33, 34, 35]. 

Lets consider the standard linear regression model presented in eq. 1 and assume one has repeated 
measurements (t=1,....,T) for a sample of n individuals (i=1,....,n), 

,  for 0,...,it k kit i it
k

y x u k Kβ ε= + + =∑ . eq. 22 

Here the dependent variable y is observed for individual, i, in each of the points in time, t. Similarly, 
the explanatory variables x are observed at each point in time. Some of these variables will be time 
varying (for example, an individual’s utility at different points of time). Others may be fixed or time 
invariant (such as an individual’s gender or treatment group in a RCT). The error term of the 
regression equation has been split into two components. The first, ui is an individual-specific 
unobservable effect - the unobserved characteristics of the individual i that remains constant over 
time. The second term, εit, is a random error term representing idiosyncratic shocks that change 
across t as well as across i. It is assumed that ui and εit are uncorrelated with each other. The 
presence of a common individual effect means that the values of the dependent variable for each 
individual will tend to cluster together.  

One may be interested in modelling datasets where there is a multilevel structure and, therefore, to 
have several random effect levels [32]. Adopting the abovementioned longitudinal framework, 
including another level in the hierarchical structure, the individual becomes now level-2 in, for 
instance, a three-level linear model, whereas the individual was previously considered level one. 
Nevertheless, the existence of several levels in the data may bring some problems (i) due to non-
independence between the levels; and (ii) because one wants to investigate the different clusters in 
each level. Therefore, one is interested in generalizing the mixed effects models towards nested 
random-effects. 

In the case where one has three random effect levels, nested one within others, the linear mixed 
model, following the parametric format previously used, is: 

, , ,     

          for  1,..., ,  1,...,  and 1,...,
tij tij j it j ji t ji tij tij tij

j ij

y X Z u Z u Z u

j C i N t T

β ε= + + + +

= = =
. eq. 23 
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where, ytij is the dependent variable array for the tth cluster of the level-3, nested on the ith cluster of 
the level-2, nested on the jth cluster of the level-1; Xtij is the fixed effects covariate matrix ( )tijn k× ; 

β is the fixed effect array; Zj,it is the level-1 random-effects covariate matrix; uj is the level-1 
random-effects array (normally independent distributed – NID - with mean 0 and Σ1 variance-
covariance matrix); Zji,t is the level-2 random-effects covariate matrix; uji is the level-2 random-
effects array nested in level-1 jth random effect (NID with mean 0 and Σ2 variance-covariance 
matrix, for different j’s, i’s or t’s); Ztij is the level-3 random-effects covariate matrix; utij is the level-
3 random-effects array nested in level-1 jth random effect and nested in level-2 ith random effect 
(NID with mean 0 and Σ3 variance-covariance matrix, for different j’s, i’s or t’s); εtij is the random 
errors array (NID with mean 0 and σ2I variance-covariance matrix, for different j’s, i’s or t’s); C is 
the level-1 number of clusters; Nj is the level-2 number of clusters nested in the jth level-1 and Tij is 
the level-3 number of clusters nested in the jth level-1 cluster and nested in the ith level-2 cluster, 
with uj, uij, utij and εtij independent. 
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3 Motivating Example: The RITA 3 trial 
 

In this section, the use of multilevel regression models to analyse hierarchical datasets from 
multicentre trials is illustrated using a specific case study: the Intervention Trial of unstable Angina 
(RITA 3). Although this is a multicentre trial conducted in one country, the analytical principles to 
apply in multinational studies are the same. A DAM was developed and information from the RITA 
3 trial was previously analysed [23] to inform the DAM, although ignoring the hierarchical nature 
of the data. The analysis published in the original paper was replicated in the current work and 
adapted to consider the evident hierarchical structure of the trial data, and to obtain location-specific 
estimates that will populate the DAMs. All the assumptions surrounding the original regressions 
were maintained, particularly model specification and choice of covariates. Suggestions for 
improvement and further extensions to the present analysis are discussed in the following chapter. 

 

3.1 Background 

The third Randomized Intervention Trial of unstable Angina study aimed at supporting the existing 
evidence that suggested that an early interventional strategy (routine angiography followed by 
revascularization if clinically indicated) in the management of patients with non-ST-elevation acute 
coronary syndrome (NSTE-ACS) could improve health outcomes, but at increased costs, when 
compared with a conservative strategy (ischemia or symptom-driven angiography). The CE of the 
intervention in different risk groups was assessed to determine whether the gain in health outcomes 
justified the increase in costs. Full clinical and economic results have been published elsewhere [41, 
23]. 

Based on data from RITA 3 trial, the economic analysis investigated the heterogeneity in CE in 
patients with different risk profiles at randomization and the effectiveness of early intervention. The 
economic model provided a tool to extrapolate the trial results to a relevant lifetime time horizon.  

A series of regression models (referred to as equations) were estimated to determine the rates of 
cardiovascular death or non-fatal MI during the index hospitalisation and the remainder of the trial 
follow-up period. These estimates of effectiveness were then incorporated into the CE model which 
is based on a short-term decision tree (instantaneous in time) and a long-term Markov structure. The 
main purpose of the short-term tree was to distribute the analysed cohort over the starting states in 
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the long-term Markov structure and to estimate the short-term costs associated with each treatment 
strategy. The short and long-term models represent the index hospitalisation and the post-index 
hospitalisation, respectively. Costs and QALYs were determined for the index hospitalisation and 
for each state in the long-term Markov structure. The Markov structure is shown in Figure 2. The 
box [MI/CVD] in the figure indicates that a composite event has occurred during a cycle and does 
not represent a formal health state since patients are then assigned to either a fatal or non-fatal state 
based on a separate calculation. 

 

Analysis of effectiveness 

A logistic regression model was used to estimate the risk of the combined endpoint of 
cardiovascular death (CVD) or myocardial infarction (MI) during the index hospitalisation in the 
short-term decision tree. The index hospitalisation was defined as the time from randomization to 
hospital discharge (Equation 1 in Figure 2). To estimate the risk of the combined endpoint of CVD 
or MI during the remainder of the trial period, a time-to-event Weibull PHM was employed with the 
starting time set at hospital discharge. In extrapolating beyond the period of trial follow-up (5 years), 
a conservative assumption of no continued treatment effect from the early interventional strategy 
was made (Equation 2 in Figure 2).  

There were insufficient patients in RITA 3 trial to estimate the risk of a second composite endpoint 
of MI or CVD following a non-fatal MI. Instead, the risks of a first composite endpoint were used, 
multiplied by the coefficient for the additional proportionate risk for patients who had a non-fatal 
MI prior to their entry into the RITA 3 trial. A Weibull PHM of risk of a second composite endpoint 
of CVD or MI was employed (Equation 3 in Figure 2). The hazard of dying from non-
cardiovascular causes was estimated using general UK population age-and-sex specific life-tables, 
adjusted to exclude cardiovascular mortality (ICD10 codes I00 to I99) [42, 43]. These probabilities 
are shown in appendix (appendix - Table A1). 

A logistic regression model was employed to estimate the proportion of composite endpoints being 
non fatal. A dummy variable was used to investigate if this proportion was different between the 
index hospitalisation and the remainder of follow-up (Equation 4 in Figure 2). 

 

Costs 

Comprehensive resource use data were collected in patients in RITA 3 up to one-year follow-up. 
Two standard OLS regressions were used to determine mean costs for the alternative strategies 
during the index hospitalisation and for the remainder of the trial. Mean costs were estimated, 
differentiating between management strategies, for patients with and without a composite endpoint 
of CVD or MI. When extrapolating beyond one year, the analysis assumed no difference between 
the treatment strategies in the cost of patients not experiencing the composite event. 
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Figure 2. Model structure of the cost-effectiveness analysis of the RITA 3 trial (MI=myocardial infarction, 
CV=cardiovascular, CVD=cardiovascular death) [23]. 

 

Health-related quality of life 

HRQoL data were collected in patients in RITA 3 at randomization, 4 months, 1 year, and yearly 
thereafter, until the 5th year. To estimate QALYs for each treatment strategy, quality adjustment 
weights (utilities) were required. These were obtained from the trial sample using the EQ-5D 
instrument, and employing the preferences of the UK general population. A standard OLS 
regression was employed in order to estimate the mean HRQoL of patients with different risk 
profiles at randomization. A longitudinal data approach was then employed in order to estimate 
changes in HRQoL after randomization, differentiating between the two management strategies and 
whether a composite endpoint of CVD or MI had occurred. For the long-term extrapolation, no 
difference in HRQoL between the treatment strategies was assumed after the first year in patients 
not having experienced a composite endpoint. 

 

Covariates 

All statistical analyses included previously identified risk factors for cardiac events measured at 
randomization and randomized treatment. These risk factors were included as covariates in the 
statistical models and are shown in Table 1. 
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Covariate Obs Mean (std.dev.) or 
proportion Min Max

Age (cathegorical indicator for every 10 
years over 60 years of age )

1810 0.887 (0.849) 0 4

Diabetes (indicator of diabetes at study 

inclusion) 1810 0.135 (0.342) 0 1

Previous MI (indicator of previous MI 

at study inclusion) 1810 0.277 (0.447) 0 1

Smoker (indicator of smoker at study 

inclusion) 1810 0.324 (0.468) 0 1

Pulse (discrete indicator for every 5 

beats per minute) 1809 7.451 (2.778) 2 20

ST depression (indicator of ST 

depression at study inclusion) 1810 0.365 (0.481) 0 1

Angina (indicator of angina grade 3 or 4 

at study inclusion) 1809 0.359 (0.480) 0 1

Male (indicator of male) 1810 0.623 (0.485) 0 1
Left BBB (indicator of left bundle 

branch block at study inclusion) 1810 0.035 (0.185) 0 1

Treat (indicator of randomized to early 

interventional strategy) 1810 0.494 (0.500) 0 1

Risk score (risk of CVD or MI) 1807 0.194 (0.127) 0.034 0.860  
Table 1. Baseline covariates included in the statistical models. 

 

3.2 Multilevel analysis 

As mentioned in section 2.2.2, multilevel or hierarchical models are the appropriate approach to 
obtain unbiased estimates of aggregate measures. Therefore, to determine the rates of CVD or non-
fatal MI during the index hospitalisation and the remainder of the trial follow-up period, a series of 
hierarchical regressions, accounting for within and between centres variability were estimated. 
These estimates of effectiveness provided sets of location-specific transitions probabilities which 
can be incorporated into location-specific CE models, which will help decision making about 
allocation of resources at the local level. 

In the original study the CE of the intervention was assessed in different risk groups (5 risk groups) 
to determine whether the gain in health outcomes justified the increase in costs. However, due to the 
main objectives of this work and also due to practicality issues, the focus here was made on the first 
baseline risk group (risk group 1) and also only evidence obtained from the RITA 3 trial was used. 

Table 2 presents summary data of the covariates included in the regression models by centre. In 
total, 1810 patients were included in the study distributed across 46 centres (hospitals). The 
distribution of patients across centres is unbalanced, with a minimum of 1 patient observed in centre 
18 and a maximum of 153 in centre 11. The average number of patients per centre is approximately 
39. For each covariate the mean value and the standard deviation (std. dev.) are presented. A simple 
inspection of the summary data by location reveals a great deal of variability in covariates, both 
within and across the centres. 
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Centre
Obs 
(nj)

Age        
mean (std.dev.)

Diabetes    
mean (std.dev.)

Previous 
MI         

mean (std.dev.)

Smoker     
mean (std.dev.)

Pulse       
mean (std.dev.)

ST 
depression  
mean (std.dev.)

Angina     
mean (std.dev.)

Male       
mean (std.dev.)

Left BBB   
mean (std.dev.)

Treat       
mean (std.dev.)

Risk score   
mean (std.dev.)

1 39 0.74  (0.81) 0.12  (0.33) 0.15  (0.36) 0.43  (0.50) 7.51  (3.21) 0.41  (0.49) 0.48  (0.50) 0.64  (0.48) 0.00  (-) 0.51  (0.50) 0.18  (0.10)
2 17 0.94  (0.89) 0.11  (0.33) 0.17  (0.39) 0.35  (0.49) 7.00  (1.83) 0.41  (0.50) 0.35  (0.49) 0.82  (0.39) 0.00  (-) 0.47  (0.51) 0.19  (0.11)
3 101 0.80  (0.82) 0.16  (0.37) 0.31  (0.46) 0.32  (0.47) 8.26  (2.66) 0.61  (0.48) 0.45  (0.50) 0.60  (0.49) 0.06  (0.25) 0.50  (0.50) 0.21  (0.12)
4 21 0.76  (0.88) 0.19  (0.40) 0.33  (0.48) 0.47  (0.51) 8.61  (2.57) 0.33  (0.48) 0.42  (0.50) 0.52  (0.51) 0.04  (0.21) 0.47  (0.51) 0.18  (0.11)
5 32 1.34  (0.86) 0.12  (0.33) 0.25  (0.44) 0.18  (0.39) 7.21  (2.53) 0.53  (0.50) 0.31  (0.47) 0.71  (0.45) 0.06  (0.24) 0.50  (0.50) 0.26  (0.16)
6 33 0.63  (0.78) 0.00  (0.00) 0.21  (0.41) 0.48  (0.50) 6.48  (2.69) 0.12  (0.33) 0.54  (0.50) 0.84  (0.36) 0.00  (-) 0.45  (0.50) 0.15  (0.08)
7 84 1.29  (0.84) 0.09  (0.29) 0.16  (0.37) 0.16  (0.37) 8.39  (3.45) 0.44  (0.49) 0.31  (0.46) 0.58  (0.49) 0.04  (0.21) 0.50  (0.50) 0.23  (0.14)
8 42 0.88  (0.80) 0.19  (0.39) 0.33  (0.47) 0.21  (0.41) 6.47  (3.03) 0.28  (0.45) 0.42  (0.50) 0.59  (0.49) 0.04  (0.21) 0.45  (0.50) 0.18  (0.12)
9 21 0.90  (0.88) 0.04  (0.21) 0.28  (0.46) 0.47  (0.51) 9.47  (3.23) 0.28  (0.46) 0.42  (0.50) 0.47  (0.51) 0.09  (0.30) 0.52  (0.51) 0.24  (0.16)

10 6 0.33  (0.51) 0.16  (0.40) 0.66  (0.51) 0.66  (0.51) 6.83  (3.18) 0.50  (0.54) 0.33  (0.51) 0.33  (0.51) 0.00  (-) 0.50  (0.54) 0.17  (0.09)
11 153 0.84  (0.83) 0.11  (0.32) 0.23  (0.42) 0.44  (0.49) 7.32  (2.46) 0.29  (0.45) 0.26  (0.44) 0.63  (0.48) 0.01  (0.11) 0.50  (0.50) 0.17  (0.10)
12 38 0.60  (0.67) 0.26  (0.44) 0.42  (0.50) 0.44  (0.50) 7.44  (2.36) 0.13  (0.34) 0.50  (0.50) 0.65  (0.48) 0.02  (0.16) 0.47  (0.50) 0.19  (0.10)
13 14 0.71  (0.72) 0.21  (0.42) 0.28  (0.46) 0.50  (0.51) 6.42  (2.10) 0.42  (0.51) 0.71  (0.46) 0.42  (0.51) 0.00  (-) 0.42  (0.51) 0.18  (0.09)
14 65 0.96  (0.86) 0.12  (0.33) 0.26  (0.44) 0.26  (0.44) 8.26  (3.26) 0.44  (0.50) 0.16  (0.37) 0.60  (0.49) 0.03  (0.17) 0.49  (0.50) 0.20  (0.13)
15 33 0.72  (0.76) 0.15  (0.36) 0.18  (0.39) 0.45  (0.50) 6.75  (2.65) 0.06  (0.24) 0.39  (0.49) 0.57  (0.50) 0.00  (-) 0.51  (0.50) 0.16  (0.11)
16 53 0.75  (0.83) 0.11  (0.32) 0.15  (0.36) 0.47  (0.50) 7.01  (2.52) 0.28  (0.45) 0.30  (0.46) 0.69  (0.46) 0.00  (-) 0.50  (0.50) 0.15  (0.09)
17 72 0.83  (0.75) 0.18  (0.38) 0.40  (0.49) 0.30  (0.46) 7.15  (2.60) 0.77  (0.41) 0.58  (0.49) 0.66  (0.47) 0.05  (0.23) 0.50  (0.50) 0.23  (0.15)
18 1 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 10.0  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.08  (-)
19 45 0.66  (0.73) 0.08  (0.28) 0.31  (0.46) 0.35  (0.48) 6.57  (2.12) 0.06  (0.25) 0.42  (0.49) 0.68  (0.46) 0.02  (0.14) 0.48  (0.50) 0.15  (0.11)
20 78 0.78  (0.84) 0.07  (0.26) 0.19  (0.39) 0.30  (0.46) 7.78  (3.32) 0.51  (0.50) 0.21  (0.41) 0.60  (0.49) 0.01  (0.11) 0.50  (0.50) 0.17  (0.13)
21 77 0.80  (0.76) 0.23  (0.42) 0.35  (0.48) 0.41  (0.49) 7.53  (2.70) 0.37  (0.48) 0.19  (0.39) 0.66  (0.47) 0.02  (0.16) 0.49  (0.50) 0.19  (0.12)
22 23 1.00  (0.73) 0.21  (0.42) 0.30  (0.47) 0.17  (0.38) 8.65  (2.79) 0.34  (0.48) 0.21  (0.42) 0.52  (0.51) 0.08  (0.28) 0.52  (0.51) 0.20  (0.17)
23 65 1.32  (1.01) 0.13  (0.34) 0.30  (0.46) 0.23  (0.42) 6.80  (2.12) 0.23  (0.42) 0.26  (0.44) 0.66  (0.47) 0.01  (0.12) 0.49  (0.50) 0.21  (0.15)
24 21 0.95  (0.92) 0.04  (0.21) 0.38  (0.49) 0.19  (0.40) 6.61  (2.50) 0.33  (0.48) 0.38  (0.49) 0.52  (0.51) 0.09  (0.30) 0.47  (0.51) 0.19  (0.12)
25 10 0.30  (0.48) 0.00  (0.00) 0.20  (0.42) 0.40  (0.51) 8.30  (2.75) 0.20  (0.42) 0.60  (0.51) 0.40  (0.51) 0.10  (0.31) 0.70  (0.48) 0.11  (0.04)
26 31 0.83  (0.86) 0.25  (0.44) 0.29  (0.46) 0.29  (0.46) 8.09  (3.20) 0.32  (0.47) 0.38  (0.49) 0.64  (0.48) 0.06  (0.25) 0.45  (0.50) 0.19  (0.15)
27 10 1.10  (0.87) 0.20  (0.42) 0.30  (0.48) 0.30  (0.48) 7.80  (1.54) 0.50  (0.52) 0.10  (0.31) 0.60  (0.51) 0.00  (-) 0.50  (0.52) 0.20  (0.13)
28 27 0.85  (0.86) 0.07  (0.26) 0.33  (0.48) 0.18  (0.39) 7.07  (2.26) 0.37  (0.49) 0.59  (0.50) 0.74  (0.44) 0.00  (-) 0.51  (0.50) 0.19  (0.13)
29 17 1.00  (0.93) 0.11  (0.33) 0.23  (0.43) 0.29  (0.47) 7.58  (3.37) 0.52  (0.51) 0.11  (0.33) 0.52  (0.51) 0.00  (-) 0.47  (0.51) 0.19  (0.13)
30 64 0.68  (0.61) 0.17  (0.38) 0.35  (0.48) 0.42  (0.49) 6.96  (2.46) 0.54  (0.50) 0.34  (0.48) 0.57  (0.49) 0.04  (0.21) 0.50  (0.50) 0.18  (0.10)
31 12 0.91  (0.90) 0.08  (0.28) 0.41  (0.51) 0.25  (0.45) 6.08  (1.78) 0.33  (0.49) 0.50  (0.52) 0.50  (0.52) 0.00  (-) 0.50  (0.52) 0.19  (0.19)
32 55 1.38  (1.11) 0.07  (0.26) 0.18  (0.38) 0.16  (0.37) 6.92  (2.23) 0.23  (0.42) 0.49  (0.50) 0.50  (0.50) 0.03  (0.18) 0.49  (0.50) 0.21  (0.14)
33 29 0.93  (0.88) 0.06  (0.25) 0.31  (0.47) 0.31  (0.47) 7.62  (2.93) 0.55  (0.50) 0.24  (0.43) 0.62  (0.49) 0.00  (-) 0.48  (0.50) 0.19  (0.10)
34 10 0.40  (0.69) 0.10  (0.31) 0.50  (0.52) 0.30  (0.48) 9.30  (3.49) 0.20  (0.42) 0.40  (0.51) 0.60  (0.51) 0.00  (-) 0.50  (0.52) 0.15  (0.05)
35 13 1.30  (1.03) 0.07  (0.27) 0.15  (0.37) 0.38  (0.50) 5.76  (1.53) 0.23  (0.43) 0.53  (0.51) 0.76  (0.43) 0.00  (-) 0.46  (0.51) 0.21  (0.12)
36 19 1.00  (0.74) 0.21  (0.41) 0.26  (0.45) 0.36  (0.49) 7.42  (3.35) 0.68  (0.47) 0.42  (0.50) 0.42  (0.50) 0.21  (0.41) 0.52  (0.51) 0.23  (0.16)
37 94 0.96  (0.79) 0.19  (0.39) 0.28  (0.45) 0.25  (0.43) 7.55  (2.76) 0.37  (0.48) 0.23  (0.42) 0.56  (0.49) 0.02  (0.14) 0.50  (0.50) 0.18  (0.11)
38 31 0.93  (0.81) 0.09  (0.30) 0.25  (0.44) 0.22  (0.42) 7.67  (2.91) 0.29  (0.46) 0.16  (0.37) 0.64  (0.48) 0.03  (0.18) 0.45  (0.50) 0.17  (0.09)
39 5 1.20  (0.83) 0.40  (0.54) 0.40  (0.54) 0.20  (0.44) 7.60  (2.60) 0.20  (0.44) 0.60  (0.54) 0.80  (0.44) 0.20  (0.44) 0.40  (0.54) 0.27  (0.20)
40 110 0.79  (0.75) 0.12  (0.33) 0.24  (0.43) 0.28  (0.45) 7.50  (2.81) 0.19  (0.39) 0.39  (0.49) 0.59  (0.49) 0.04  (0.20) 0.50  (0.50) 0.16  (0.10)
41 24 0.58  (0.83) 0.16  (0.38) 0.37  (0.49) 0.45  (0.50) 7.62  (2.14) 0.29  (0.46) 0.37  (0.49) 0.66  (0.48) 0.12  (0.33) 0.50  (0.51) 0.20  (0.15)
42 39 0.79  (0.83) 0.10  (0.30) 0.30  (0.46) 0.15  (0.36) 7.05  (2.62) 0.25  (0.44) 0.69  (0.46) 0.66  (0.47) 0.05  (0.22) 0.46  (0.50) 0.18  (0.09)
43 37 0.73  (0.76) 0.10  (0.31) 0.32  (0.47) 0.32  (0.47) 7.67  (3.07) 0.45  (0.50) 0.18  (0.39) 0.86  (0.34) 0.00  (-) 0.51  (0.50) 0.19  (0.13)
44 8 0.50  (1.06) 0.00  (0.00) 0.00  (0.00) 0.50  (0.53) 6.50  (2.13) 0.12  (0.35) 0.50  (0.53) 0.62  (0.51) 0.12  (0.35) 0.62  (0.51) 0.12  (0.08)
45 21 1.00  (1.04) 0.00  (0.00) 0.23  (0.43) 0.38  (0.49) 6.90  (2.36) 0.23  (0.43) 0.52  (0.51) 0.71  (0.46) 0.04  (0.21) 0.47  (0.51) 0.20  (0.16)
46 10 1.40  (1.07) 0.10  (0.31) 0.50  (0.52) 0.20  (0.42) 6.90  (3.03) 0.10  (0.31) 0.40  (0.51) 0.50  (0.52) 0.00  (-) 0.40  (0.51) 0.23  (0.20)  

Table 2. Covariates included in the statistical models by centre. 

 

3.2.1 Software 

To implement the proposed analysis, the non-hierarchical regression models were performed in the 
freely available software package R version 2.7.1 (Copyright © 2008 The R Foundation for 
Statistical Computing) and in the also freely available software package WinBugs/OpenBugs 
version 3.0.3 (Copyright © 2008 Medical Research Council (UK), Imperial College (UK) and RNI 
Helsinki (Finland)) and compared to the Stata results from the original study (Stata version 9.0 – 
Stata statistical software – StataCorp LP). The Bayesian hierarchical models were implemented 
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using WinBugs/OpenBugs and linked to the software R through two important R packages: 
R2WinBugs and CodaPkg. 

The decision-analytic model was programmed and analysed in R and compared to the original 
model performed in Microsoft® Excel (Microsoft Corporation, Redmond, Washington, USA). 

 

3.2.2 Results of effectiveness 

Equation 1 - Logistic regression model of risk of cardiovascular death or myocardial 
infarction during the index hospitalisation 

Equation 1.1 - logit model, probability of a composite event 

In the original model the composite endpoint was regressed against the treatment binary covariate, 
the age categorical variable and the severe angina (grade 3 or 4) indicator covariate. The selection 
of variables was based on a backward stepwise selection procedure, forcing treatment into the 
model. The variable selection process considered is taken as controversial; however the debate on 
its adequacy is, for the moment, beyond the objectives of this work (see discussion section). 

The logistic regression model applied was as followed: 

0log ,
1

                       for 1,...,1809.

i
treat age angina i

i

p treat age angina
p

i

β β β β ε
⎛ ⎞

= + + + +⎜ ⎟−⎝ ⎠
=

 eq. 24 

The results of the non-hierarchical models (implemented in Stata, R and WinBugs) are described in 
columns 2 to 11 of Table 3. For the first two software’s, the coefficient estimates, the standard 
errors estimates and the p-values are shown. For WinBugs, the mean estimates, standard deviation 
and 95% credibility intervals are shown. The hierarchical model was implemented in WinBugs 
using Bayesian Markov chain Monte Carlo (MCMC) methods with one chain and through a 
simulation process with 5,000 iterations and a 2,000 iteration burn-in period. A summary of the 
WinBugs outputs can be found in the appendix (appendix – Figures A1 and A2). The same 
framework was used in subsequent models. 

The results are similar and consistent across software’s, showing that increasing age and severe 
angina (grade 3 or 4) are associated with an increased risk of a composite endpoint during the index 
hospitalisation. Although not statistically significant, the early interventional strategy is associated 
with an increased risk of a composite endpoint during the index hospitalisation (odds ratio of 1.520, 
p-value = 0.148). 
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To account for both within and between-centre variability, a hierarchical logit model was built 
incorporating a random intercept and a random slope for the treatment. This setup allows for both 
the intercept and the slope of the regression on treatment to vary randomly across centres: 

0log ,  
1

                        for 1,...,1809 and  1,...,46

ij
ij ij age angina ij

ij

p
treat age angina

p

i j

β β β β ε
⎛ ⎞

= + + + +⎜ ⎟⎜ ⎟−⎝ ⎠
= =

 eq. 25 

with the centre-level components, intercepts and slopes, decomposed as follows: 

 0 0 0ij juβ β= +  and 1 1ij juβ β= + . 

Logistic regression

CCIndex

Covariate coef.* std. err. Pr(>|z|) coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.

Fixed Effects
         Treat 0.417 0.288 0.148 0.417 0.288 0.148 0.425 0.294 -0.143 1.008 0.386 0.308 -0.223 0.980

         Age 0.549 0.161 0.001 0.549 0.161 0.001 0.554 0.162 0.243 0.874 0.576 0.165 0.260 0.913

         Angina 0.636 0.284 0.025 0.636 0.284 0.025 0.635 0.287 0.068 1.195 0.627 0.286 0.064 1.202

         Constant -4.622 0.334 0.000 -4.622 0.334 0.000 -4.671 0.338 -5.355 -4.039 -4.841 0.392 -5.680 -4.159
Random Effects
         σTreat - - - - - - - - - - 0.198 0.244 0.012 0.866

         σCnst - - - - - - - - - - 0.432 0.370 0.011 1.176

         ρTreat_Cnst - - - - - - - - - -

*Values in log odds ratios

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

Stata - NHM

0.00142

R - NHM

 

Table 3. Log-odds ratio of composite endpoint of CVD or MI during index hospitalisation (NHM – non-hierarchical 
model; HM – hierarchical model).  

 

Data on the Bayesian hierarchical model can be found in columns 12 to 15 in Table 3. Information 
on between-centre variability, σCnst, the treatment random-effect component, σTreat, and the 
correlation between the random components, ρTreat_Cnst, are presented in the three bottom rows. The 
same framework was used in subsequent models. 

Compared to the non-hierarchical models, the fixed-effects estimates from the hierarchical model 
are similar in terms of magnitude, sign and significance of estimates. It can be identified a decrease 
on the intercept and treatment estimates (fixed effects), a reflection of the decomposition of the 
effects in both fixed and random components. The empirical correlation estimate between the 
random components is considered weak. 
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The centre-specific random-effects components are shown in Table 4. For simplicity, since there are 
46 centres in the trial, here is reported only the random-effects for treatment and intercept of 5 
specific centres. These are centres with sample sizes of 17, 153, 65, 94 and 110 respectively, and 
have been selected to explore the impact of sample size on the model results. It can be observed the 
differences in the random estimates within and across centres, reflecting the variability within and 
between-centres of the risk of a composite endpoint during the index hospitalisation. 

Logistic regression

CCIndex

Centre mean std. dev.
Random Effects
u1j - Treat -0.019 0.305 -0.682 0.555

u0j - Cnst -0.103 0.529 -1.365 0.901

u1j - Treat 0.092 0.292 -0.289 0.954

u0j - Cnst 0.057 0.361 -0.710 0.886

u1j - Treat -0.077 0.317 -0.928 0.391

u0j - Cnst -0.146 0.436 -1.267 0.643

u1j - Treat -0.030 0.261 -0.686 0.504

u0j - Cnst 0.122 0.390 -0.585 1.103

u1j - Treat -0.024 0.243 -0.641  0.463

u0j - Cnst 0.382 0.490 -0.196 1.517
**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

95% CrI

centre 11

centre 23

centre 2

centre 40

centre 37

 

Table 4. Centre specific random effects for 5 centres in the trial, results of Bayesian hierarchical logistic regression of 
composite endpoint of CVD or MI during index hospitalisation (HM – hierarchical model). 

 

Equation 1.2 - logit model, probability of a composite event by continuous risk defined risk scores 
from RITA 3 

In the original model the composite endpoint was regressed against the treatment binary covariate, 
the risk score and the interaction between risk at randomization and treatment effect term. 

The logistic regression model applied was as followed: 

0log ,
1

                       for 1,...,1807.

i
treat risk risk treat i

i

p treat risk risk treat
p

i

β β β β ε×

⎛ ⎞
= + + + × +⎜ ⎟−⎝ ⎠

=

 eq. 26 

Again, the results of the non-hierarchical statistical modelling (Table 5) are similar across 
software’s. The inclusion of an interaction between baseline risk and treatment effect shows that a 
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higher risk is associated with a decreasing odds ratio of a composite endpoint during the index 
hospitalisation. 

As before, a hierarchical model was built incorporating a random intercept and a random slope for 
the treatment effect: 

( ) ( )0 0 1 1log ,  
1

                        for 1,...,1807 and 1,...,46.

ij
j j risk risk treat ij

ij

p
u u treat risk risk treat

p

i j

β β β β ε×

⎛ ⎞
= + + + + + × +⎜ ⎟⎜ ⎟−⎝ ⎠

= =

 eq. 27 

Logistic regression

CCIndex

Covariate coef.* std. err. Pr(>|z|) coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Treat 0.567 0.539 0.293 0.567 0.539 0.293 0.581 0.545 -0.497 1.653 0.553 0.546 -0.516 1.657

         Risk score 3.638 1.245 0.003 3.638 1.245 0.003 3.565 1.248 0.917 5.895 3.674 1.258 1.235 6.193

         Treat x Risk score -0.424 1.740 0.807 -0.424 1.740 0.807 -0.410 1.752 -3.791 3.190 -0.400 1.751 -3.844 2.979

         Constant -4.593 0.408 0.000 -4.593 0.408 0.000 -4.624 0.410 -5.484 -3.847 -4.785 0.454 -5.778 -3.969
Random Effects
         σTreat - - - - - - - - - - 0.166 0.238 0.009 0.890

         σCnst - - - - - - - - - - 0.427 0.347 0.016 1.184

         ρTreat_Cnst - - - - - - - - - -

*Values in log odds ratios

**5,000 iterations and a 2,000 iteration burn-in period

R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

Stata - NHM

0.09986

 

Table 5. Log-odds ratio of composite endpoint of MI or CVD during the index hospitalisation including an interaction 
between risk at randomization and treatment effect (NHM – non-hierarchical model; HM – hierarchical model).  

 

As before, the Bayesian hierarchical model identifies a decrease on the intercept and treatment 
estimates (fixed effects). The correlation estimated between the random intercept and random slope 
components is higher compared to the one from Equation 1.1. The centre-specific random-effects 
components estimates for the 5 centres under analysis can be found in the appendix section 
(appendix – Table A2). 

 

Equation 2 - Weibull proportional hazards model of risk of cardiovascular death or 
myocardial infarction during the remainder of trial 

Equation 2.1 - Weibull model, composite endpoint index admission to end of follow-up 

In the original model the Weibull PHM model applied was as follows: 
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( ) 0log

                   

                  ,  for 1,...,1756.

i age diab prevMI smok

pulse STdep angi male leftB

treat i

HR age diab prevMI smok

pulse STdep angi male leftB

treat i

β β β β β

β β β β β

β ε

= + + + + +

+ + + + +

+ =

 eq. 28 

The model was obtained through a backward stepwise covariate selection procedure. The fact that 
the shape parameter, γ, in the Weibull statistical model is less than 1 (approximately 0.58) indicates 
that the rate of the composite endpoint of CVD or MI declines as time elapses from hospital 
discharge. The results of the non-hierarchical and hierarchical Weibull models are shown in Table 6. 

A proportional hazards Weibull hierarchical model was built incorporating a random intercept and a 
random slope for the treatment: 

( ) ( ) ( )0 0 1 1log

                    

                   ,  for 1,...,1756 and 1,...,

ij j j age diab prevMI

smoke pulse STdep angi male

leftB ij

HR u u treat age diab prevMI

smoke pulse STdep angi male

leftB i j

β β β β β

β β β β β

β ε

= + + + + + + +

+ + + + +

+ = = 46.

 eq. 29 

The non-hierarchical models show that all risk factors, except presence of severe angina, were 
significant at the 5% level. However, this risk factor was very close to significance and was kept in 
the parametric model. The early interventional strategy was associated with a statistically 
significant lower rate of CVD or MI after the index hospitalisation (hazard ratio of approximately 
0.620, p-value ≈ 0.001). 

The results of the Bayesian hierarchical model were similar to the non-hierarchical one. Compared 
to the NHMs, the fixed-effects estimates obtained were equivalent or vaguely smaller. In addition to 
severe angina risk factor, gender was found to be non-significant but very close to the assumed 
significance level. The random-effect standard deviation of the treatment effect is large in 
magnitude, balanced by a lower treatment fixed-effect. A negative but small correlation between the 
random components was found. 
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Parametric proportional hazards model - Weibull regression

Covariate coef.* std. err. Pr(>|z|) coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Age 0.575 0.087 0.000 0.575 0.087 0.000 0.567 0.087 0.397 0.731 0.563 0.088 0.390 0.736

         Diabetes 0.645 0.173 0.000 0.645 0.173 0.000 0.634 0.181 0.271 1.004 0.634 0.174 0.284 0.954

         Previous MI 0.386 0.154 0.012 0.386 0.154 0.012 0.382 0.159 0.074 0.682 0.387 0.149 0.095 0.679

         Smoker 0.501 0.160 0.002 0.501 0.160 0.002 0.496 0.170 0.157 0.834 0.481 0.161 0.140 0.779

         Pulse 0.060 0.024 0.014 0.060 0.024 0.014 0.060 0.025 0.005 0.109 0.052 0.022 0.011 0.096

         St depression 0.357 0.149 0.016 0.357 0.149 0.016 0.361 0.144 0.086 0.650 0.357 0.146 0.059 0.630

         Angina 0.280 0.149 0.060 0.280 0.149 0.060 0.279 0.158 -0.030 0.583 0.268 0.145 -0.017 0.562

         Male 0.316 0.158 0.045 0.316 0.158 0.045 0.329 0.148 0.038 0.624 0.292 0.161 -0.004 0.634

         Left BBB 0.682 0.268 0.011 0.682 0.268 0.011 0.649 0.272 0.089 1.174 0.678 0.267 0.121 1.176

         Treat -0.477 0.148 0.001 -0.477 0.148 0.001 -0.477 0.154 -0.770 -0.159 -0.527 0.175 -0.899 -0.228

         Constant -4.790 0.302 0.000 -4.790 0.302 0.000 -4.837 0.308 -5.440 -4.230 -4.699 0.333 -5.334 -4.100

         Shape parameter (γ) 0.579 0.040 - 0.579 0.070 - 0.597 0.038 0.519 0.666 0.582 0.041 0.510 0.668
Random Effects
         σTreat - - - - - - - - - - 0.206 0.187 0.011 0.667

         σCnst - - - - - - - - - - 0.057 0.050 0.009 0.194

         ρTreat_Cnst - - - - - - - - - -

*Values in log hazard ratios

**5,000 iterations and a 2,000 iteration burn-in period

Stata - NHM R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

-0.0314

 

Table 6. Log-hazard ratio of composite endpoint of CVD or MI from hospital discharge until end of trial (NHM – non-
hierarchical model; HM – hierarchical model).  

 

Equation 2.2- Weibull model evaluating a composite event  

The non-hierarchical Weibull PHM model applied was as follows: 

( ) 0log ,  
                   for 1,...,1755.

i treat risk risk treat iHR treat risk risk treat
i

β β β β ε×= + + + × +

=
 eq. 30 

The results of the statistical models including an interaction between baseline risk and treatment 
effect are shown in Table 7. Although not statistically significant, the interaction model shows that 
the positive treatment effect is more pronounced in patients with higher baseline risk. The hazard 
ratio of a first composite endpoint in the remainder of the trial is close to 1 when the risk score is 
tending towards 0 and approximately 0.21 when the risk score tends towards 1. 

A Bayesian proportional hazards Weibull hierarchical model was built incorporating a random 
intercept and a random slope for the treatment: 
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( ) ( ) ( )0 0 1 1log ,  

                    for 1,...,1755 and 1,...,46.
ij j j risk risk treat ijHR u u treat risk risk treat

i j

β β β β ε×= + + + + + × +

= =
 eq. 31 

Parametric proportional hazards model - Weibull regression

Covariate coef.* std. err. Pr(>|z|) coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Treat -0.035 0.279 0.900 -0.035 0.279 0.900 -0.011 0.265 -0.519 0.472 0.025 0.282 -0.497 0.571

         Risk score 4.925 0.475 0.000 4.925 0.475 0.000 4.944 0.451 4.107 5.905 5.024 0.482 4.068 5.987

         Treat x Risk score -1.518 0.878 0.084 -1.518 0.878 0.084 -1.596 0.841 -3.257 0.113 -1.749 0.876 -3.511 -0.182

         Constant -3.986 0.183 0.000 -3.986 0.183 0.000 -4.018 0.178 -4.421 -3.717 -4.051 0.178 -4.412 -3.688

         Shape parameter 0.580 0.040 - 0.580 0.070 - 0.590 0.039 0.511 0.671 0.592 0.034 0.519 0.659

Random Effects

         σTreat - - - - - - - - - - 0.153 0.163 0.010 0.562

         σCnst - - - - - - - - - - 0.056 0.051 0.008 0.206

         ρTreat_Cnst - - - - - - - - - -

*Values in log hazard ratios

**5,000 iterations and a 2,000 iteration burn-in period

Stata - NHM R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

0.20103

 

Table 7. Log-hazard ratio of composite endpoint of CVD or MI from hospital discharge to end of trial including an 
interaction between risk at randomization and treatment effect (NHM – non-hierarchical model; HM – hierarchical model).  

 

The Bayesian hierarchical model shows that, despite non-significant, the treatment effect estimate 
now has a positive impact on composite endpoint from hospital discharge until end of trial. 
Although also not statistically significant in the non-hierarchical model, the interaction term 
estimate in the HM is considered statistically significant now at 5% significance level, showing a 
more prominent positive treatment effect in patients with higher baseline risk. A high correlation is 
found between the random components introduced. 

 

Equation 3 - Weibull proportional hazards model of risk of a second composite endpoint of 
cardiovascular death or myocardial infarction 

Equation 2.1 was used to estimate the risk of a second composite endpoint by updating the covariate 
for prior myocardial infarction (Table 6). The risk of a second composite endpoint of CVD or MI 
was estimated to be about 50% higher than the risk of a first composite endpoint. Using the results 
from the Weibull models estimated in equation 2.1, imposed a logical time dependency, as patients 
were getting further away from their MI in the model. As mentioned in the background section, this 
was achieved by employing tunnel states for the first 5 years after a non-fatal MI. The assumption 
that the hazard in year 5 and after was constant was employed, adjusted for age as patients get older 
in the model. 
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Equation 4 - Logistic regression model of the proportion of composite endpoints being 
non-fatal 

In the original model the composite endpoint being non-fatal was regressed against the index 
hospitalization binary covariate, the age categorical variable and the previous MI indicator covariate. 
The selection of variables was based on a backward stepwise selection procedure. 

Therefore, the logistic regression model applied was as follows: 

0log ,    
1

                       for 1,...,275.

i
index age prevMI i

i

p index age prevMI
p

i

β β β β ε
⎛ ⎞

= + + + +⎜ ⎟−⎝ ⎠
=

 eq. 32 

All the events reported in the RITA trial (comprising a total of 244 first events and 17 second 
events) were included in the logistic regression model estimating the probability of a composite 
endpoint being non-fatal. The results are similar and coherent across software’s, showing that this 
probability was higher during the index hospitalisation than during the follow-up period, reflecting 
the fact that patients are likely to receive treatment without delay if they experience an MI whilst in 
hospital (Table 8). 

To account for not only within but also between-centre variability, a hierarchical model in WinBugs 
was built incorporating a random intercept and a random slope for the treatment: 

( )0 0log ,  
1

                        for 1,...,275 and  1,...,46.
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i j

β β β β ε
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= =

 eq. 33 

Logistic regression

Non-fatal MI

Covariate coef.* std. err. Pr(>|z|) coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Index dummy 1.162 0.314 0.000 1.162 0.314 0.000 1.195 0.322 0.577 1.820 1.202 0.318 0.599 1.831

         Age -0.347 0.146 0.017 -0.347 0.146 0.017 -0.356 0.147 -0.644 -0.069 -0.366 0.151 -0.668 -0.077

         Previous MI -0.595 0.264 0.024 -0.595 0.264 0.024 -0.604 0.266 -1.124 -0.088 -0.614 0.269 -1.155 -0.091

         Constant 0.235 0.248 0.344 0.235 0.248 0.344 0.240 0.249 -0.252 0.725 0.255 0.255 -0.228 0.769
Random Effects
         σCnst - - - - - - - - - - 0.135 0.125 0.011 0.463

*Values in log odds ratios

**5,000 iterations and a 2,000 iteration burn-in period

Stata - NHM R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

 

Table 8. Log- odds ratio of a composite endpoint of CVD or MI being non-fatal (NHM – non-hierarchical model; HM – 
hierarchical model).  
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Compared to the non-hierarchical models, the results for the hierarchical model show similar results 
in terms of magnitude, sign and significance of estimates. An increase in the intercept fixed effect 
estimates is identified. The centre-specific random-effects components are shown in the appendix.  

 

3.2.3 Costs 

Cost regression 1 - Estimated costs during the index hospitalisation 

Despite the skewed behaviour of cost data and the non-negative value constraint, the original model 
for costs during the index hospitalisation was based on a multiple linear regression which did not 
take account of these characteristics. The dependent variable was regressed against a set of 
covariates, result from a backward stepwise covariate selection procedure.  

The linear regression model applied was as follows: 

0 _cos _ _

                        ,    for 1,...,1808.
i treat MIindex dead index

male age STdep i

t index treat MIindex dead index

male age STdep i

β β β β

β β β ε

= + + + +

+ + + =
 eq. 34 

For the non-hierarchical and hierarchical models built in WinBugs, a transformation of the 
dependent variable had to be made as the estimation procedure doesn’t accept large values.  

The non-hierarchical models demonstrate similar results, showing that during the index 
hospitalisation, the early interventional strategy was associated with a higher mean cost (mean of 
approximately £5,650, 95% CrI £5,145 - £6,159) compared with a conservative strategy (Table 9). 
This additional cost was seen as a result of a higher number of angiographies and revascularizations 
undertaken in the early interventional arm. After controlling for treatment allocation, a non-fatal MI 
or death was associated with additional costs of approximately £6,225 and £7,940, respectively, 
which included the costs for the administration of thrombolytic drugs, revascularisations and longer 
hospital stay in wards and intensive care. 
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Linear model

Costs index

Covariate coef. std. err. Pr(>|z|) coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         MI index 6221.2 972.1 0.000 6221.2 972.1 0.000 6228.6 993.8 4266.1 8230.1 6236.7 942.0 4332.4 8050.7

         Dead index 7947.4 1229.4 0.000 7947.4 1229.4 0.000 7921.5 1211.9 5577.1 10312.0 7874.8 1197.7 5539.0 10219.5

         Treat 5653.9 256.4 0.000 5653.9 256.4 0.000 5652.4 259.8 5144.5 6159.0 5881.3 376.1 5145.6 6631.8

         Male 1034.8 264.6 0.000 1034.8 264.6 0.000 1039.2 263.7 513.6 1557.4 1131.0 258.7 624.0 1638.4

         Age 878.3 152.6 0.000 878.3 152.6 0.000 876.4 152.0 577.3 1175.8 877.3 152.0 583.8 1176.3

         ST depression 1224.4 268.1 0.000 1224.4 268.1 0.000 1228.6 267.7 706.0 1764.5 1080.3 269.6 543.5 1605.2

         Constant 1778.5 295.3 0.000 1778.5 295.3 0.000 1773.8 291.2 1216.0 2355.4 1882.6 329.9 1235.0 2542.9

Random Effects

         σε - - - - - - - - - - 5215.7 89.0 5048.3 5395.7

         σTreat - - - - - - - - - - 1729.1 362.4 1073.5 2478.3

         σCnst - - - - - - - - - - 941.6 233.9 511.6 1448.1

         ρTreat_Cnst - - - - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

Stata - NHM R - NHM

-0.20164

 

Table 9. Estimated costs during the index hospitalisation (NHM – non-hierarchical model; HM – hierarchical model).  

 

A linear hierarchical model was built incorporating a random intercept and a random slope for the 
treatment: 

( ) ( )0 0 1 1

_

cos _

                         _

                         ,    for 1,...,1808 and 1,...,46.

ij j j MIindex

dead index male age

STdep ij

t index u u treat MIindex

dead index male age

STdep i j

β β β

β β β

β ε

= + + + + +

+ + +

+ = =

 eq. 35 

As in the NHMs, covariates such as age, sex, and ST depression were also associated with higher 
costs during the index hospitalisation. The correlation between the random components was found 
to be negative and relatively high. The centre-specific random-effects components are shown in the 
appendix section (appendix - Table A7). 

 

Cost regression 2 - Estimated costs during the follow-up period 

In the original model the cost dependent variable was regressed against a set of covariates, also as a 
result of a backward stepwise covariate selection procedure.  

The linear regression model applied was as follows: 
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0 1cos _ 1

                          ,  for 1,...,1808.
i treat MIyear male

angina prevMI i

t follow treat MIyear male

angina prevMI i

β β β β

β β ε

= + + + +

+ + =
 eq. 36 

The non-hierarchical models demonstrated similar results, showing that during the first year after 
the index hospitalisation, the early interventional strategy was associated with a lower mean cost 
(mean of approximately -£1,110, 95% CrI -£1,570 to -£660) compared with the conservative 
strategy (Table 10). This reflected the fact that more patients in the conservative strategy had further 
symptoms that necessitated revascularization during this period. The results also indicated that 
patients had a substantially higher mean cost, irrespective of treatment allocation, if they suffered a 
MI within the previous year (mean of approximately £5,450, 95% CrI £3,880 - £7,020) or prior to 
the trial (mean of approximately £720, 95% CrI £210 - £1,240). 

A linear hierarchical model was built incorporating a random intercept and a random slope for the 
treatment: 

( ) ( )0 0 1 1 1cos _ 1

                            ,    

                            for 1,...,1808 and 1,...,46.

ij j j MIyear

male angina prevMI ij

t follow u u treat MIyear

male angina prevMI

i j

β β β

β β β ε

= + + + + +

+ + +

= =

 eq. 37 

Compared to the non-hierarchical models, the results for the Bayesian hierarchical model show that 
fixed-effects estimates are very similar (Table 10). 

 

Linear model

Costs follow-up exc.MI/stroke

Covariate coef. std. err. Pr(>|z|) coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         MI year 1 5466.8 804.0 0.000 5467.1 804.0 0.000 5445.9 796.6 3882.9 7019.1 5444.4 804.8 3871.1 7000.5

         Treat -1106.1 232.6 0.000 -1106.1 232.6 0.000 -1112.0 231.5 -1570.3 -657.0 -1103.9 246.7 -1587.7 -614.0

         Male 586.2 242.2 0.016 586.2 242.2 0.016 580.7 240.7 102.8 1039.9 603.3 242.2 127.9 1074.4

         Angina 1033.8 246.9 0.000 1033.8 246.9 0.000 1040.1 247.9 545.9 1528.7 951.3 247.6 468.1 1439.8

         Previous MI 724.4 262.4 0.006 724.4 262.4 0.006 717.1 263.7 211.5 1238.4 694.1 263.6 169.9 1207.7

         Constant 2734.8 247.6 0.000 2734.9 247.6 0.000 2741.2 246.8 2256.0 3230.8 2786.4 269.9 2259.4 3313.9

Random Effects

         σε - - - - - - - - - - 4793.7 81.0 4636.9 4958.3

         σTreat - - - - - - - - - - 474.8 159.0 243.3 856.1

         σCnst - - - - - - - - - - 614.7 164.3 329.0 978.0

         ρTreat_Cnst - - - - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

Stata - NHM R - NHM WinBugs** - NHM

0.07732

WinBugs** - HM

95% CrI 95% CrI

 

Table 10. Estimated costs during the follow-up period (NHM – non-hierarchical model; HM – hierarchical model).  
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3.2.4 Health related quality of life 

For the following regressions on HRQoL a note should be made about the non-inclusion of the 
baseline utility covariate in the original models. One should account for the imbalances in baseline 
utility in the estimation of mean differential HRQoL. Failure to control for this imbalance can result 
in misleading CE estimates. Therefore, by not including this covariate in the regression model, the 
researcher will be faced with an omitted variable problem. However, as stated above, the idea was 
to replicate the original set of regressions hierarchically without performing judgements about its 
adequacy [48]. 

 

HRQoL regression 1 - Estimated baseline utilities 

A regression model of EQ-5D at baseline was built to give starting QoL estimate for the population 
under consideration, assuming the trial sample is representative of the target population.  

Baseline utility was regressed against a set of covariates: 

0_

                        ,  for 1,...,1800.
i diab prevMI STdep

angina male i

baseline u diab prevMI STdep

angina male i

β β β β

β β ε

= + + + +

+ + =
 eq. 38 

At randomization, mean HRQoL (in terms of 0 to 1 utilities) were higher for males whereas 
diabetes, previous MI, ST depression and angina were associated with lower HRQoL (Table 11). 
Similar results were obtained for the different software’s. 

Linear model

HRQoL baseline

Covariate coef. std. err. Pr(>|z|) coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         Diabetes -0.050 0.021 0.016 -0.050 0.021 0.016 -0.051 0.021 -0.091 -0.009 -0.036 0.019 -0.074 0.003

         Previous MI -0.045 0.016 0.006 -0.045 0.016 0.006 -0.045 0.016 -0.078 -0.014 -0.021 0.015 -0.050 0.009

         ST depression -0.066 0.015 0.000 -0.066 0.015 0.000 -0.067 0.015 -0.096 -0.038 -0.031 0.014 -0.058 -0.003

         Angina -0.074 0.015 0.000 -0.074 0.015 0.000 -0.073 0.015 -0.104 -0.043 -0.073 0.014 -0.100 -0.045

         Male 0.072 0.015 0.000 0.072 0.015 0.000 0.072 0.015 0.043 0.101 0.079 0.014 0.053 0.106

         Constant 0.693 0.015 0.000 0.693 0.015 0.000 0.693 0.015 0.665 0.722 0.662 0.024 0.615 0.710
Random Effects
         σε - - - - - - - - - - 0.271 0.005 0.262 0.280

         σCnst - - - - - - - - - - 0.128 0.017 0.099 0.164

         ρTreat_Cnst - - - - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

Stata - NHM R - NHM WinBugs** - NHM WinBugs** - HM

-0.03515

95% CrI 95% CrI

 

Table 11. Estimated baseline utilities (NHM – non-hierarchical model; HM – hierarchical model).  
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To account for not only within but also between-centre variability, a Bayesian hierarchical model 
was built incorporating a random intercept component: 

( )0 0_

                         ,  

                         for 1,...,1800 and 1,...,46.

ij j diab prevMI

STdep angina male ij

baseline u u diab prevMI

STdep angina male

i j

β β β

β β β ε

= + + + +

+ + +

= =

 eq. 39 

Except for diabetes and presence of previous MI, the results for the hierarchical model show now 
slightly higher mean estimates and also lost statistical significance (Table 11).  

 

HRQoL regression 2 - Estimated gain in health-related quality of life 

The original model was fitted using generalized least squares random-effects estimators, where 
binary covariates were included to represent whether the utility measure was taken at month 4 (D4) 
or subsequently (D12) and an interaction term for treatment group. Changes in utility at one year 
were maintained until the end of the follow up period, for patients who do not experience a MI. 
Binary covariates were also included to indicate whether a MI had occurred recently (that is, within 
1 year prior to the time of the follow up interview) (current MI) and a covariate indicating whether a 
MI had occurred at all prior to the time of the follow-up interview, either before or during the trial 
(prior MI). The model implemented was: 

{ }

0 4 12 124 12 12
                     ,  

                     for 1,...,1734 and 4,12,24,48,60 .

it it D treat D D treat

priorMI currentMI it

HRQoL D treat D D treat
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i t

β β β β
β β ε

× ×∆ = + × + + × +

+ +

= ∈

 eq. 40 

The number of patients with EQ-5D data in the follow-up period was 1,734 and the number of 
observations was 6,203 indicating that each patient on average had their HRQoL measured 3.5 
times. Table 12 shows the results for the multilevel model considering the individual as a cluster, 
named non-centre hierarchical model (NCHM), and also, in columns 12 to 15, the hierarchical 
model with time clustered in patients and patients nested in health care centres (centre hierarchical 
model (CHM)). Table 12 supplies the within-patient standard error and the between-patient 
standard error. 
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Longitudinal data

Change HRQoL

Covariate coef. std. err. Pr(>|z|) coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         D4  x Treat 0.039 0.017 0.020 0.039 0.017 0.020 0.043 0.016 0.012 0.074 1.307 0.017 1.274 1.341

         D12 0.038 0.008 0.000 0.038 0.008 0.000 0.015 0.008 -0.001 0.032 0.015 0.009 -0.001 0.035

         D12  x Treat 0.018 0.015 0.235 0.018 0.016 0.238 0.024 0.015 -0.005 0.053 1.287 0.010 1.266 1.306

         Prior MI -0.010 0.016 0.510 -0.010 0.016 0.521 -0.018 0.016 -0.049 0.013 -0.020 0.012 -0.044 0.002

         Current MI -0.035 0.022 0.110 -0.035 0.022 0.109 -0.029 0.022 -0.074 0.014 -0.031 0.023 -0.081 0.009

         Constant 0.044 0.013 0.000 0.044 0.013 0.001 0.040 0.012 0.015 0.063 0.028 0.022 -0.010 0.075
Random Effects
         σε 0.033 - - 0.033 - - 0.174 0.002 0.169 0.179 0.174 0.002 0.169 1.78

         σCnst_patient 0.087 - - 0.089 - - 0.003 0.000 0.003 0.004 0.003 0.000 0.003 0.004

         σTreat_centre - - - - - - - - - - 1.281 0.137 1.042 1.577

         σCnst_centre - - - - - - - - - - 0.117 0.020 0.085 0.161

         ρTreat_Cnst_centre - - - - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - NCHM WinBugs** - CHM

95% CrI 95% CrI

Stata - NCHM R - NCHM

0.03867

 

Table 12. Estimated gain in HRQoL (NCHM – non-centre hierarchical model; CHM – centre hierarchical model).  

 

The Stata and R model results are similar, however, the estimates differ in magnitude and 
significance from the NCHM obtained in WinBugs due to chain convergence problems. Despite the 
efforts to improve convergence, by increasing the burn-in period or by changing the thinning rate, 
auto-correlation was still evident. Therefore, an improvement in the original model’s covariate 
structure is recommended. 

However, the results for the NCHM reveal that in both treatment strategies HRQoL was improved 
at 4 months although an incremental gain of the early interventional strategy compared with the 
conservative strategy was observed. Between 4 and 12 months, HRQoL was improved further in 
both treatment strategies, although the incremental gain of the early interventional strategy is non-
significant, at the common levels of significance. A recent MI was associated with a decrement in 
HRQoL regardless of treatment allocation and a previous MI prior to study inclusion was associated 
with a smaller HRQoL decrement, but, nevertheless, also both non-significant at the usual 
significance levels. 

The Bayesian hierarchical model built was as follows: 

( )0 0 0 1 4

12 12

4

                      12 12

                      ,

                       for 1,...,1734

ijt i j j D treat

D D treat priorMI

currentMI ijt
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β γ β

β β β

β ε

×

×

∆ = + + + + × +

+ × + +

+

= { }, 1,...,46 and 4,12,24,48,60 .j t= ∈

 eq. 41 
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The Bayesian hierarchical model considering the centre variability shows more problems of chain 
convergency. The results differ substantially compared to the other models, especially for the 
interaction D4treat with treatment covariate and the interaction with treatment group variable for 
utility measured at and after 12 months, D12treat. These changes may be due to the referred 
omitted variable and the chain convergency problems. Therefore, any interpretation of this model 
estimates should be performed with caution.  

These statements are supported by the estimate for the standard error of the centre-level treatment 
random-effect, σTreat_centre (mean of approximately 1.280, 95% CrI 1.042 – 1.577). The considerably 
high value of the estimate reflects the presence of unexplained variability that is being captured here. 
The centre-specific intercept random-effects components are shown in the appendix. 

 

3.2.5 Cost-effectiveness 

The expected (mean) costs and health outcomes of both strategies were combined into an 
incremental cost-effectiveness ratio, which is interpreted as the additional cost of generating an 
additional unit of health outcome (QALY). Many health care systems compare the ICER with a 
threshold value (λ) to establish whether the strategy should, in principle, be recommended for 
implementation. NICE in the UK uses a threshold of around £20,000 per QALY gained. Cost-
effectiveness was estimated over patients’ lifetimes using a UK health service perspective. 

 

Trial-wide cost-effectiveness results 

Considering only the baseline characteristics of risk group 1, the mean incremental cost per QALY 
was approximately £41,000 (base-case analysis results). Figure 3 illustrates the obtained joint CE 
density plotted on the cost-effectiveness plane. It can be observed that the majority of the simulation 
results are located in the NE quadrant of the CEP, denoting that the intervention strategy is more 
effective than the comparator, but also more costly. 

Although the CEP does not allow an easy quantitative interpretation, if a threshold of £20,000 to 
£30,000 (offered by the NICE guidelines [5]) were to be considered, one would conclude that the 
new technology would not be regarded as cost-effective. 
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Figure 3. Cost-effectiveness plane of the RITA 3 model risk group 1 with trial wide results. 

 

Considerations of the uncertainty surrounding a decision to reject the new technology can be based 
on the CEAC. Figure 4 depicts the CEAC for the current case study. It shows the typical “ogive” 
shape, characteristic of that observed when the joint density of mean differential costs and mean 
differential effects is contained mainly in the NE quadrant [20]. Interpretation is straightforward 
since the probability that the intervention strategy is cost-effective (p) and the associated error 
probability (1-p) can be read off the y-axis for any particular threshold. For common threshold 
values within the range of £20,000 to £30,000, the probability of the intervention being cost-
effective is 0.09 to 0.31. 

 

 

Figure 4. Cost-effectiveness acceptability curve of the RITA 3 model risk group 1 with trial wide results. 
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Location-specific cost-effectiveness results 

Figure 5 illustrates the joint CE density plotted on the CEP for 5 of the centres (hospitals) in the 
RITA 3 trial, namely centres 2, 11, 23, 37 and 40. In the figure, the presence of the trial wide results 
is for comparison reasons. It can be observed that in all centre-specific CEP plots the majority of the 
simulation results are located in the NE quadrant, indicating the same conclusion of the trial wide 
results: more effective intervention strategy than the comparator, but at higher costs. 

The centre-specific CEPs show higher variability in mean differential cost estimates compared to 
the trial wide results. For instance, centre 2 CEP depicts a range in mean differential costs from 
approximately £0 to £8,000, with an estimated average of approximately £4,950. The inclusion of 
only 17 patients in this centre may be an explanation for the evident large uncertainty attached to 
the cost estimates. In centre 37 (94 patients), the mean differential cost estimates are on average 
higher than the trial wide and also higher than other centre estimates (average of approximately 
£7,750, 95% CrI £6,040 - £9,465). See Table 13 for details on mean differential costs, mean 
differential QALYs and ICERs at the trial wide and at the centre level. 

The centre-specific CEP plots also show high variability of mean differential QALY estimates, with 
longer left tail estimate distribution compared to the trial wide results. For all centre-specific CEPs 
one can observe that the majority of the simulated results are concentrated in the range of 0 and 0.2 
values of the incremental QALY estimates.  

 
Figure 5. Cost-effectiveness planes of the RITA 3 model with trial wide results and centre-specific results for centres 2, 

11, 23 37 and 40, respectively. 
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Δ Costs (£) Δ QALYs

(95% CrI) (95% CrI)
6,418 0.155

(5,426 ; 6,753) (-0.058 ; 0.268)
4,949 0.120

(2,286 ; 7,612) (-0.129 ; 0.368)
3,551 0.090

(2,002 ; 5,100) (-0.214 ; 0.394)
5,879 0.132

(3,985 ; 7,773) (-0.092 ; 0.356)
7,752 0.111

(6,039 ; 9465) (-0.158 ; 0.381)
5,951 0.086

(4,370 ; 7,532) (-0.272 ; 0.444)
centre 40

Trial wide

41,239

39,458

44,539

69,830

69,168

ICER 
(£/QALY)

41,406

centre 2

centre 11

centre 23

centre 37

 

Table 13. Trial wide and centre-specific estimated differential costs and QALYs (95% credibility intervals) and ICERs 
estimates (centres 2, 11, 23, 37 and 40, respectively). 

 
 

Similar features are revealed in terms of the cost-effectiveness acceptability curves for these 5 
centres (Figure 6). Once again, the curves display great variability across centres (hospitals) in cost-
effectiveness for given  values of the threshold, λ. This variability appears greatest at the values of λ 
ranging from £20,000 to £60,000, although caution is required here as this observation is based on 
only those selected centres displayed. For example, the probability of the intervention strategy 
being cost-effective, at a ceiling ratio of £50,000, is approximately 0.65 applying the trial wide 
results with single-level specification. The corresponding probability for centre 37 is 0.34 and for 
centre 40 is 0.43. The observed maximum probability that the intervention is cost-effective for 
centre 40 is approximately, 0.66 (at λ = £140,000). For centre 23, the maximum is 0.82 (at λ = 
£140,000). For values of λ greater than £34,000, the intervention strategy would probably be 
considered cost-effective based on the results of centre 11. However, for values of λ less than 
£70,000, the intervention strategy would probably not be considered cost-effective based on patient 
cost and outcomes reported for centre 37. 
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Figure 6. Cost-effectiveness acceptability curve for the trial wide results and centre-specific results for centres 2, 11, 23 

37 and 40, respectively. 
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4 Discussion 
 

This thesis has demonstrated the use of Bayesian hierarchical modelling to estimate cluster-specific 
parameters for use in DAMs where IPD from a multi-location trial are available. The case-study 
was based on a multicentre trial in one country, but the methods are equally applicable to the 
analysis of multinational trials to produce country-specific cost-effectiveness estimates. The extent 
to which the use of Bayesian hierarchical modelling is decisive in a particular study depends on the 
proportion of overall variability in CE that takes place between locations. 

The limitation of regression results obtained from fixed effect models is that they are only valid 
within the sample of locations that participated in the study. In contrast, random effect models have 
the property that allows them to be generalisable to the centres outside the study sample that share 
similar characteristics with the level-2 units participating in the trial. 

The analyses presented here can be extended in three important ways. The first would be to rethink 
the variable selection procedure to be used in the regression models, particularly the backward 
stepwise selection framework, performed in most of the original models. The stepwise variable 
selection method may not be the most appropriate for the following reasons [44, 45, 46]: (i) the 
method yields confidence intervals for effects and predicted values that are falsely narrow; (ii) it 
gives biased regression coefficients that need shrinkage (the coefficients for remaining variables are 
too large; (iii) it has severe problems in the presence of collinearity; (iv) the number of candidate 
predictor variables affects the number of noise variables that gain entry to the model; and (v) the 
size of the sample has little practical importance in determining the number of authentic variables 
contained in the final model. As mentioned in Judd et al [47], given that the data analyst knows 
more about the data than a computer algorithm, better models can be produced by a better 
understanding of the data. 

The second extension proposed to the framework presented here is to consider the data 
characteristics in terms of range and skewness. Just as the choice of distribution for probability data 
was based upon the range of data (“S” shaped logistic function), cost data are constrained to be non 
negative and are usually highly skewed. Therefore one should employ the Log-Normal or the 
Gamma distribution to reflect the skewness often found in cost data, and apply generalised linear 
mixed models for the analysis of multicentre / multinational cost data. 

The third proposed extension to the work presented here is the fact that one should account for the 
imbalances in baseline utility in the estimation of mean differential HRQoL. The non-inclusion of 
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the baseline utility covariate in the models can result in misleading CE estimates because baseline 
utility is likely to be strongly related to utility at follow-up, and consequently should be controlled 
for in estimating differential HRQoL. HRQoL estimates are, therefore, sensitive to small 
imbalances in mean baseline utilities between the arms of the trials. In addition, given that baseline 
utilities usually enter directly into the HRQoL calculation, they should represent a strong predictor 
of HRQoLs [48]. 
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Appendix A – Technical appendix 
 

A1 Survival Analysis 
 

A1.1 Survival and hazard functions 

In summarizing survival data, there are two functions of vital importance, namely the survivor 
function and the hazard function. The actual survival time of an individual can be regarded as 
the value of a random variable, T or survival time, which can take any non-negative value. T has 
a probability distribution with underlying p.d.f. f(t). The distribution function of T is given by, 

( ) ( ) ( )
0

,
t

F t P T t f u du= < = ∫  eq.A-1 

and represents the probability that the survival times is less than some value t. 

The survivor function, S(t), is defined to be the probability that the survival time is greater than 
or equal to t: 

( ) ( ) ( )1S t P T t F t= ≥ = − . eq.A-2 

The survivor function can be used to represent the probability that an individual survives from 
the origin to some time beyond t. 

The hazard function is widely used to express the risk or hazard of death at some time t, and it is 
obtained from the probability that an individual dies at time t, conditional on he or she having 
survived to that time. Considering the conditional probability that the random variable 
associated with an individual’s survival time T, lies between t and t+δt, the hazard function is 
defined as: 

( ) ( )
0

|
lim
t

P t T t t T t
h t

tδ

δ
δ→

⎧ ⎫≤ < + ≥⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. eq.A-3 
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From the previous equation, ( )h t tδ⋅  is the approximate probability that an individual dies in 

the interval (t, t+δt), conditional on that person having survived to time t. From this definition, 
one can derive some useful relationships between the survivor function and the hazard function: 

 ( ) ( ) ( )
1h t f t

S t
= ⋅   given the equality 

( )
( )

( ) ( )
( )

P t T t t F t t F t
P T t S t

δ δ≤ < + + −
≡

≥
 

 and also the derivative of ( )F t , ( ) ( ) ( )
0

lim
t

F t t F t
f t

tδ

δ
δ→

⎧ ⎫+ −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. 

Consequently, 

 ( ) ( ){ }logdh t S t
dt

= −   and therefore ( ) ( ){ }expS t H t= − , 

 where ( ) ( )
0

t

H t h u du= ∫  is the cumulative hazard function. 

 

A1.2 Parametric proportional hazards model 

The PHM applicability is widespread in the analysis of survival data, despite having relatively 
few probability distributions for the survival times that can be used (Weibull and Gompertz 
distributions are used the most).  

Let’s define a vector ( )1 2, ,..., 'jx x x x≡  of explanatory variables. If ( )0h t  is the hazard function 

for an individual for whom the values of all the explanatory variables that make up the vector X 
are zero, the function ( )0h t  is called the baseline hazard function. The hazard function for the 

ith individual can be written as   

( ) ( ) ( )0 ,i ih t x h tψ=  eq.A-4 

where ( )ixψ  is a function of the values of the vector of explanatory variables for the ith 

individual. There are several possible choices for ( )ixψ , but the choice ( ) expi k ki
k

x xψ β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑  

is the most commonly used in survival data. Consequently, the general proportional hazard 
becomes  

( ) ( )0exp ,  for 0,...,i k ki
k

h t x h t k Kβ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠
∑ , eq.A-5 
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or, if regarded as a linear model for the logarithm of the hazard ratio 
( )
( )0

log i
k ki

k

h t
x

h t
β

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ . 

Notice the absence of the constant term in the linear component of the PHM. In this framework 
the survival function becomes  

( ) ( ) ( )
0

ix
S t S t

ψ
⎡ ⎤= ⎣ ⎦  where ( ) ( )0 0

0

exp
t

S t h u du
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ . eq.A-6 

 

A2 Estimation procedures 

 

A2.1 Ordinary least squares  

Classical regression methods usually employ the ordinary least squares (OLS) estimation 
procedure. This common estimation methodology is briefly described below. 

If the number of data observations n exceeds the number of predictors, k, it is not commonly 
possible to find an estimated vector kβ  that gives a perfect fit. The usual estimation goal is to 

choose the estimate ˆ
kβ  that minimizes the sum of squares of the residuals. The vector β̂  that 

minimizes it is called the least squares estimate and is usually represented by (in matrix 

notation) ( ) 1ˆ ' 'X X X Yβ −= . 

The 0β  and kβ  sampling properties of the OLS estimators are referred as Best Linear Unbiased 

Estimators (BLUE), even when errors iε  are not normally distributed. 

The errors come from a distribution with mean 0 and variance 2σ , which can be estimated from 
the residuals. 

 

A2.2 Maximum likelihood  

GLMs usually employ maximum likelihood estimation (MLE) procedure. This common 
estimation methodology is briefly described below. 

MLE is extensively used in health economics, predominantly in nonlinear models involving 
qualitative or limited dependent variables. MLE advantageous properties, such as consistency 
and asymptotic normality, rely on the model being completely and accurately specified. MLE 
family includes the quasi-maximum likelihood (QML) methods, which share the properties of 
MLE without having to uphold the statement that the model is correctly specified.  



iv 

 

Let’s cover a simple example of MLE and afterwards a more complex one with the normality 
assumption. 

Consider an i.i.d. sample of Bernoulli trials, each with outcomes 0 or 1 with probabilities 1-β 
and β, respectively [34]. The sample log-likelihood function, for n0 zeros and n1 ones, is 

( ) ( )( ) ( ) ( )0 1| log | log 1 logx L x n nβ β β β= = − + . eq.A-7 

The MLE of β, β̂ , is the value that maximizes ( )| xβ , that is ( )|
0

xβ
β

∂
=

∂
, which when solved 

is the sample proportion: 1

0 1

ˆ n
n n

β =
+

. 

If the error terms are normally distributed, so that ( )2,i iy N X β σ∼  for each i. The least squares 

estimate vector β̂  is the maximum likelihood estimate. The likelihood of a regression model is 
defined as the probability of the data given the parameters and inputs. Therefore, 

( ) ( ) ( )2| , , | , , | ,
n

i i
i

L y X p y X N y Xβ σ β σ β σ= =∏ , eq.A-8 

where ( ). | .,.N represents the normal probability density function (p.d.f.). 

The log-likelihood is derived as, 

( ) ( ) [ ]22
2log | , , ln 2

2 2

n
i i

i

y XnL y X
β

β σ πσ
σ

−
= = − −∑ . eq.A-9 

The MLE of α  and jβ  must minimize [ ]2
n

i i
i

y X β−∑  and so equal OLS. The MLE of 2σ  is 

2 1 2ˆˆ i
i

nσ ε−= =∑ method of moments estimate. 

 

A2.3 The Bayesian approach  

For some models, such as the linear mixed-effects model, the integral involved with the 
likelihood function has a closed form. The ordinary iterative algorithms for maximizing the 
likelihood are used to obtain MLE or restricted MLE for unknown model parameters. However, 
for most non-linear models such as the logistic and PHM, the likelihood function does not have 
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an analytically tractable form. Hence, likelihood inference requires either an analytical 
approximation or a numerical evaluation [32].  

Multilevel inferences can be formulated in a non-Bayesian framework, however all multilevel 
models are Bayesian in the sense of assigning probability distributions to the varying regression 
coefficients. Bayesian methods can be considered as an alternative to the classical approach to 
statistical inference [32]. The Bayesian approach is appealing since it is a flexible modelling 
framework, allowing the researcher to venture beyond frequentist models, and analyses 
provided in standard statistical packages, and additionally account fully for all forms of model 
estimation uncertainty [40]. A key difference between the two approaches is that Bayesian 
methods allow external information to be incorporated beyond that included directly in the 
model.  

The challenge in fitting a multilevel model is in estimating a data-level regression (including the 
coefficients for all the cluster indicators) along with the cluster-level model. Bayesian inference 
is understood as the most direct way of obtaining this [18, 17]. The distinction between 
Bayesian and non-Bayesian multilevel models arises only for estimating the non-varying 
coefficients and the variance parameters. 

Bayesian inference refers to statistical procedures that model unknown parameters (and also 
missing and latent data) as random variables. Bayesian inference is understood as a 
generalization of the OLS and MLE. Bayesian inference starts with a prior distribution on the 
unknown parameters and updates this with the likelihood of the data, yielding a posterior 
distribution which is used for inferences and predictions [32]. In a continuous framework one 
has:   

( ) ( ) ( )| |p x L x pθ θ θ∝ ⋅ , eq.A-10 

where θ is a parameter or a parameter array with prior distribution p(θ), and x a random variable 
with p.d.f. f(x|θ), belonging to the space-parameter Θ.  

The usual Markov chain Monte Carlo (MCMC) method used is Gibbs sampling. Gibbs 
sampling is an iterative Monte Carlo method for generating samples indirectly from a difficult 
joint distribution of the model parameters without calculating the density. The mechanism is 
based only on elementary properties of Markov chains (described in section 2.1) [18]. The basic 
idea of Gibbs sampling is to partition the set of unknown parameters and then estimate them one 
at a time, or one group at a time, with each parameter or group of parameters estimated 
conditional on all the others [17]. 

In a Bayesian framework, all parameters must have prior distributions. Most prior distributions 
are vague/non-informative or are prior models. Opposed to prior models, non-informative priors 
are intended to allow Bayesian inference for parameters for which not much is known beyond 
the data included in the analysis at hand [32]. The simplest form of Bayesian inference uses a 
Uniform prior distribution, so that the posterior distribution is the same as the likelihood 
function. 
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Bayesian shrinkage estimation 

As mentioned earlier, the common analysis of multicentre RCT datasets would use pooled 
estimates common to all centres or would split the dataset, with all the statistical limitations 
attached to it. An alternative approach uses empirical Bayesian shrinkage estimation. If one 
assumes that the individual centre data is sampled from an underlying Normal distribution, then 
a pooled random-effects estimate provides an empirical mean for the prior distribution for the 
centre-specific differences [18, 17]. The estimated difference for a particular centre is then the 
mean of the posterior distribution, which is given by a variance-weighted linear sum of the prior 
difference (pooled random-effects estimate) and the observed difference for that centre. That is, 
the empirical Bayes shrinkage estimator is a weighted sum of the estimate provided by the 
pooled random effects estimate and the estimate provided by the centre-specific observed 
difference [6, 17]. 

The key advantage of this approach is that it affords a gain in statistical efficiency by 
‘borrowing’ information from all locations in the estimation of the difference for an individual 
centre. The amount of information ‘borrowed’ depends on the proportion of the total variance 
that is due to the variance between centres. As this proportion decrease, more information is 
‘borrowed’, and the estimates of the centre-specific difference are ‘shrunken’ towards the 
pooled random-effects estimate [18]. 

Let ˆ
jθ  be the observed between-treatment difference for centre j (j=1,…,C). Assuming that 

( )2ˆ ,j j jNθ θ σ∼  and that ( )2,j Nθ θ σ∼ , the empirical Bayes shrinkage estimator is a weighted 

average of ˆ
jθ  and θ̂ . The weights used are the proportion of total variance due to between-

centre and within-centre, respectively. 

22

2 2 2 2
ˆ ˆj

j c
j j

σσθ θ θ
σ σ σ σ

= ⋅ + ⋅
+ +

, eq.A-11 

where 2
jσ  is the within-centre variance of ˆ

jθ  and 2σ  is the between-centre variance of the 

mean differences [17]. 
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Appendix B  
 

 

Age Men Women Age Men Women
45 0.0017 0.0013 73 0.0246 0.0167
46 0.0019 0.0016 74 0.0277 0.0187
47 0.0022 0.0017 75 0.0296 0.0194
48 0.0023 0.0018 76 0.0326 0.0216
49 0.0027 0.0020 77 0.0360 0.0239
50 0.0027 0.0022 78 0.0396 0.0263
51 0.0029 0.0024 79 0.0436 0.0290
52 0.0032 0.0026 80 0.0462 0.0303
53 0.0034 0.0028 81 0.0500 0.0334
54 0.0037 0.0032 82 0.0545 0.0375
55 0.0041 0.0033 83 0.0607 0.0418
56 0.0047 0.0036 84 0.0684 0.0479
57 0.0052 0.0041 85 0.0764 0.0523
58 0.0057 0.0043 86 0.0830 0.0576
59 0.0064 0.0048 87 0.0895 0.0641
60 0.0071 0.0052 88 0.0993 0.0717
61 0.0077 0.0057 89 0.1083 0.0798
62 0.0085 0.0061 90 0.1187 0.0910
63 0.0093 0.0067 91 0.1263 0.1010
64 0.0100 0.0075 92 0.1406 0.1114
65 0.0120 0.0075 93 0.1522 0.1232
66 0.0121 0.0084 94 0.1641 0.1323
67 0.0135 0.0092 95 0.1948 0.1601
68 0.0148 0.0103 96 0.2068 0.1727
69 0.0167 0.0114 97 0.2278 0.1840
70 0.0177 0.0118 98 0.2386 0.1996
71 0.0199 0.0133 99 0.2488 0.2128
72 0.0222 0.0149 100 0.2727 0.2311  

Table A1. UK population age-and-sex specific life-tables, adjusted to exclude  
cardiovascular mortality. 
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Equation 1 - Logistic regression model of risk of cardiovascular death or myocardial 
infarction during the index hospitalisation 

 

Equation 1.1 - logit model, probability of a composite event 

 

 

Figure A1. Equation 1.1, non-hierarchical model, WinBugs output. 

 

 

 

Figure A2. Equation 1.1, hierarchical model, WinBugs output. 
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Equation 1.2 - logit model, probability of a composite event by continuous risk defined risk 
scores from RITA 3 

 

 

Figure A3. Equation 1.2, non-hierarchical model, WinBugs output. 

 

 
 

 

Figure A4. Equation 1.2, hierarchical model, WinBugs output. 
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Logistic regression

CCIndex

Centre mean std. dev.
Random Effects
u1j - Treat -0.021 0.275 -0.736 0.524

u0j - Cnst -0.097 0.513 -1.338 0.858

u1j - Treat 0.081 0.276 -0.239 0.926

u0j - Cnst 0.046 0.351 -0.648 0.865

u1j - Treat -0.049 0.282 -0.836 0.367

u0j - Cnst -0.114 0.423 -1.142 0.672

u1j - Treat -0.031 0.243 -0.664 0.422

u0j - Cnst 0.119 0.384 -0.567 1.033

u1j - Treat -0.013 0.233 -0.591 0.503

u0j - Cnst 0.398 0.487 -0.181 1.557
**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

centre 23

95% CrI

centre 11

centre 37

centre 40

centre 2

 

Table A2. Random effects components of 5 centres, results of Bayesian hierarchical logistic regression of  
composite endpoint of CVD or MI during index hospitalisation including an interaction between  

risk at randomization and treatment effect (HM – hierarchical model). 
 
 

Equation 2 - Weibull proportional hazards model of risk of cardiovascular death or 
myocardial infarction during the remainder of trial 

 

Equation 2.1 - Weibull model, composite endpoint index admission to end of follow-up 

 

Figure A5. Equation 2.1, non-hierarchical model, WinBugs output. 
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Figure A6. Equation 2.1, hierarchical model, WinBugs output. 
 

 

Weibull regression

Centre mean std. dev.
Random Effects
u1j - Treat 0.021 0.258 -0.506 0.649

u0j - Cnst -0.007 0.076 -0.178 0.146

u1j - Treat 0.082 0.300 -0.275 0.608

u0j - Cnst 0.003 0.066 -0.145 0.157

u1j - Treat -0.043 0.239 -0.639 0.426

u0j - Cnst 0.010 0.070 -0.124 0.179

u1j - Treat -0.131 0.269 -0.861 0.235

u0j - Cnst -0.007 0.067 -0.171 0.129

u1j - Treat 0.021 0.213 -0.402 0.527

u0j - Cnst 0.005 0.071 -0.143 0.182
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

centre 11

95% CrI

WinBugs** - HM

 

Table A3. Random effects components of 5 centres, results of Bayesian hierarchical Weibull PHM of composite 
endpoint of CVD or MI from hospital discharge until end of trial (HM – hierarchical model). 
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Equation 2.2- Weibull model evaluating a composite event  

 

 

Figure A7. Equation 2.2, non-hierarchical model, WinBugs output. 
 

 

 

Figure A8. Equation 2.2, hierarchical model, WinBugs output. 
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Weibull regression

Centre mean std. dev.
Random Effects
u1j - Treat 0.008 0.212 -0.471 0.524

u0j - Cnst -0.003 0.070 -0.167 0.141

u1j - Treat 0.050 0.168 -0.222 0.520

u0j - Cnst 0.008 0.064 -0.122 0.171

u1j - Treat -0.028 0.181 -0.495 0.335

u0j - Cnst 0.013 0.073 -0.115 0.204

u1j - Treat -0.097 0.221 -0.747 0.160

u0j - Cnst -0.008 0.074 -0.176 0.134

u1j - Treat -0.016 0.176 -0.462 0.353

u0j - Cnst 0.005 0.069 -0.132 0.172
**5,000 iterations and a 2,000 iteration burn-in period

95% CrI

WinBugs** - HM

centre 37

centre 40

centre 2

centre 23

centre 11

 

Table A4. Random effects components of 5 centres, results of Bayesian hierarchical Weibull PHM of composite 
endpoint of CVD or MI from hospital discharge to end of trial including an interaction between  

risk at randomization and treatment effect (HM – hierarchical model). 
 
 

Equation 4 - Logistic regression model of the proportion of composite endpoints being 
non-fatal 

 

 

Figure A9. Equation 4, non-hierarchical model, WinBugs output. 
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Figure A10. Equation 4, hierarchical model, WinBugs output. 

 

 

Logistic regression

Non-fatal MI

Centre mean std. dev.
Random Effects

         centre 2 u0j - Cnst -0.011 0.178 -0.436 0.346

         centre 11 u0j - Cnst -0.014 0.154 -0.389 0.302

         centre 23 u0j - Cnst 0.065 0.187 -0.203 0.582

         centre 37 u0j - Cnst -0.012 0.163 -0.409 0.323

         centre 40 u0j - Cnst -0.058 0.177 -0.549 0.200
**5,000 iterations and a 2,000 iteration burn-in period

95% CrI

WinBugs** - HM

 

Table A5. Random effects components of 5 centres, results of Bayesian hierarchical logistic regression  
of composite endpoint of CVD or MI being non-fatal (HM – hierarchical model). 
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Costs 

 

Cost regression 1 - Estimated costs during the index hospitalisation 

 

 

Figure A11. Costs regression 1, non-hierarchical model, WinBugs output. 

 

 
 
 

 

Figure A12. Costs regression 1, hierarchical model, WinBugs output. 
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Linear model

Costs index

Centre mean std. dev.
Random Effects
u1j - Treat -855.9 1333.2 -3585.8 1645.5

u0j - Cnst -586.9 801.8 -2220.6 934.5

u1j - Treat -2261.3 821.9 -3891.6 -670.6

u0j - Cnst -1219.1 555.7 -2335.3 -176.3

u1j - Treat 39.4 975.2 -1869.4 1943.4

u0j - Cnst -0.361 616.7 -1231.9 1220.4

u1j - Treat 1905.5 876.7 193.4 3610.6

u0j - Cnst 178.2 567.7 -932.9 1304.1

u1j - Treat 128.1 817.5 -1450.9 1745.5

u0j - Cnst -175.2 539.6 -1254.1 838.2
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

centre 11

WinBugs** - HM

95% CrI

 

Table A6. Random effects components of 5 centres, results of Bayesian hierarchical linear regression  
of costs during the index hospitalisation (HM – hierarchical model). 

 

Cost regression 2 - Estimated costs during the follow-up period 

 

 

Figure A13. Costs regression 2, non-hierarchical model, WinBugs output. 
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Figure A14. Costs regression 2, hierarchical model, WinBugs output. 
 

Linear model

Costs follow-up exc.MI/stroke

Centre mean std. dev.
Random Effects
u1j - Treat 103.7 483.3 -833.4 1154.7

u0j - Cnst 95.8 546.1 -952.9 1175.6

u1j - Treat -7.320 397.5 -799.8 775.7

u0j - Cnst -142.2 372.5 -892.4 587.1

u1j - Treat 76.8 440.3 -750.6 966.7

u0j - Cnst -133.5 442.1 -1013.0 733.6

u1j - Treat -209.2 422.6 -1121.6 580.0

u0j - Cnst -144.8 417.8 -972.8 669.8

u1j - Treat 30.39 412.0 -774.2 874.0

u0j - Cnst -358.9 405.0 -1184.6 392.3
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

95% CrI

centre 11

WinBugs** - HM

 

Table A7. Random effects components of 5 centres, results of Bayesian hierarchical linear regression  
of costs during the follow-up period (HM – hierarchical model). 
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Health Related Quality of Life 

 

HRQoL regression 1 - Estimated baseline utilities 

 

 

Figure A15. HRQoL regression 1, non-hierarchical model, WinBugs output. 
 

 

 

Figure A16. HRQoL regression 1, hierarchical model, WinBugs output. 
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Linear model

HRQoL baseline

Centre mean std. dev.

Random Effects

         centre 2 u0j - Cnst -0.102 0.062 -0.224 0.018

         centre 11 u0j - Cnst 0.131 0.030 0.072 0.189

         centre 23 u0j - Cnst -0.071 0.038 -0.145 0.003

         centre 37 u0j - Cnst 0.046 0.034 -0.019 0.112

         centre 40 u0j - Cnst 0.141 0.033 0.077 0.203

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

95% CrI

 

Table A8. Random effects components of 5 centres, results of Bayesian hierarchical  
linear regression of baseline utilities (HM – hierarchical model). 

 

 

HRQoL regression 2 - Estimated gain in health-related quality of life 

 

 

Figure A17. HRQoL regression 2, non-hierarchical model, WinBugs output. 
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Figure A18. HRQoL regression 2, hierarchical model, WinBugs output. 
 

 

Longitudinal data

Change HRQoL

Centre mean std. dev.

Random Effects

u1j - Treat_centre -1.103 0.130 -1.360 -0.858

u0j - Cnst_centre 0.111 0.075 -0.032 0.262

u1j - Treat_centre -1.320 0.047 -1.412 -1.232

u0j - Cnst_centre -0.090 0.037 -0.162 -0.0155

u1j - Treat_centre -1.191 0.070 -1.337 -1.059

u0j - Cnst_centre 0.056 0.048 -0.037 0.147

u1j - Treat_centre -1.333 0.056 -1.448 -1.225

u0j - Cnst_centre -0.019 0.043 -0.099 0.072

u1j - Treat_centre -1.333 0.056 -1.448 -1.225

u0j - Cnst_centre -0.065 0.041 -0.149 0.016
**5,000 iterations and a 2,000 iteration burn-in period

centre 40

centre 2

WinBugs** - CHM

centre 11

centre 37

centre 23

95% CrI

 

Table A9. Random effects components of 5 centres, results of Bayesian hierarchical  
panel data regression of the gain in HRQoL (HM – hierarchical model). 
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Location-specific cost-effectiveness results 

 

Figure A19. Trial wide and centre-specific estimated cost differences (centres 2, 11, 23, 37 and 40, respectively). 
Markers indicate trial wide and centre-specific mean differential cost estimates, and horizontal  

bars across the markers represent 95% credibility intervals. 
 

 

Figure A20. Trial wide and centre-specific estimated effect differences (centres 2, 11, 23, 37 and 40, respectively). 
Markers indicate trial wide and centre-specific mean differential effect estimates, and horizontal  

bars across the markers represent 95% credibility intervals. 
 

 


