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Calibration of cardiac electrophysiology models is a fundamental aspect of model

personalization for predicting the outcomes of cardiac therapies, simulation testing of

device performance for a range of phenotypes, and for fundamental research into

cardiac function. Restitution curves provide information on tissue function and can

be measured using clinically feasible measurement protocols. We introduce novel

“restitution curve emulators” as probabilistic models for performing model exploration,

sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built

by decomposing restitution curves using principal component analysis and modeling

the resulting coordinates with respect to model parameters using Gaussian processes.

Restitution curve emulators can be used to study parameter identifiability via sensitivity

analysis of restitution curve components and rapid inference of the posterior distribution

of model parameters given noisy measurements. Posterior uncertainty about parameters

is critical for making predictions from calibrated models, since many parameter

settings can be consistent with measured data and yet produce very different model

behaviors under conditions not effectively probed by the measurement protocols.

Restitution curve emulators are therefore promising probabilistic tools for calibrating

electrophysiology models.

Keywords: restitution, electrophysiology, cardiology, Gaussian processes, emulation, sensitivity analysis,

calibration, Bayesian

1. INTRODUCTION

Cardiac electrophysiology models reconstruct electrical activation of the heart at cell, tissue,
and organ scale. Biophysically detailed cardiac cell models aim to represent how ion channels,
pumps, and exchangers in the cell membrane co-operate to produce an action potential and
calcium transient (Fink et al., 2011). While they can be a good mechanistic representation, these
models have large numbers of parameters, which may not all be identifiable from data (Whittaker
et al., 2020), and when combined with a tissue model there are complex relationships between
model parameter sets and emergent properties such as restitution or spiral wave stability (Cherry
and Evans, 2008). Alongside biophysically detailed models of cardiac cellular electrophysiology,



Coveney et al. Restitution Curve Emulators

phenomenological models have been developed that capture
action potential shape and rate dependence without an explicit
representation of ion channel behavior (Fenton and Karma, 1998;
Mitchell and Schaeffer, 2003; Corrado andNiederer, 2016). These
models have fewer parameters than more detailed models and
can be solved relatively quickly, but the association between
model parameters and emergent properties remains complex
(Fenton et al., 2002).

Cardiac models have the potential to be used to guide
interventions in the clinic (Niederer et al., 2019). Applications
in the clinical setting will require models that are not only
fast running, but can also be calibrated quickly from clinical
measurements to create personalized models (Sermesant et al.,
2012; Boyle et al., 2021). The phenomenological Mitchell-
Schaeffer model (Mitchell and Schaeffer, 2003), with relatively
few parameters, may be a good candidate in this regard (Relan
et al., 2010, 2011; Corrado et al., 2017). Clinical data are typically
noisy and sparse so recent developments have included a set
of approaches that take into account uncertainties in the data
to create probabilistic models (Konukoglu et al., 2011; Coveney
et al., 2020; Dhamala et al., 2020), as well as new models designed
with uncertainty in mind (Pathmanathan et al., 2019).

Parameter inference methods for cardiac cell models include
gradient descent (Dokos and Lovell, 2004), genetic algorithms
(Groenendaal et al., 2015; Krogh-Madsen et al., 2016; Cairns
et al., 2017; Smirnov et al., 2020), particle swarm (Loewe
et al., 2015), multivariate regression (Sarkar and Sobie, 2010),
and Markov chain Monte Carlo (Johnstone et al., 2016). In
“population of models” approaches, parameter sets that are
consistent with data are retained from an initially larger
design spanning the parameter space (Muszkiewicz et al.,
2015). However, these methods do not obtain a posterior
probability distribution for the model parameters, although
there have been some efforts to overcome this limitation
(Tixier et al., 2017; Lawson et al., 2018). Likewise, history
matching approaches accounting for uncertainty still only
find plausible parameterizations of cardiac models given data
(Coveney and Clayton, 2018).

Inference of model parameters from clinical data is
challenging because it is difficult to measure action potentials
directly in the clinical setting, especially in atrial tissue. In the
clinical setting, the rate dependence of local activation time
(LAT) and effective refractory period (ERP) can be measured
directly at different locations with pacing at different intervals.
LAT can be used to infer conduction velocity (CV) restitution,
and ERP restitution is related to action potential duration
(APD) restitution. While calibration can aim to find a single
“best fit” to the data (Corrado et al., 2017), in general there
are many parameter configurations that are consistent with
observed data. Two important questions therefore arise: are
parameters identifiable from restitution curve data, and can a
posterior distribution on model parameters can be obtained
from this data?

Markov chain Monte Carlo (MCMC) can be used to obtain
samples from the posterior distribution, but requires large
numbers of simulated restitution curves to be obtained. APD,
CV, and ERP restitution curves can be time consuming to

compute because they require many solves of a tissue model at
different diastolic intervals. Furthermore, these large numbers
of simulations cannot be pre-calculated since they must be
drawn with posterior probability determined by the data.
Expensive simulations can be supplemented with fast-running
emulators, sometimes called surrogate models, which can be
used to map model inputs onto outputs. Gaussian process
(GP) emulators, which provide a prediction and corresponding
prediction uncertainty, can be effective emulators of complex
computer models (Conti and O’Hagan, 2010). GP emulators have
been used for sensitivity analysis (Chang et al., 2015; Coveney
and Clayton, 2020) and history matching (Coveney and Clayton,
2018) of cardiac cell models, and for models of cardiac tissue
(Dhamala et al., 2020; Lawson et al., 2020) and mechanics
(Longobardi et al., 2020). Emulators are conditioned on pre-
calculated simulator data, but since they can make predictions
at new inputs they are ideal tools for MCMC.

In this paper we describe how to build Restitution Curve
Emulators (RCEs) for APD, CV, and ERP restitution curves.
We chose to base this study on the phenomenological modified
Mitchell-Schaeffer (mMS) model (Corrado and Niederer, 2016),
since this can be considered a minimal model for capturing
the shape and restitution of the cardiac action potential. The
emulation of restitution curves using Gaussian processes requires
a dimensionality reduction stage using principal component
analysis, allowing the curves to be modeled with a small number
of independent Gaussian processes. Furthermore, we develop
a novel likelihood function for ERP observations. RCEs can
then be used with MCMC to obtain the posterior distribution
of model parameters given noisy data. The structure of the
paper is as follows. First we briefly describe the mMS cellular
electrophysiology model, and how it was implemented in a tissue
strip model to calculate restitution curves. Next we explain how
these restitution curves were decomposed, and how emulators
(RCEs) of these curves were constructed. We conduct sensitivity
analysis using emulation, showing the effects of the parameters
on the principal modes of variation of the curves. Finally we
show how these emulators can be used to obtain the posterior
distribution of model parameters given noisy measurements of
CV, APD, and ERP restitutions.

2. METHODS

In sections 2.1, 2.2, and 2.3, we explain how restitution curves
were simulated, how dimensionality reduction was performed,
and how Restitution Curve Emulators were built. In section 2.4,
we explain how RCEs can be used for Sensitivity Analysis (SA).
In section 2.5, we show how RCEs can be used for probabilistic
calibration using uncertain measurements of APD, CV, and ERP
restitution curves.

2.1. Electrophysiology Model
The mMS cell model (Corrado and Niederer, 2016)
was incorporated into a monodomain model of tissue
electrophysiology with isotropic diffusion, expressed in the
following equations:
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∂Vm

∂t
= D∇2Vm + h

Vm(Vm − Vgate)(1− Vm)

τin

−(1− h)
Vm

τout
+ Jstim (1)

∂h

∂t
=
{

(1− h)/τopen if Vm ≤ Vgate

−h/τclose otherwise
(2)

where the two states are Vm, a normalized membrane voltage
varying between 0 and 1 (note Vm = Vm(z, t) where z indicates
space), and h, a gating parameter that controls recovery of
excitability. We fixed the excitation threshold Vgate to 0.1, leaving
five remaining parameters: the tissue diffusion coefficient D,
and time constants τin, τclose, τout , τopen, which correspond
to the initiation, plateau, decay, and recovery phases of the
cardiac action potential (Mitchell and Schaeffer, 2003). We
reparameterized the model by substituting D and τclose with
the transformed parameters CVmax and APDmax, based on
asymptotic expressions of model behavior:

CVmax = 0.5(1− 2Vgate)
√

2D/τin (3)

APDmax = τclose log
(

1+ τout(1− Vgate)
2/4τin

)

(4)

This reparameterization means that propagating action
potentials can be generated for values of transformed parameters
within a 5d hypercube, whereas the region of the original
parameter space from which propagating action potentials could
be generated was relatively small and highly concave. We refer to
the transformed parameters

{

CVmax, τin, τout , τopen,APDmax

}

as
parameters from now on.

We used openCARP (Plank et al., 2021) to solve these
equations and obtain CV, APD, and ERP restitution curves
for different sets of transformed parameters in a thin strip
of simulated tissue. These simulations used a 24 × 0.6 mm
triangular finite element mesh, with triangle edges of 0.3 mm and
no-flux boundary conditions, and were solved using a time step
of 0.1 ms, with a factor 10 smaller time-step for the mMS model.
Simulation geometries such as “cables” of 3D elements can be
used to reduce simulation time. However, simulation behavior
does depend on element type and space-time discretization,
so ideally calibration of computational models should utilize
restitution curves generated with a comparable simulation setup.
Our choices here were motivated by settings that we typically
utilize for atrial simulations with the mMS model.

Restitution curves for S1S2 pacing, representing the variation
of either CV or APD with respect to S1S2 intervals for a given S1
interval, which we denote by CV(S2) and APD(S2), respectively
(thus abbreviating “S1S2 interval” with S2), were obtained by
pacing from one end of the tissue strip (along the shorter edge)
using an S1S2 pacing protocol. Example restitution curves are
shown in Figure 1 below. CV was determined in the central
region of the strip from activation times obtained using a relative
threshold of 0.7, and APD was determined as the duration
between this latter threshold and a relative threshold of 0.1 (i.e.,
APD ≡ APD90, the time required for 90% repolarization). ERP
was determined as the largest S1S2 interval for which the S2
stimulus did not result in propagation reaching the strip center.

FIGURE 1 | S2 restitution curves for S1: 600 ms for CV(S2) and APD(S2),

colored by ERP(S1: 600), and plotted only for S2 > ERP(S1: 600) for clarity.

For a given set of parameters (homogeneous across the strip) and
S1 interval, the strip model was run for integer values of S1S2
interval (in ms), chosen dynamically in order to bisect ERP to a
1 ms resolution. The strip was paced with eight S1 beats and the
model state shortly after the final S1 beat was saved (we found
no appreciable difference using 16 beats). The S1S2 interval was
then varied using Algorithm 1 (reloading the saved model state)
until ERP was determined.We set the initial bracketing values for
ERP to be 100 and 2,000 ms, which helped ensure that data was
collected in both the asymptotic limit of high S1S2 interval, while
focusing most observations at S1S2 intervals nearer to ERP. We
also consider ERP(S1) restitution curves in this paper, which are
curves of ERP for different S1 interval.

2.2. Dimensionality Reduction
To build Restitution Curve Emulators requires that we obtain
simulation results (outputs) for a space-filling design of
parameters (inputs). We generated a Latin hypercube design
of 500 “points” in parameter space, optimized with respect to
a maximin criterion across 104 designs, in the ranges CVmax

0.1–1.5 m/s, τin 0.01–0.30 ms, τout 1–30 ms, τopen 65–215 ms,
APDmax 120–270 ms, which were chosen so that the range of
corresponding tissue behaviors include, and go sightly beyond,
physiologically plausible values (this helps ensure that the output
space of plausible values is well sampled). The simulation
described above was run for each parameter vector for a specific
S1 interval.

The S2 restitution curves (outputs) obtained from the
simulations are obtained for a subset of S1S2 intervals due to
the bisection method. Furthermore, since measurements at S1S2
intervals below ERP cannot bemade, the restitution curves would
not all share the same set of S1S2 interval even if the algorithm
was run for a predetermined set of S1S2 intervals. We can fit the
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Input: parameters, S1
Output: CV({S2}), APD({S2}), ERP
Initialize S2min: 100, S2max: 2000;
while S2max - S2min > 1 do

if first run then

S2← S2max;
else

S2← (S2min + S2max) / 2;
end

Simulation; save CV and APD for current S2;
if successful propagation then

S2max← S2;
else

S2min← S2;
end

end

ERP = S2min;

Algorithm 1: Strip simulation algorithm for S1S2 pacing.
For a given S1 interval and set of model parameters, the
simulation determines CV(S2) and APD(S2) restitution
curves and ERP.

restitution curve data to an analytic expression for restitution,
which allows us to resample the restitution curves to a common
S1S2 interval resolution. For the mMS model, we fitted the
following expression to the data using non-linear fitting methods
(scipy.optimize.curve_fit function in this case):

F(S2) = a
(

1− b exp (−S2/c)
)

, (5)

which fits the data with negligible residuals. The advantage of
fitting an analytic expression to each curve is that curves can
be extrapolated to obtain “virtual” values for S1S2 interval <

ERP, required for PCA since all curves must have the same
dimensionality. We refer to this region of restitution curves
as “virtual” in analogy with a virtual image in optics, found
by tracing real rays from a mirror backwards to a perceived
origin behind the mirror from which light rays cannot actually
emerge. We chose S1S2 intervals from 160 to 600 ms at
1 ms resolution (corresponding to the highest clinical pacing
resolution). For convenience, the “fitting” and “prediction” stages
of this resampling are split, such that the simulator fits and
returns these coefficients, while prediction happens “outside” of
the simulator. (This division is simply for convenience, since
the simulator is then a black box that always returns the same
number of outputs, rather than variable length arrays depending
on the path taken by the bisection algorithm).

We emphasize here that the only purpose of Equation (5)
is to calculate S2 restitution curves at a common resolution,
after which it is never used again. We discuss why emulation
of Diastolic Interval (DI) curves, (where DI = S2 − ERP such
that the curves would have no virtual region) is not a good
choice for calibration in Section 3.5. Equation (5) is a non-
linear compression of the data into three dimensions, but we
found that attempts to predict the coefficients a, b, c from the

model parameters (followed by application of Equation 5) gave
inferior results to the emulation method we present in this paper.
Importantly, for any re-parameterization of Equation (5), the
intrinsic non-linearity means that coefficient emulation with a
Gaussian process emulator results in restitution curve emulators
that are not Gaussian processes; this significantly complicates
exploratory analysis, sensitivity analysis, and calibration, since
posterior sampling would be required in all cases to make any
predictions. Furthermore, characterizing these predictions would
be more difficult, since the mean, median, and mode of these
predictions would all be different, and the distribution spread
would not be summarized by only the second-order moment,
i.e., variance.

We discuss dimensionality reduction here in terms of S2
restitution curves (where for convenience of notation S2 ≡
S1S2 interval). The resulting set of resampled restitution curves
can be thought of as a stack of 1D images (1 image per
parameter choice) with 1ms wide pixels centered on S1S2
interval, where the pixel intensity represents either CV(S2)
or APD(S2). This analogy makes it clear that although each
curve has 440 dimensions, the intensity values in many
neighboring pixels are highly correlated. Principal Component
Analysis (PCA) can be used to find an ordered set of
orthogonal directions/axes in this high dimensional space along
which the variance between different images is largest. We
perform PCA via Singular Value Decomposition (SVD) using
sklearn.decomposition.PCA, first subtracting the mean
and without scaling the data since the units are identical across
dimensions (m/s for CV, ms for APD, ms for ERP) and amplitude
of variation is intrinsically important. We obtain a set of right
singular vectors (equivalent to eigenvectors) 8c(S2) for c =
1 . . .C, where 1 ≤ C ≤ n for a dataset of size n (usually C≪ n).
Each restitution curve can be projected onto these axis to obtain
the coordinate of that curve in this new space. Each curve can
then be expressed with a linear combination of the eigenvectors
8c plus the mean 80:

F(S2) ≈ 80(S2)+
∑

c

fc ·8c(S2), (6)

where the sum is truncated to keep only the “principal
components” accounting for the majority of the variation across
the dataset (determined from the corresponding eigenvalues).

For ERP(S1) curves, obtained by running the simulator for
a range of S1 intervals, we perform PCA on the data without
any resampling in S1. It is interesting to consider that fitting a
functional form to ERP(S1) data would allow extrapolation of
ERP curves into a virtual region [e.g., if ERP(S1:375) = 360 then
ERP(S1:350) is not defined, since the tissue cannot support this
S1 pacing, but a virtual value could be defined from a functional
fit to the valid ERP(S1) values]. This would allow for keeping
additional simulation runs in the emulation dataset that would
otherwise be discarded because the ERP(S1) vector would be
undefined for some S1, preventing inclusion of those results
in PCA for ERP(S1). We do not consider this matter further
here, instead opting to discard certain simulation runs from
our emulation dataset if some ERP(S1) could not be defined
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[this means that the ERP(S1) dataset will include only data,
i.e., parameters and corresponding ERP(S1) values, for which
ERP(S1) can be defined for all S1 values in our dataset].

2.3. Restitution Curve Emulators
To create surrogate models that predict the restitution curves
F(S2) from the model parameters x, we model each coordinate
in Equation (6) as fc ≡ fc(x) using a Gaussian process (Higdon
et al., 2008; Wilkinson, 2010), with explicit basis functions
modeling the GP mean (Conti and O’Hagan, 2010). We drop
the index c to reduce clutter in the following equations, as the
same type of model is built for all coordinates. For increased
numerical stability and model regularization, we assume that the
coordinates obtained from PCA are potentially noisy, therefore
we denote these values (for a particular c) by y and the model
for these coordinates by f . For n training data

{

xi, yi
}

, where
i = 1 . . . n, we then have:

y ∼ N
(

f, (νσ )2
)

(7)

f|β , σ , θ ∼ N

(

HTβ , σ 2A
)

(8)

H =
(

h(x1), . . . , h(xn)
)

(9)

Aij = k
(

xi, xj, θ
)

(10)

where the mean function depends on basis functions h(·) and
basis coefficients β , and the kernel function k(·, ·, θ) depends on
hyperparameters θ (we have factored out the amplitude σ 2). Note
that the covariance matrix of the training data y is then given
by σ 2Ay = σ 2

(

A+ ν2In
)

, such that the (unscaled) covariance
matrix elements Aij depend on xi and xj.

We optimize the hyperparameters θ and ν (distinct from
the model parameters x) by maximizing the (marginal) log
likelihood L. Denoting n and q as the number of data points
and basis functions, respectively, the basis coefficients and

covariance amplitude are integrated out to give β̂ and σ̂ 2,
respectively (Oakley, 1999; Rasmussen andWilliams, 2006; Conti
and O’Hagan, 2010), giving:

β̂ = (HA−1y HT)−1HA−1y y (11)

σ̂ 2 = (n− q)−1(y−HT β̂)TA−1y (y−HT β̂) (12)

L = −1

2

(

log |Ay| + log |HA−1y HT | + (n− q) log
(

2πσ̂ 2
)

)

(13)

We chose a linear basis for modeling the mean, and the squared
exponential kernel (with automatic relevance determination) for
the covariance function. Denoting the individual dimensions
of x by k = 1 . . .m, such that xik corresponds to the k’th
dimension (e.g., k = 3 corresponds to τout) of the i’th row of
the dataset, then:

h(xi)
T
: = (1, xi1, . . . , xim) (14)

k(xi, xj, θ) : = exp

(

−1

2

m
∑

k=1

∣

∣

∣

∣

xik − xjk

θk

∣

∣

∣

∣

2
)

(15)

Defining A∗ as the covariance matrix between prediction and
training data, A∗∗ as the covariance matrix between prediction
data, and H∗ as the basis matrix for predictions, then the
posterior mean M and posterior variance V for predictions is
given by:

M = HT
∗ β̂ + AT

∗A
−1
y

(

y−HT β̂
)

(16)

V = σ̂ 2
(

A∗∗ − AT
∗A
−1
y A∗ + (H∗ −HA−1y A∗)

T(HA−1y HT)−1

(H∗ −HA−1y A∗)
)

(17)

Recalling Equation (6) and noting that applying a linear
operation to a Gaussian process results in a Gaussian process,
then the posterior distribution for the restitution curve is also a
Gaussian process, which we will refer to as a Restitution Curve
Emulator (RCE). Reintroducing the index c for different principal
components, the RCE posterior distribution for prediction at x∗

is given by:

F(x∗, S2) ∼ GP
(

M(x∗, S2),V(x∗, S2)
)

(18)

M(x∗, S2) = 80(S2)+
∑

Mc(x
∗) ·8c(S2) (19)

V(x∗, S2) =
∑

Vc(x
∗) ·8c(S2)

2 (20)

so that the distribution of F at every S2 value and parameter
x∗ is normally distributed. Note that the correlation between F

values with similar S2 results from the principal components (S2
does not index the random variables). RCEs are built for ERP(S1)
restitution curves in exactly the same way as for APD(S2) and
CV(S2) restitution curves. Prediction with RCEs is orders of
magnitude faster than simulation, with ∼ 104 predictions taking
only a few seconds on a laptop (i5 gen 6 processor, 8 Gb RAM).

2.4. Sensitivity Analysis
Since RCEs allow probabilistic prediction of restitution curves
from model parameters, they can be used to study how changes
in parameters cause changes in restitution curves. RCEs are
therefore ideal for exploratory model analysis. An additional
advantage of the RCE approach is that global sensitivity analysis
(SA), requiring a large number of model evaluations, can be
performed across the entire parameter space. Such analysis can be
performed for restitution curve values at particular S1S2 interval,
e.g., APD(S2:300), but here we apply SA to the individual RCE
components. The advantage to this analysis is that it is global
in two different senses: (i) the SA is across the entire parameter
space, rather than at a single point as for local methods; (ii) the
results can be parsimoniously interpreted in terms of the effects
of parameters on the entire restitution curve.

We use SALib (Herman andUsher, 2017) to calculate various
sensitivity indices via (Saltelli’s extensions to) Sobol sequences
(Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010), which require only
model inputs (parameters) and outputs (in this case, posterior
means of each RCE component). Borrowing slightly from the
terminology described by SALib Toolkit, we calculate three
indices: (S1) first-order sensitivity indices, which measure the
contribution to the output variance from variation of a single
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parameter alone; (S2) second-order sensitivity indices, which
measure the contribution to the output variance caused by the
interaction of two parameters; (ST) total-effect indices, which
measure the total contribution to the output variance caused by
a parameter (first-order effects and all higher-order interactions).
Sensitivity indices can be calculated by applying SA to posterior
samples from the full joint posterior between all parameter values
required for the Saltelli/Sobol sequence, such that the posterior
variance of the emulators is accounted for and SA confidence
intervals can be obtained, but we do not do that here.

2.5. Calibration
Given noisy observations Y from either a CV(S2) or APD(S2)
restitution curve, observed for S1S2 intervals S2Y, we will
assume a normal error model with homoscedastic variance
σ 2
Y linking the RCE to the observations. Although APD(S2)

measurements are difficult to make, we include them here
as part of our study of parameter identifiability, in order to
understand whether calibration of some parameters requires
APD(S2)measurements. Sincemeasurements from S2 restitution
curves involve S1 pacing across many beats in between each
premature S2 beat, it is likely that errors are in fact independent,
and for the purposes of investigating fundamental parameter
recoverability/identifiability, a normal error model is probably a
good default choice. The likelihood p(Y|x, σY ) is then given by:

Y ∼ N (F(x, S2Y), σ
2
Y )

∼ N (M(x, S2Y),V(x, S2Y)+ σ 2
Y )

(21)

Measurements of ERP using an S1S2 protocol are, in fact, only
observations of the S1S2 interval in which ERP lies. Representing
the lower endpoint of this interval by Y and the interval width by
1S2, the likelihood for a given parameter x would be p(ERP ∈
(Y ,Y +1S2)|x) = p(F(x, S2Y ) ∈ (Y ,Y +1S2)|x), which would
need to be evaluated by quadrature (this likelihood would also
pose difficult problems for MCMC, although this is somewhat
mitigated since F is a distribution with infinite support). Rather
than model Y = ERP− ǫ using ǫ ∼ uniform(0,1S2), we instead
model Y = ERP − δ where δ and ǫ have approximately the same
distribution. We chose the following mixture of Gaussians:

p(δ) =
N
∑

i=1

1

N

1√
2πs2

exp

(

− 1

2s2
(δ −mi)

2

)

(22)

where mi = (i − 1/2)1S2 and we choose s = 1S2/N. This
approximates uniform(0,1S2) but has infinite support. We can
then write δ as

δ = Z +
N
∑

i=1
I(K = i)mi (23)

whereZ ∼ N (0, s2), I is the indicator function, andK is a random
variable where P(K = i) = 1/N for i = 1 . . .N. If the RCE
prediction for ERP given x isF(x) ∼ N (M,V) then we can write

Y = F(x)− Z −
N
∑

i=1
I(K = i)mi (24)

from which we can identify that the likelihood is

p(Y|x) =
N
∑

i=1

1

N

1
√

2π(s2 + V)

exp

(

− 1

2(s2 + V)
(Y +mi −M)2

)

(25)

Note that Y +mi are the centers of N regular intervals spanning
the ERP bracket. This likelihood has two main advantages for
our calibration using RCEs: (1) it is analytical and requires no
quadrature to be performed, as would be the case for a truncated
uniform error model for ERP; (2) the distribution is continuous
and has infinite support (but can be sharpened by simply adding
more terms to the sum). We choose N = 10, which results in
approximately 82% of the probability density for δ falling within
the edges of the truncated uniform distribution (20 terms gives
≈ 90%, and 50 terms gives≈ 96%), which we find works well for
calibration. What is most important is that between the brackets
the likelihood is virtually flat, which is what we require for ERP
measured with an S1S2 protocol. Note that the log-likelihood,
almost always utilized for optimization (and used here), should
be calculated using the readily available logsumexp function,
to prevent numerical underflow.

The total loglikelihood, accounting for measurements from
different restitution curves, can be calculated by simply adding
the different corresponding loglikelihoods together. Using Y and
σY to represent all measurements, then the posterior distribution
is given (up to a constant) by:

p(x, σY|Y) ∝ p(Y|x, σY)p(x)p(σY) (26)

We chose the prior p(x) to be truncated uniform across the same
range of parameters specified in section 2.2. It is then possible to
find themaximum a posteriori (MAP) estimate for x and σY, and
also to perform Markov Chain Monte Carlo (MCMC) to obtain
samples from the posterior distribution. These estimates take into
account uncertainty about the observations as well as uncertainty
in RCE predictions.

We use noisy measurements generated from the mMS model
to demonstrate probabilistic calibration with RCEs, which also
allows us to study parameter identifiability. We use CV(S2) and
APD(S2) for S1: 600 ms, and ERP(S1) for S1: 400, 500, 600 ms.
Since it should always be possible to collect observations for the
S1 beat prior to the S2 beat, we include an observation at S2 =
S1 for every S2 observation. This helps the method to learn the
noise and therefore to focus on the more important question of
the shape of the S2 restitution curve rather than its asymptotic
limit (which can be measured much more efficiently with an S1
protocol). For simplicity of presentation and also to focus on
parameter recoverability, we first obtain the MAP estimate of the
parameters and the noise amplitude σY , and for MCMC we fix
the noise amplitude to its MAP value (for calibration to real data,
σY should be included in MCMC in order to obtain its posterior
distribution, but for studying identifiability it may be useful to fix
it as done here). We perform MCMC using the Python package
EMCEE (Foreman-Mackey et al., 2013), for 2,000 samples using
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FIGURE 2 | PCA components and means for CV(S2) curves and APD(S2)

curves for S1: 600 ms.

32 chains initialized with the MAP estimate (plus a small amount
of jitter), fromwhich we discard the first 1,000 samples as burn-in
and use a thinning factor of 5.

3. RESULTS

We ran the simulator from S1 350 to 700 ms at 25 ms intervals
using a maximin-optimized Latin hypercube design of 500
parameters in the ranges specified in section 2.2. We discarded
166 runs where ERP(S1) was not defined for all S1, which
restricted the dataset to contain ERP <350 ms, leaving 334
simulation runs with the highest remaining ERP being 337 ms.
Note that RCEs can be used to create a more careful design of
parameters that produce outputs only within a desired range, but
initially this is not possible since the map between the simulator
inputs and outputs is not known. We restrict our analysis of
S2 restitution curves to S1: 600 ms throughout, with other S1
intervals utilized for ERP(S1) only. In plots below, we denote τout
as “Tout” etc, to assist readability.

3.1. Restitution Curve Emulators for CV(S2)
and APD(S2)
The CV(S2) and APD(S2) restitution curves resampled to 1ms
resolution are shown in Figure 1, colored by ERP(S1: 600) and
plotted only for S1S2 intervals > ERP (the region in which
observations can be collected) to aid visualization. The data
means and the principal components are shown in Figure 2. We
established that three principal components were sufficient to
explain over 99% the variance in the dataset (of the variance
retained for three components, it was divided as follows: 8CV

c :
78.637, 20.460, 0.897%, for 8APD

c : 68.690, 29.131, 2.148%), so

FIGURE 3 | R2 scores for S2 restitution curves from 5-fold cross-validation.

Performance decreases with S2, although these validation scores include RCE

prediction at S2 ≤ ERP(S1) corresponding to virtual regions of the curves

where no measurements can be made.

we retain only three components for the RCEs. Note that there
is no particular reason why a linear basis should require the
same number of components as coefficients in the original non-
linear mapping Equation (5), and we found that emulation of a
fourth component was possible (i.e., not all higher components
are just “noise”). In both cases, the first principal component,
representing the direction in which the curves vary the most,
represents mainly the height of the curves in the limit of long
S1S2 interval, i.e., the asymptotic region. However, for CV(S2)
this component is much flatter with respect to S2 than for
APD(S2). For the second component the opposite is the case,
showing much less variation across S2 for APD(S2) compared to
CV(S2). The third components represents more subtle curvature
of the “knee” of the curve, when the restitution curves begins
to fall away rapidly, and is very similar for both CV(S2) and
APD(S2), most notably showing the peak in approximately the
same S2 location.

We fit an RCE for both CV(S2) and APD(S2) for S1: 600 ms.
For validation, we used 5-fold cross validation and calculated
the average R2 score over the folds for each S1S2 interval. The
RCE validation results are shown in Figure 3, showing that the
performance is extremely good, especially for long S1S2 intervals.
The dependence of performance based on S1S2 interval is likely
to be linked to resampling the curves into virtual regions where
S2 ≤ ERP, where it is not unreasonable to suppose that the
resampling itself may contain errors since resampling here is only
extrapolation. RCEs do not actually need to make predictions
in these regions because no measurements can be obtained
here anyway. Also, RCEs predict a distribution rather than a
single number. Our training dataset of 334 simulation runs was
relatively small: for comparison, 35 = 243 points would be
required to place a data point at the corners, face centers, and
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body centers of a five-dimensional hypercube. In general, having
validated RCEs for a particular model and range of parameters,
we would consider then collecting a larger training dataset
(with a more carefully chosen parameter range) for building
more accurate RCEs, which would both improve accuracy and
reduce posterior variance of the RCE predictions. However,

FIGURE 4 | Sensitivity indices of the coordinates fc of the principal

components 8c for the model parameters for S1: 600 ms. The total-effect

indices are plotted semi-transparently, with the first-order indices (which

contribute to the total-effect indices) overlaid with opaque shading.

we do not do this here as the validation scores are already
extremely good.

The sensitivity analyses for total-effect indices and first-order
effects are shown in Figure 4, and second-order interaction
effects are shown in Figure 5. In Figure 4, the total-effects are
shown faded, with more opaque regions representing the first-
order effects. The faded region therefore shows all higher-order
effects of the parameters on the principal components. It is
notable that higher-order effects are less present in the primary
principal components, particularly for 8CV

1 (S2) meaning that
the asymptotic region of the restitution curve is almost entirely
determined by CVmax as would be expected. 8APD

1 is determined
most strongly by first-order effects of τout and APDmax, which
can be seen to effect recovery in Equation (2) approximately for
phases 2 and 3 of the action potential.

Of particular note is that 8CV
2 (S2) is strongly effected by the

same parameters that mainly determine 8APD
1 (S2), which makes

sense since 8CV
2 (S2) mainly codes for differences between the

highest and lowest values in the restitution curves, and CV takes
its lowest observable values when pacing rate is close to APD.
The effects of CVmax on 8APD

2 (S2) are also extremely important.
We had initially supposed that these effects may be artifacts, but
further analysis (with a longer simulation strip, more S1 beats,
and so on) revealed that this was not the case. In fact, inspection
of Equation (1) reveals that such a causal effects ought to be
expected: the diffusion term in Equation (1) not only depends
explicitly on D (where CVmax ∝

√
D), but the magnitude of

the diffusion term ∇2Vm precisely depends on spatial differences
which are determined by the electrical wave-front propagation
velocity. This is a good example of sensitivity analysis providing
insight into the model, and shows why APD restitution curves

FIGURE 5 | Second-order interaction effects for S1: 600 ms, with text labels applied in cells where the effects are at least 0.01 (i.e., account for at least 1% of the

overall variance).
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for calibration should be calculated in a tissue model rather than
only from a cellular model (and since this is significantly more
time consuming, is a strong motivating factor for using RCEs).

Parameter τopen only shows first-order effects above 10% for
the third principal component of both CV(S2) and APD(S2), for
which it has the largest total effect of all parameters. The variance
contributed by this third component to both curves is relatively
small, and given that the magnitude of higher-order effects for
τopen is comparable to its first-order effects, it may be difficult to
precisely calibrate τopen using noisy measurements. Parameter τin
shows a modest effect on 8APD

2 , likely due to the contribution to
action potential duration resulting from differences in upstroke,
perhaps through the same effects of electrical propagation on
tissue repolarization discussed above.

Since PCA gives a linear basis, we tested using least squares
to fit the basis to noisy data. This gives a Maximum Likelihood
estimate under the assumption of normally distributed noise,
also giving a variance measure on the fit coordinates. We had
hoped that this information, considered alongside the sensitivity
indices, would allow us to judge whether certain parameters were
recoverable for a particular restitution curve. Unfortunately this
methodwas not robust, often resulting in completely nonphysical
restitution curves (that minimized the least squares problem, but
which have zero probability i.e., cannot be produced from the
simulator), and does not help to calibrate the model parameters.

3.2. Restitution Curve Emulators for
ERP(S1)
RCEs were built for ERP(S1) for S1: 350–700 ms with 25 ms
intervals (we did not resample these curves), using the first
two principal components (the variance captured by these two
components was divided 99.432 and 0.549%). The smallest R2
score was above 0.999, with little variation across S1 interval.
These components are shown in Figure 6 along with the
sensitivity indices [the higher-order effects are very small, so
we don’t show the interaction effects for ERP(S1)]. The first
component almost entirely determines the height of the curve,
with the lack of curvature demonstrating that the height can
change verymuch independently of the difference between values
at lowest and higher S1 interval (in other words the gradient).
The second component codesmainly for the gradient of the curve
(changing the difference between the lowest and highest values).

Interestingly, τopen has the largest first-order effect and total-
effect on 82

ERP(S1), though the first-order effects are similar to
APDmax and only twice the τout first-order effects. Nonetheless,
it is interesting to ask whether ERP(S1) observations could be
used to calibrate τopen, given that it may be difficult to calibrate
from noisy S2 restitution curve measurements. Figure 7 shows
how RCEs can be used for exploratory model analysis, in this case
visualizing the effects of particular parameters in different regions
of the parameter space: we set CVmax and τin to the centers of
their ranges, and each subplot corresponds to a different τout
and APDmax combination, while τopen is varied across its entire
range within each subplot. These results clearly demonstrate the
effects of τopen on the ERP(S1) curves (in line with the sensitivity
analysis), but show that it would be difficult to calibrate τopen

FIGURE 6 | ERP(S1) restitution curves, showing (top) principal components

and mean, and (bottom) first-order and total-effect sensitivity indices for the

coordinates of the principal components.

without a small resolution for the S1S2 protocol (even if the other
four parameters were already known, which of course they would
not be). In fact, there are regions on the ERP(S1) curve (where
the curve appears to twist) where τopen does not effect the value
of the curve at all (and the S1 location of this point changes with
respect to other parameters).

3.3. Probabilistic Calibration
To demonstrate calibration using RCEs, we rebuilt the RCEs for
S1: 600 ms on 95% of the dataset, retaining 5% to use as a ground
truth. From these ground truth restitution curves, we picked one
for which the parameters were not too close to the edges of the
parameter range so as to falsely imply a more precise calibration
than is generally possible, but our results below are representative
for the mMS model. We show calibration for several different
combinations of measurements, explained below. A noisy dataset
was generated from the ground truth restitution curves using an
S1S2 interval resolution of 10 ms (this also determines the ERP
resolution, as explained in section 2.5) from 170 to 360 ms for
measurements [with CV and APD measurements for S2 below
ERP(600) discarded], adding normally distributed noise with
standard deviation 0.05m/s for CV and 5ms for APD.We would
argue that these measurements are probably overly precise, but
we chose these values to emphasize the difficulties of precise
calibration even with high signal-to-noise ratio. We use ERP(S1)
measurements for S1: 600, 500, 400 ms (in section 3.4, we address
whether S2 restitution curves for multiple S1 are useful).

Figure 8 shows MAP estimates of the restitution curves fitted
to noisy CV(S2) and ERP(S1) data (left) and noisy APD(S2) and
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FIGURE 7 | RCE predictions to explore the effects of τopen on ERP(S1) across the parameter space.

FIGURE 8 | The RCE prediction from maximum a posteriori (MAP) parameter estimates given noisy measurements for (left) CV(S2) and ERP(S1), (right) APD(S2) and

ERP(S1), shown as light shaded regions representing RCE 95% confidence intervals. The orange dashed curves show these intervals including the observation error,

also learned from MAP fitting. The noisy S2 restitution data are shown as crosses, while the red shaded bars represent observed intervals containing ERP: (top): bars

horizontally span ERP(S1:600) interval; (bottom) bars vertically span ERP(S1) interval for several S1. The solid black lines in all plots represent the corresponding

ground truth curves.
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FIGURE 9 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given

the same measurements shown in Figure 8 [black crosses are noisy S2 restitution data, red bars are observed ERP intervals, (left) MCMC with CV(S2) and ERP(S1)

data, (right) MCMC with APD(S2) and ERP(S1) data].

ERP(S1) data (right). The true restitution curves (from which
the noisy observations were generated) are shown as black lines,

with the cross-markers showing the noisy measurements. The

ERP(S1:600) bracket (showing the S1S2 interval in which ERP
is determined to lie) is plotted as a shaded interval in the S2

restitution plots, while for the ERP(S1) restitution plots thick

vertical bars extend between the observed ERP brackets [the

two ERP plots show the same ground truth and observed S2

intervals, but with different MAP fits CV (left) and APD (right)].
The posterior distribution of the RCE predictions with the MAP

parameter estimates are shown as the 95% shaded confidence

intervals, with the posterior mean falling exactly between these

intervals but omitted for clarity. The orange dashed lines shows

the confidence intervals including the estimated noise i.e., M ±
1.98

√

V + σ 2
Y ). It is clear that the MAP estimate has identified

plausible restitution curves given the noisy data.
The MAP estimates, while representing the best fits to the

data, should be interpreted cautiously, as they tell us nothing
about the posterior distribution for the parameters. Another
randomdraw of noisymeasurements from the same ground truth
would likely result in completely different MAP estimates for the
parameters. For the MCMC results for the posterior distribution
below, we fix the noise σY to the values obtained from the MAP
estimate, in order to restrict plots and uncertainty to the model
parameters (due to the S2 = S1 data, the noise was estimated
extremely well, but posterior uncertainty about the noise level
is generally of interest). We used MCMC to obtain samples
from the posterior distribution of the parameters, as described
in section 2.5, for the same data as in Figure 8. Figure 9 shows
the RCE posterior means for 100 random samples from the

posterior distribution obtained with MCMC. In these plots, the
95% confidence intervals have been plotted semi-transparently
to assist with visualization of density. For the S2 restitution
curves the density decreases away from the data, whereas for
ERP(S1) restitution the density is much more uniform due to
the approximately uniform error model [but will not be uniform
since multiple data have been used, as opposed to data only for
ERP(S1) for a single S1].

Figures 10, 11 show the posterior distribution in parameter
space for the data corresponding to Figure 9 (for all posterior
samples after burn-in and thinning). The subplot axes span the
parameter ranges given in section 2.2. Since we are presenting
results for a particular ground truth curve, and the particular
results will vary for every random draw of the measurement
errors, we will focus on reporting the aspects of the results that
are representative of the mMS model generally. However, in the
Discussion we accept the difficulty of making generalizations
about parameter identifiability from restitution curves. For
Figure 10 [CV(S2) and ERP(S1) measurements], we see that the
posterior uncertainty about all parameters except CVmax and
τopen is quite large (by which we mean that the marginal widths
of the distribution are comparable to the parameter ranges).
Generally for CV(S2) and ERP(S1) measurements, both τin and
τopen are quite imprecisely calibrated, but in this particular case
τopen has been calibrated fairly precisely, simply because the
particular errors present in the measurements allowed for this
and because the signal-to-noise ratio in this case is high because
the overall value of the CV(S2) is reasonably high, allowing 83

3 to
be learned. It can be seen for the (τout ,APDmax) panels that these
parameters appear to be constrained to a slice through parameter
space, and the broad marginal histograms reflect this. This latter
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FIGURE 10 | The posterior parameter distribution for fits to CV(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

result could probably have been inferred from the sensitivity
analysis, since these parameters both strongly influence 8APD

1
and ERP(S1).

For Figure 11 [APD(S2) and ERP(S1) measurements], the
posterior distribution is quite different to that obtained with
CV(S2) and ERP(S1), although there are similarities. CVmax

is poorly calibrated, which is not surprising in the absence
of CV(S2) data. The posterior distribution is again spread
as a strip through (τout ,APDmax), indicating the difficulty of
distinguishing between different contributions to APD even
when the APD(S2) measurements are available. However, the
peak of the posterior distributionmatches the ground truth better
for these parameters, which we generally find to be the case
for APD(S2) and ERP(S1) measurements. Despite the ERP(S1)
observations being identical to those for the CV(S2) and ERP(S1)
calibration, τopen is imprecisely calibrated here, which suggests
that the precision shown in Figure 11 was the result of good
estimation of 8CV

3 (S2) rather than ERP(S1) measurements. Note
that the first-order sensitivity to τopen is almost twice as large

for 8CV
3 (S2) than for 8APD

3 (S2), so we should expect better
calibration of τopen to CV(S2) generally. However, the signal-
to-noise ratio matters a great deal, since the third principal
components are relatively subtle effects.

Figure 12 shows plots of RCE predictions for the posterior
distribution obtained from MCMC using CV(S2), APD(S2),
and ERP(S1) measurements simultaneously. The distribution
of curves in these plots appears narrower but visually similar
to Figure 9. However, Figure 13 shows that the posterior

FIGURE 11 | The posterior parameter distribution for fits to APD(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log-likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

distribution of parameters is far better constrained compared
to either Figure 10 or Figure 11. The peak of the distributions
captures the ground truth parameter extremely well. While one
reason for contraction of the posterior distribution is simply
the increased amount of data, the effects are mainly down to
how the data provide partially orthogonal information about the
parameters. It should still be noted that these results depend
highly on the particular draw of errors, and how ERP(S1) “lines
up” with the intervals for S1S2 protocol resolution. Generally,
we find that τopen is the most imprecisely calibrated parameter,
followed by τin. Note that the shape of the posterior distribution
across (τout ,APDmax) is still strip shaped.

3.4. Restitution Surfaces
S2 restitution curves can be obtained for a range of S1 values,
and the resulting data arranged into a 2D space of S1 and S2
to give restitution surfaces. Each S1S2 combination corresponds
to a dimension in the output space, and PCA can be performed
on these 2D images. The resulting principal components can be
visualized by plotting the elements of the principal components
against their corresponding S1 and S1S2 interval. Figure 14

shows the mean and first three principal components of
the CV(S1,S2) and APD(S1,S2) restitution surfaces, plotted as
contours in order to help with visualization (the colorbars are not
shown as they are not required for our discussion). RCEs could be
built with these principal components (such emulators might be
called Restitution Surface Emulators) such that the surfaces could
be predicted from the parameters.
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FIGURE 12 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution

given the same measurements shown in Figure 8 (black crosses are noisy S2 restitution data, red bars are observed ERP intervals). MCMC utilized CV(S2), APD(S2),

and ERP(S1) data simultaneously, unlike in Figures 8, 9.

FIGURE 13 | The posterior parameter distribution for calibration to CV(S2),

APD(S2), and ERP(S1) measurements simultaneously. The intersection of

vertical and horizontal lines mark the true parameter value. The lower diagonal

shows the density via hexbin plots, while the upper diagonal shows the log

likelihood values for each sample plotted in order of increasing likelihood. The

diagonals show the marginal histograms of each parameter.

Figure 14 shows that the principal components vary relatively
little with S1 interval, since the contour lines are nearly parallel
to the S1 axis. This means that the restitution surfaces are highly

correlated with S1 interval. For the third component around
S1S2 intervals of 275 ms, the peak in the restitution curve seen
in the S2 restitution curve is now a ridge in the restitution
surface, decreasing in height with decreasing S1 interval. These
images show that collecting restitution curves for e.g., CV(S1:
400 ms) will be very similar to CV(S1: 600 ms, S2: 400 ms)
etc., such that S1 pacing could be used to collect similar data
more efficiently with S1 pacing rather than an S1S2 protocol, for
values of S1 interval for which steady pacing is possible. However,
learning the principal modes of variation of the surfaces (as
with the curves) requires measurements at S1S2 interval far
below values of S1 interval that can be used for steady pacing
in the clinical setting, so it is not clear that such measurements
would be useful. Furthermore, restitution curves for higher S1
interval have a larger variation in values over S2 (even only
considering values for S2 < 350ms, as can be seen in the third
component in particular), making calibration with noisy data
more robust for higher S1 as the signal-to-noise ratio will be
higher (equivalently, differentiation between different curves is
easier). Upper values of S1 interval are limited by the heart’s
own natural pacemaker behavior, so S1: 600 ms is probably a
conservative choice for clinical pacing. In summary, it is probably
not worth collecting restitution data for a variety of S1 values,
except when it is obtained for free due to pacing at different S1
intervals to obtain ERP(S1).

3.5. Diastolic Interval Restitution Curves
We also investigated RCEs of Diastolic Interval (DI) restitution
curves, where DI = S2 − ERP, such that all curves begin
at DI = 0, which seem advantageous since the resampling
would not produce any “virtual” regions (as for S2 restitutions
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FIGURE 14 | Principal components and means of CV(S1,S2) and APD(S1,S2)

restitution surfaces, displayed as contour plots where dark/light colors

represent low/high values, respectively. These surfaces are 2D analogues to

the curves in Figure 2.

for S1S2 interval < ERP). The worst effect that these virtual
regions can have for S2 restitution is that PCA will account for
variation between curves that considers these “virtual” regions,
so the dimensionality reduction for DI curves may be slightly
more optimal than for S2 curves (although there may be errors
in DI curves caused by a finite ERP resolution). Alternative
restitution curve fits that are asymptotic for S2 < ERP (such
as a sigmoid curve, which fits the restitution curves from
many electrophysiology models) might reduce these effects from
the virtual region. However, it is trivial to simply increase
the number of principal components in RCEs if required. S2
restitution curves can be calibrated to data with and without
ERP measurements, but this is not the case for DI restitution
curves, since the assignment of DI to the measured data requires
predicting ERP. This makes calibration highly dependent on
ERP prediction, but in a purely artificial way caused by the
way the problem is posed. Furthermore, given that RCEs
predict a distribution, the likelihood calculations would involve
a convolution, or “blurring,” of predictions across DI, since the
DI “label” of the data would have a distribution. Since these
difficulties are completely avoided by simply using S2 restitution
curves, we do not currently see any benefit to emulating DI
restitution curves.

4. DISCUSSION

In the present study, we have demonstrated a way to emulate
restitution curves by using Gaussian processes to predict the
principal component coordinates of restitution curves from
model parameters. These Restitution Curve Emulators (RCEs)
make it possible to rapidly and accurately predict CV, APD,
and ERP restitution curves from model parameters, allowing for

sensitivity analysis, model exploration, and Bayesian calibration
to noisy data.We also developed an analytical likelihood function
for ERP observations, which is especially useful for calibration
with RCEs. The main benefits of RCEs are prediction speed
and quantification of prediction uncertainty, but an additional
advantage is their parsimonious structure: sensitivity analysis can
be performed for the separate principal components, and the
problem of recoverability can be interpreted as the problem of
learning features of restitution curves that are sensitive to changes
in parameters.

It is difficult to guess what combination of measurements
will be required to identify model parameters. Larger first-
order sensitivity indices for more primary features suggest
higher identifiability, and if several parameters have similar
effects on a feature then it will be difficult to distinguish them
from data about that feature alone. However, it is difficult
to make general statements about identifiability/recoverability
of parameters given a pacing protocol: it may turn out that
parameters are recoverable in some parts of parameter space
but not others, or that calibration is extremely sensitive to
measurement errors, or that pacing resolution does not allow
to resolve different restitution curves effectively. It is even
quite difficult to generalize about how the credible intervals
in the posterior distribution depend on the noise levels/pacing
resolution in the data, although RCEs could be used to
empirically determine this relation via brute force sampling
throughout the parameter space. RCEs could find application in
the design of clinical data collection protocols intended for the
calibration of personalized models.

The identifiability of model parameters, as well as the
practical consideration of whether parameters can be recovered
from sparse and noisy clinical data, remain challenging issues
(Whittaker et al., 2020) even with the mMS model, which
can be considered a minimal model. It remains to be seen
if more detailed models that have been designed to minimize
the number of free parameters can overcome these obstacles
(Pathmanathan et al., 2019). Model discrepancy can be an issue
with calibrating models, often manifesting as an inability to
simultaneously reproduce two behaviors (Coveney and Clayton,
2018; Lawson et al., 2018). In our framework, the error
variance can include variance from noise as well as discrepancy
variance (Vernon et al., 2010), but more complex modeling of
discrepancy would also be possible (Brynjarsdóttir and O’Hagan,
2014), such as modeling systematic offset using a bias term in
the likelihood.

Extending our approach to biophysically detailed cell models
is a logical next step, which could be used either to examine
the properties of these models in detail, and to examine
parameter recoverability for simulated clinical measurements.
Since our approach involves emulating the principal components
of restitution curves, we expect that it can be extended to more
detailed models without incurring computational costs apart
from those involved in computing the initial set of restitution
curves. Another option is the use of more complex stimulation
protocols (Groenendaal et al., 2015; Beattie et al., 2018), which
can work well for the experimental setting but could be difficult
to deploy clinically.
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Posterior uncertainty in calibration for model personalization
should not be overlooked, as it is important that uncertainty is
propagated forward to predictions when personalized models
are used for diagnosis or decision support in the clinical
setting. Calibration methods that obtain parameterizations
consistent with observations but without obtaining the
posterior distribution, and especially methods that provide
only a single fit to the data, are not well-suited to this task.
The methods presented in this paper were motivated by
the need to perform probabilistic calibration with clinical
data such as restitution curves. We suggest that the English
idiom “How long is a piece of string?”, used to reply to
questions that require an answer to be calculated on a case-
by-case basis, be used as a rule-of-thumb when considering
questions about the identifiability of electrophysiology
model parameters from restitution curve measurements.
We believe the answer requires calculating the posterior
distribution of the model parameters given the data, and
that RCEs are an extremely effective tool with which to
do this.
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