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a b s t r a c t

Guiding neuronal cell growth is desirable for neural tissue engineering but is very challenging. In this

work, a self-assembling ultra-short surfactant-like peptide I3K which possesses positively charged lysine

head groups, and hydrophobic isoleucine tails, was chosen to investigate its potential for guiding neu-

ronal cell growth. The peptides were able to self-assemble into nanofibrous structures and interact

strongly with silk fibroin (SF) scaffolds, providing a niche for neural cell attachment and proliferation.

SF is an excellent biomaterial for tissue engineering. However neuronal cells, such as rat PC12 cells,

showed poor attachment on pure regenerated SF (RSF) scaffold surfaces. Patterning of I3K peptide nano-

fibers on RSF surfaces significantly improved cellular attachment, cellular density, as well as morphology

of PC12 cells. The live / dead assay confirmed that RSF and I3K have negligible cytotoxicity against PC12

cells. Atomic force microscopy (AFM) was used to image the topography and neurite formation of PC12

cells, where results revealed that self-assembled I3K nanofibers can support the formation of PC12 cell

neurites. Immunolabelling also demonstrated that coating of I3K nanofibers onto the RSF surfaces not

only increased the percentage of cells bearing neurites but also increased the average maximum neurite

length. Therefore, the peptide I3K could be used as an alternative to poly-L-lysine for cell culture and tis-

sue engineering applications. As micro-patterning of neural cells to guide neurite growth is important for

developing nerve tissue engineering scaffolds, inkjet printing was used to pattern self-assembled I3K pep-

tide nanofibers on RSF surfaces for directional control of PC12 cell growth. The results demonstrated that

inkjet-printed peptide micro-patterns can effectively guide the cell alignment and organization on RSF

scaffold surfaces, providing great potential for nerve regeneration applications.
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1. Introduction

The human nervous system is composed of the central nervous

system (CNS) and the peripheral nervous system (PNS), which can

be easily impaired by injuries, such as trauma and car accidents, as

well as diseases, including Alzheimer’s disease, Parkinson’s disease,

strokes and brain tumours.[1–3] Regeneration of both damaged

CNS and PNS is challenging in tissue engineering.[3–5] It is there-

fore vitally important to develop well-defined functional scaffolds

for nerve tissue regeneration to help guide neural cell attachment,

alignment, spreading and proliferation.[6–8]

In addition, alignment and interconnection of neuronal cells

in vitro allows the mimicking of neuronal architectures in vivo

and help in understanding the underlying mechanisms needed to

promote and accelerate regeneration of damaged neural tissue.

Micro-patterning technology, which has already attracted signifi-

cant attention, can enable the geometric control of neuronal cell

alignment.[9–12] Lithography, including ultraviolet lithography

(UVL), soft lithography (SL) and electron-beam lithography (EBL),

is a traditional technology for micro-patterning proteins onto sub-

strates.[13,14] Compared to UVL and EBL, SL is a convenient tech-

nique,[15] which has been widely used to micro-pattern neuronal

cells.[9,10,12] For example, micro-patterned polydimethylsiloxane

(PDMS) has been shown to enhance the attachment, alignment,

spreading, proliferation, neurite formation and elongation of neu-

ronal cells.[12] However, SL needs to be operated in a high-

standard clean room, and samples can be easily contaminated dur-

ing fabrication.[16,17] Inkjet printing, on the other hand, is a cost-

effective and flexible micro-patterning technique which is capable

of patterning complex geometries at high precision.[13,14] More-

over, as inkjet printing is a non-contact technique, cross-

contamination of the final product is significantly reduced. There-

fore, it was used as a micro-patterning technique to pattern self-

assembled peptide nanofibers on regenerated silk fibroin (RSF) sur-

face to guide the growth of neuronal PC12 cells in this study.

Silk fibroin (SF), extracted from Bombyx mori (B. mori), has

received significant attention due to its biocompatibility, tuneable

biodegradability, low immunogenicity and excellent mechanical

properties.[18,19] RSF possesses tuneable rheological properties

and can be used to fabricate different types of scaffolds, such as

hydrogels,[20] films[21] and sponges.[22] These scaffolds have

been successfully applied in a variety of tissue engineering applica-

tions, such as skin,[23] vascular[24] and musculoskeletal tissue

engineering to match the different properties of autologous tis-

sues.[25] However, B. mori silk lacks the cell adhesive components,

such as arginine-glycine-aspartic acid (RGD) sequence, which pro-

motes cell attachment.[26–28] Therefore, without the addition of

cell adhesive molecules, such as poly-L-lysine (PLL), and extracellu-

lar matrix (ECM) components, silk scaffolds normally have poor

cell attachment,[29,30] which is particularly significant for neu-

ronal cells.[31]

Cell adhesive molecules have been successfully applied as scaf-

folding materials in nerve tissue engineering.[32] During the last

two decades, peptide sequences such as RGD, YIGSR and IKVAV

have been used to promote neuronal cell attachment, proliferation,

and neurite outgrowth.[33,34] Self-assembled peptide nanofibers

(such as RADA16, EAK16) are novel biomaterials that can be fabri-

cated through bottom-up approach and have the potential to be

used as scaffold materials for tissue engineering.[35,36]

Surfactant-like peptide AC-I3K-NH2 (I3K) has an acetyl group on

its N terminal and its C terminal was blocked by an amine group.

Three hydrophobic isoleucine (IIe or l) and one hydrophilic lysine

residue (Lys or K) causes the peptide to possess the surfactant fea-

ture and promote the self-assembly of I3K into long and uniform

nanofibers in aqueous solutions with the K residues on the outside

of the nanofibers.[37,38] Positively charged PLL has been shown to

promote neuronal cell attachment.[39] Therefore, it is anticipated

that the self-assembled I3K peptide nanofibers also have great

potential as a cell adhesive matrix for nerve tissue regeneration.

In this study, RSF/I3K peptide scaffolds were fabricated to guide

neuronal cell attachment. The coating and patterning of peptide

nanofibers were achieved through spin coating and inkjet printing,

respectively. The glass/silicon wafer substrates were coated with a

layer of negatively charged RSF[40] before the coating, or printing,

of peptide nanofiber solutions. The cationic peptide nanofibers

adhered onto the RSF surfaces through charge-charge interactions.

Rat pheochromocytoma (PC12) cells were cultured onto RSF/I3K

scaffolds to investigate the effect of the I3K peptide nanofibers on

cell attachment, proliferation and viability. Atomic force micro-

scopy (AFM) was used to further analyse cell morphology, height

and footprint on the RSF/I3K scaffold surfaces.[41] The results indi-

cated that I3K peptide nanofibers promoted cell attachment, prolif-

eration and neurite outgrowth of PC12 cells. Immunolabelling also

demonstrated that coating of I3K nanofibers onto RSF surfaces, not

only increased the percentage of cells bearing neurites, but also

increased the average maximum neurite length. Cells attached

along the inkjet-printed peptide nanofiber patterns, demonstrating

that inkjet printing is a promising technique to pattern scaffolds

for geometrical guidance of neuronal cell growth as well as inves-

tigation of neurite development and formation in vitro.[42]

2. Experimental section

2.1. Materials

The peptide Ac-I3K-NH2 (purity > 98%, w/w) was purchased

from GL Biochem Ltd. (Shanghai, China). B. mori silkworm cocoons

were supplied by Biological Science Research Centre, Southwest

University, China. PC12 Adh (CRL-1721.1) cell line was obtained

from the American Type Culture Collection (ATCC). Silicon wafers

were purchased from Compact Technology Ltd, UK. Unless other-

wise specified, chemicals and regents (analytical grades) were pur-

chased from Sigma Aldrich, UK.

2.2. Preparation of regenerated silk fibroin

B. mori silkworm cocoons were cut into small pieces (~1 cm2)

and degummed in 0.02 M Na2CO3 solution at 100 �C for 1.5 h under

stirring. Degummed silk was rinsed three times with deionized

water (DI water) to ensure the removal of sericin. After which

the degummed silk fibres were dried for 2 days in a drying oven

at 60 �C and dissolved under stirring in Ajisawa’s reagent (CaCl2/

ethanol/deionized water = 1:2:8 M ratio) at 80 �C for 1.5 h. The

resulting viscous solution was dialyzed against DI water until a

conductivity below 10 lS of the dialysis fluid was reached. The

resulting RSF solution was then centrifuged for 10 min at

10,000 rpm to remove any particulates. The RSF concentration

was determined by weighing dried RSF peptide residues on micro-

scope slides. Stock RSF solutions of 5 mg/mL and 40 mg/mL were

made by diluting with DI water and stored at 4 �C prior to use.

2.3. Preparation of RSF / peptide samples

I3K peptides were dissolved in 20 mM HEPES buffer (pH 6.0) at

5 mg/mL and incubated for 7 days under ambient conditions for

self-assembly. The sample was then diluted with 20 mM HEPES

buffer (pH 6.0) to 4, 3, 2, 1 mg/mL prior to use. RSF/peptide bilayer

scaffolds were made by spin coating (Laurell Technologies Corpo-

ration, USA) onto 1 cm2 microscope cover glasses or silicon wafers.

The first layer of RSF (30 lL , 8,000 rpm, 25 s) was coated followed
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by fixing using 95% wt/vol ethanol (20 lL , 4,000 rpm, 25 s), to con-

vert the RSF layer from soluble random coil structure (silk I) to

insoluble b-sheet structure (silk II).[43] The second layer, i.e. the

positively charged peptide (30 lL , 8,000 rpm, 25 s) was coated

and adhered onto the negatively charged RSF substrate via charge

interaction. The solution concentration ratios of RSF/peptide were

5:0; 40:0; 40:1; 40:2; 40:3; 40:4; 40:5 and 0:5, respectively.

2.4. Atomic force microscopy

AFM measurement (Bruker Dimension Icon, Bruker Corpora-

tion, USA) was performed in tapping model with SCANASYST-AIR

probes at room temperature. To image peptide nanostructures,

peptide solution was dropped onto freshly cleaved mica and dried

under gentle air flow. AFMwas also used to characterise the topog-

raphy of the RSF/I3K scaffolds and attached cells. PC12 neuronal

cells were fixed with 3.7% paraformaldehyde (PFA) in phosphate

buffered saline (PBS) for 45 min at room temperature. The PBS

solution was then removed carefully with a pipette and the sam-

ples were washed with DI water gently to avoid crystallisation of

PBS buffer salts. The samples were then left to dry at room temper-

ature for 1 min prior to AFM characterisation. Images were anal-

ysed by NanoScope Analysis software (Version 1.5).

2.5. Inkjet printing

All glass slide surfaces were cleaned with 5% Decon90 solution

and rinsed with plenty of DI water before printing: 1 layer of RSF

solution (40 mg/mL) was coated via spin coating on the glass slides

(30 lL per cm2, 8000 rpm, 25 s) followed by 95% wt/vol ethanol

solution (20 lL, 4000 rpm, 25 s) via spin coating. A Jetlab 4xL

(MicroFab Inc., Texas, US) equipped with a piezoelectric drop-on-

demand (DoD) jetting device (60 mm nozzle diameter) was used

for the printing of the I3K peptide nanofiber ink. The actuation volt-

age and frequency used were 90 V and 300 Hz, respectively. The

distance between the nozzle tip and the substrate was approxi-

mately 10 mm. To investigate the effect of printed I3K peptide

nanofiber pattern on the growth of PC12 cells, 1 layer of the pat-

tern ‘‘SHEF” was printed.

2.6. Culture of PC12 neuronal cells on scaffolds

PC12 neuronal cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) with high glucose and supplemented with 10%

foetal calf serum (FCS), 1% penicillin/streptomycin,1% glutamine

and 0.5% fungizone in an incubator at 37 �C under 5% (v/v) CO2.

The medium was replaced every 3 days. RSF/I3K scaffolds were

sterilized under ultraviolet light for 30 min before being washed

in PBS for three times, and then placed in 12 well plates under

metal rings (to secure the samples). Confluent cells were detached

with 0.25% (w/v) trypsin-EDTA (ethylenediaminetetraacetic acid)

and then seeded onto scaffolds’ surface at 10,000 cells/cm2 through

the holes of metal rings. These samples were cultured in DMEM

medium containing 10% FCS for 6 days.

2.7. Cell adhesion assay

Following incubation, neuronal cells were fixed in 3.7% PFA for

45 min at room temperature followed by washing twice with PBS

and incubated for a further 45 min with 0.1% Triton X-100. Finally,

the cells were washed twice with PBS and stained with FITC-

phalloidin to visualize actin filaments and 4,6-diamidino-2-

phenylindole dihydrochloride (DAPI) to visualize the nuclei. The

samples were then imaged using a fluorescence microscope (Nikon

Eclipse LV100).

2.8. Resazurin assay

Metabolic activity of PC12 cells was assessed after 24, 72, and

144 h in culture. Culture medium was removed, and samples were

cultured in a 100 lM resazurin salt in PBS, and assay dependent

culture media for 4 h at 37 �C and 5% CO2. Triplicates of 100 lL,
of reduced formazan product, were then transferred to a black 96

well plate and the fluorescence was read in a FLx800 fluorescence

plate reader (Biotek Instruments Inc.) at 540/635 nm. Background

fluorescence readings were measured and subtracted from results.

2.9. Live and dead assay

A live / dead assay was carried out by exchanging the medium

with serum-free medium containing 0.001% (v/v) Syto-9TM (Invit-

rogen) and 0.0015% (v/v) propidium iodide (PI) and then incubated

for 30 min in an incubator at 37 �C under 5% (v/v) CO2. The samples

were then imaged using an upright Zeiss LSM 510 confocal micro-

scope. An argon ion laser was used to visualise live cells stained

with Syto-9 TM (kex = 494 nm / kem = 515 nm) and a helium–neon

laser for dead cells stained with PI (kex = 536 nm / kem = 617 nm).

ImageJ software (National Institutes of Health, USA) was used to

count the number of live and dead cells for several images of

2500 lm2 sample areas randomly and averaged. Microscope

images were converted to grayscale 8-bit images and then con-

verted to a binary image via selecting the best threshold to gener-

ate a high contrast image, cell number was then counted via the

‘analyse particles’ algorithm in ImageJ.

2.10. Immunostaining of the neurites assay

Neuronal cell differentiation, on samples, was assessed by mea-

suring the lengths of neurites extending from cells. PC12 cells were

washed with PBS before cells were fixed with 3.7% (v/v) PFA for

20 min at room temperature. Following a PBS wash, cells were per-

meabilized with 0.1% Triton X-100 for 20 min, at room tempera-

ture and unreactive binding sites were blocked with 3% bovine

serum albumin (BSA) in PBS for 30 min. PC12 cells were incubated

with a mouse anti-b III-tubulin (neurite marker) antibody (1:250

dilution from Promega, Chilworth, United Kingdom) diluted in 1%

BSA in PBS and incubated at 4 �C for 24 h. After a PBS wash,

PC12 cells were labelled with Texas Red-conjugated anti-mouse

IgG antibody (1:200 dilution in 1% BSA from Vector Labs, Burlin-

game, USA) in 1% BSA, for 90 min at room temperature. Samples

were imaged with an upright Zeiss LSM 510 confocal microscope,

using a helium–neon laser (543 nm) for Texas Red excitation

(kex = 589 nm / kem = 615 nm). Images were analysed, and neurites

were measured using the ruler tool on ImageJ software.

2.11. Statistical analysis

GraphPad Prism V.6 software was used to analyse data quanti-

tatively. One-way or two-way analysis of variance (ANOVA) with

multiple comparisons was used for all multiple group experiments,

and equality of variances was confirmed by Tukey’s multiple com-

parisons test. P values < 0.05 were deemed significant. Values in

graphs are presented as mean ± one standard deviation.

3. Results and discussion

3.1. Attachment of PC12 neuronal cells on SF films

RSF scaffolds have been extensively used in tissue engineering

applications.[23] However, pure RSF lacks cell recognized mole-

cules, and therefore, it normally has poor cell attachment.[26–28]
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To investigate the attachment of PC12 neuronal cells on the RSF

scaffold surfaces, RSF solutions, at different concentrations, were

spin coated onto clean cover glasses or silicon wafers. AFM images

(Fig. 1A) demonstrated different surface topographies, and conse-

quently cell attachment. The RSF coated glass surfaces (both 5 and

40mg/mL) showed smooth coated layers (Fig. 1A (a-b)) with rough-

ness’s at the nanoscale (0.78 ± 0.02 nm and 0.93 ± 0.01 nm). The RSF

scaffolds investigated here showed poor performance in cell attach-

ment and spreading using PC12 neuronal cells (Fig. 1A (d-e)). A sig-

nificant decrease in cell density on the surfaces (Fig. 1B) was

observed using RSF coated glasses both at 5 mg/mL (9600 ± 700

cells/cm2) and 40 mg/mL (900 ± 600 cells/cm2) as substrates com-

pared to clean glass (21900 ± 1600 cells/cm2), which demonstrates

that PC12 cells have a low binding efficiency to RSF coated sub-

strates. These results indicate that RSF coatings, in particular at high

concentrations, can be used as cell-repellent surfaces for PC12 cells.

When combinedwith cell adhesivemoieties, surfaces could be used

to pattern PC12 cells, to guild the growth of the cells.

To enhance cell attachment, composite RSF scaffolds have been

widely used to facilitate the cell affinity.[25] RSF scaffolds are nor-

mally combined with cell recognized molecules such as collagen,

gelatin and PLL to enhance cell attachment. For example, gelatin

was cross-linked with RSF scaffolds for the repair of cartilage injury

in vitro and in vivo.[44] The scaffolds not only provided a mechan-

ical protection before neocartilage formation, but also a suitable 3D

microenvironment for BMSC (endogenic bone marrow stem cells)

proliferation, differentiation, and ECM production. RSF scaffolds

have also been modified with RGD sequences through the side

groups of aspartic and glutamic acids to improve the cell adhe-

sion.[25] While the previous methods mostly involved chemical

modification of the SF material through covalently bonding, here

we use the electrostatic interaction of self-assembled cationic pep-

tide nanofibers to enhanced the cell attachment onto the SF

scaffolds.

3.2. Characterization of RSF/I3K scaffolds

The peptide AC-I3K-NH2 (in short I3K) was able to self-assemble

into long and uniform nanofibers after incubation as previously

reported.[37,38] According to previous studies[37], the self-

assembly process of I3K is a dynamic process via non-covalent

interactions. Upon complete dissolvement of I3K molecules, small

I3K fragments form interdigitated bilayers with hydrophobic iso-

leucine residues kept in the interior, and charged lysine located

on the surface of bilayers. Small I3K fragments then assemble into

short stacks through hydrophobic interactions and hydrogen bond-

ing. Subsequently, based on molecular chirality and surface curv-

ing, these stacks tend to grow into twisted fibres. Further growth

of which leads to the formation of long and uniform nanofibers.

The width of the formed nanofibers was around 50 nm (Figure S1)

while the length of the nanofibers can reach up to 10 lm. Persis-

tence length is a characteristic length scale that has been used to

determine the conformation of a uniform chain length.[45] Cox

et al.[46] recently measured the contour length (the distance

between two ends of I3K fibres) by AFM and stochastic reconstruc-

tion microscopy and then used this value to calculate persistence

length of I3K fibres. Their results indicated that self-assembled

I3K fibres have an average contour length of around 6 lm and per-

sistence length of 10.1 ± 1.2 lm.

AFM was further used to characterise how concentrations of I3K

affect the surface topography of the I3K coated RSF scaffolds. As

shown in Fig. 2(a), only a few self-assembled nanofibers were

observed on the 1 mg/mL I3K coated RSF scaffolds. By increasing

the concentration of I3K, the number of nanofibers increased grad-

ually forming a near full coverage at 3 mg/mL (Fig. 2(b-c)). Further

increasing the concentration of I3K resulted in more stacked self-

assembled nanofibers, which can potentially lead to cell detach-

ment during cell culture. No significant difference of surface topog-

raphy between the multi-material RSF/I3K scaffold (at

concentration ratio 40:5) and I3K-only scaffold (5 mg/mL coated

glass) could be detected. However, I3K-only scaffolds assembled

on blank glass could easily be washed off when immersed in the

aqueous solutions due to low adhesion properties to the glass sur-

face (Figures S2 and S3), hence making it ineffective for cell cul-

ture applications. Therefore, the multi-material combination of

I3K and RSF generates a structurally stable scaffold that can easily

withstand normal cell culture procedures and thus provides an

excellent way to generate peptide-based scaffolds for cell culture

applications. The strong adhesion between RSF (negatively

charged) and I3K (positively charged) is a result of the strong elec-

trostatic charge-charge interactions.[37,38]

3.3. Neuronal cell attachment and morphology on RSF/I3K scaffolds

To investigate PC12 neuronal cell attachment and viability on

different RSF/I3K scaffold surfaces, a live / dead assay was carried

Fig. 1. A, AFM topographical images of RSF coated scaffolds on Si-wafers at (a) 5 mg/mL; (b) 40 mg/mL and (c) bare silicon wafer control, Z scale height = 30 nm. Fluorescence

images of PC12 cells attached to (d) 5 mg/mL and (e) 40 mg/mL RSF coated surfaces and (f) glass control. (Blue: DAPI staining for nucleus. Green: FITC-phalloidin staining for

F-actin.) Scale bar = 100 lm. B, Average cell numbers (per cm2) attached to the RSF coated surfaces at RSF concentrations of 0 (glass control), 5 and 40 mg/mL. n � 3,
****p < 0.0001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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out as shown in Figure S4. RSF-only scaffolds showed very low cell

adhesion due to a lack of cell recognizable groups such as RGD. Fur-

thermore, they are negatively charged, which has been known to

have negative effects on cell attachment.[47,48] Therefore, by add-

ing positively charged I3K peptide nanofibers onto the negatively

charged RSF substrates, the positively charged lysine residues

deposited on the scaffold surface promoted PC12 cell binding.

[49] PC12 cells showed poor attachment on I3K-only and RSF/I3K

scaffolds at low I3K concentrations (<3 mg/mL) compared with

RSF/I3K scaffolds with high I3K concentrations (3–5 mg/mL). This

is most likely because I3K nanofibers are easily washed off without

RSF base during cell culture as shown in the AFM images in Figures

S2 and S3, and the RSF/I3K scaffolds with low concentrations of I3K

provide insufficient anchoring points for cell attachment. A signif-

icant difference in cell density was observed between RSF-only and

RSF/I3K (3–5 mg/mL) scaffolds, indicating the promotion of PC12

neuronal cell attachment on RSF/I3K scaffolds through the addition

of positively charged I3K nanofibers. However, with an I3K concen-

tration of 5 mg/mL, the number of cells decreased slightly, where

no cell attachment in some areas was observed. This was possibly

due to some detachment of stacked I3K nanofibers occurring at this

and higher concentrations, as previously discussed in section 3.2.

The stacked I3K nanofibers promoted excessive cell attachment

and cells grew quickly becoming over confluent during the incuba-

tion time, thus detaching from the scaffold surface. Additionally,

the live / dead assay indicated that RSF/I3K scaffolds have excellent

biocompatibility. The results indicated that I3K is a promising can-

didate which can be used as a functional scaffold material similar

to other peptides (such as PLL[49] or gelatin[4]) previously

reported for tissue engineering.

The investigation of cell morphology attached on different

ratios of RSF/I3K scaffolds was carried out via AFM (Fig. 3A and

S5). As previously noted, cells spread out well on I3K-only coated

surfaces but showed patchy attachment due to the peptide being

washed off during cell culture. Cells showed an excellent spreading

on I3K-only coated surfaces (Fig. 3A(a)) whereas cells barely spread

out their terminals on RSF-only coated surfaces (Fig. 3A(b)). Cells

started to attach on RSF/I3K coated surfaces at concentration ratio

40:1 (Fig. 3A(c)). By increasing the concentration of I3K from 2 to

4 mg/mL deposited onto RSF (40 mg/mL) coated surfaces, cellular

spreading improved drastically (Fig. 3A(d-g)), indicating a peptide

concentration dependence of cell spreading. Additionally, FITC-

phalloidin and DAPI was used to stain actin filaments and cell

nuclei respectively to further characterize the morphology of cells

adhered on RSF/I3K scaffolds (Figures S6). Cells on RSF/I3K coated

substrates also showed excellent spreading and flattening with this

being enhanced as the concentration of coated I3K increased. These

results are consistent with previous AFM results shown in Fig. 3A.

The first step of the cell adhesion process is the cell-polymer

interactions, which is essential for cell communication, regulation,

tissue development andmaintenance.[50,51] Cell-polymer interac-

tions can be divided into three types, i.e. non-adhesion, passive

adhesion and active adhesion.[50] The interactions between cells

and RSF surfaces corresponds to passive adhesion, which means

cells attach easily but can also easily detach from surfaces.[52]

Cells attached on RSF/I3K scaffolds on the other hand undergo

active adhesion, in which cells spontaneously adhere onto the sur-

face and the adhesion is tight, therefore, it is difficult for cells to

detach.[53] Additionally, the positively charged lysine residues in

I3K activates cell changing morphology and causes spreading for

attachment-dependent phenotypes. Furthermore, there are three

phases that can describe the process of cell adhesion onto cell-

active polymer surfaces. Cells adhere onto the RSF-only scaffolds

via complex physicochemical interactions including Van-der-

Waals, coulombic and hydrophobic forces, known as Phase I cell

attachment.[54] The action of the cells starting to spread and

become flattened on the RSF/I3K scaffold surface (Fig. 3A(c-d)),

due to integrin binding, is known as Phase II. Full spreading and

Fig. 2. AFM topographical images (25 lm2) showing 1-layer RSF/I3K scaffolds coated at different concentration ratios: (a) 40:1, (b) 40:2, (c) 40:3, (d) 40:4, (e) 40:5, (f) 0:5. The

Z scale (height) for all images is 120 nm.
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formation of focal adhesions for the cytoskeleton of PC12 neuronal

cells on the RSF/I3K (Fig. 3A(e-g)) is regarded as Phase III. There-

fore, RSF/I3K scaffolds, where I3K can be considered a cell-

adhesive polymer, are able to activate the cell adhesion process

inducing spreading and flattening. Increasing the concentration

of I3K resulted in improved and expedited cell adhesive properties.

Further AFM analysis revealed the average cell height (Fig. 3B)

on RSF-only scaffolds was 1650 ± 110 nm. In the case of I3K-only

scaffolds, an average cell height of 410 ± 80 nm was measured.

The average height of cells on RSF/I3K peptide scaffolds decreased

with increasing I3K concentrations (1 to 5 mg/mL) from

880 ± 60 nm to 350 ± 90 nm. For the blank silicon wafer, the aver-

age cell height was 600 ± 40 nm, which was similar to (but slight

lower than) that of the RSF/I3K (ratio 40:2) samples. The average

size of attached cells (Fig. 3C) on RSF-only scaffolds was found to

be 140 ± 10 mm2. A gradual size increase (up to 9-fold at 5 mg/

mL I3K) was observed as I3K concentration was increased. Both

average cell height and size on the silicon wafer substrates were

similar to the RSF/I3K scaffold at a concentration ratio of 40:3.

The results indicated that RSF/I3K scaffolds with I3K concentrations

above 3 mg/mL are ideal for PC12 cell adhesion and spreading, out-

performing the cell behaviour on RSF-only scaffolds. The red boxes

in Fig. 3A also indicate areas of interest that were enlarged to fur-

ther investigate the cell morphology. The AFM images show neu-

rites of PC12 cells adhering to the RSF-only or RSF/I3K coated

surfaces (Fig. 3A(b-g)). In contrast to I3K-only scaffolds, Fig. 3A

(h) shows the neurites of PC12 cells adhering on exposed bare sil-

icon wafer substrate. The results were similar to those reported by

Gupta et al.[55] who indicated that neural cells can adhere and dif-

ferentiate on chitosan-based scaffolds. We conclude that I3K can

promote PC12 cell attachment, spreading and neurite formation.

3.4. Differences between RSF/I3K scaffolds and collagen scaffolds on the

function of PC12 cells

Collagen is one of the basic components of the ECM that can

provide a natural environment for cell growth, and proliferation,

and is widely used in nerve tissue repair.[56,57] In addition, colla-

gen has been proven to possess a good adherence and proliferation

ability for PC12 cells.[58] Therefore, the following experiments,

including resazurin assay, live / dead assay and immunostaining

of neurites, were carried out comparing the differences in PC12 cell

functions on RSF/I3K scaffolds and collagen scaffolds. Note that,

three types of RSF/I3K scaffolds were chosen, where the RSF scaf-

fold concentration was 40 mg/mL and RSF/I3K scaffold concentra-

tion ratios were 40:3 and 40:4 (represented as RSF/I3K 40:3 and

RSF/I3K 40:4).

The metabolic activity of PC12 cells on sample surfaces (Type I

collagen; RSF; RSF/I3K 40:3 and RSF/I3K 40:4) was determined after

24, 72 and 144 h in culture using a resazurin assay, and control

groups performed on bare glass and TCP (tissue culture plastic)

substrates (Fig. 4). Metabolic activity was observed to increase

gradually between 24 and 144 h on all surfaces. Cells adhered on

RSF coated surfaces showed the lowest metabolic activity amongst

all test surfaces at 24 and 144 h, while for RSF/I3K scaffolds, the

metabolic activity increased more, indicating I3K can promote

PC12 cell proliferation. RSF/I3K scaffolds at a ratio of 40:4 showed

the highest metabolic activity which surpassed that of Type I colla-

gen scaffolds (between 24 and 144 h), indicating a difference in

proliferation on the surfaces. For control groups, cells on glass

had a lower metabolic activity at all time points in contrast to

TCP. The highest cell metabolic activity was observed on TCP sam-

ples compared to test surfaces at 24 h. However, the increase in

Fig. 3. A, AFM Peak Force Error images of PC12 neuronal cells attached on a series of RSF and I3K coated surfaces. In addition, enlarged AFM images of red box areas are shown

in right of each image. The concentration ratios of RSF and I3K were: (a) 0:5, (b) 40:0, (c) 40:1, (d) 40:2, (e) 40:3, (f) 40:4, (g) 40:5 and (h) silicon wafer control. The force

setpoint constant is 30 nN for images of cells and 5 nN for enlarged areas. B and C indicate average cell heights and sizes in all scenarios. (n � 3; ****p < 0.0001; ***p < 0.001; and

*p < 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

W. Sun, C.S. Taylor, Y. Zhang et al. Journal of Colloid and Interface Science 603 (2021) 380–390

385



metabolic activity observed on the TCP surface between 72 and

144 h was similar to that of the other surfaces. This indicates excel-

lent cell proliferation on the coated surfaces.

Live / dead assay results (Fig. 5) indicated a low rate of cell mor-

tality on all surfaces after 6 days of culture. As can be seen from

Fig. 5B, there was a slightly lower proportion of live cells on type

I collagen (96.7% ± 0.3%) compared to RSF (100%), RSF/I3K 40:3

(99.3% ± 0.1%) and RSF/I3K 40:4 (98.4% ± 0.2%) scaffolds. Although

collagen is a well-known biocompatible material[59], RSF/I3K

showed better cell growth and proliferation overall. The popula-

tion of cells adhered onto uncoated RSF surfaces was poor

(Fig. 5C), only 34 ± 28 cells were observed, which is much lower

than the adherence onto RSF/I3K 40:3 (180 ± 50) and RSF/I3K

40:4 (290 ± 50). Please note that, I3K coated on RSF surfaces,

resulted in a significant difference in observed percentage of live

cells. That is due to RSF surfaces having a poor cell attachment,

resulting in cells easily detaching from the RSF surfaces during cell

culture, and only a few cells remaining. The results demonstrated

that I3K coated on RSF scaffolds can increase neuronal cell prolifer-

ation and attachment. Furthermore, the population of cells

increased with increasing I3K concentration, which is consistent

with the results reported in section 3.3. According to Wiatrak

et al.[58], PC12 Adh cells show good attachment on plastic surfaces.

As can be seen in Fig. 5C (results obtained from much larger areas

than showed in Fig. 5A), there is no significant difference between

RSF/I3K 40:4 and TCP (note that cells on TCP showed patches with

some areas having more cells (e.g., Fig. 5A(f)) and some areas hav-

ing less). Therefore, RSF/I3K 40:4 scaffold also promotes good PC12

cell attachment. However, there was still a significant higher cell

population (650 ± 30) on type I collagen than RSF/I3K 40:4 scaf-

folds, indicating that peptides with multiple amino acids / func-

tional groups are required to increase cell densities. The main

amino acids in the collagen peptide are glycine, proline and ala-

nine,[59] which can be used as building blocks to further design

a modified self-assembled peptide based on I3K to improve the per-

formance in nerve tissue engineering.[60]

PC12 neuronal cells were labelled for b III-tubulin, a specific

neurite formation marker (Fig. 6A). Short neurite outgrowth was

observed for cells adhered to uncoated RSF surfaces and on glass

substrates. However, at an I3K concentration of 3 mg/mL coated

onto RSF surfaces, neurite formations were observed, but slightly

shorter than those on cells grown on type I collagen. With increas-

Fig. 4. Metabolic activity of PC12 cells adhered on different surfaces assessed using

resazurin assay after 24-, 72-, and 144-hours culture. TCP represents tissue culture

plastic. (n � 3; ****p < 0.0001).

Fig. 5. A, Representative confocal images of live / dead analysis from PC12 neuronal cell culture on different surfaces, (a) Glass (control); (b) Type I collagen; (c) RSF; (d) RSF/

I3K 40:3; (e) RSF/I3K 40:4 and (f) TCP (control). The live cells (green) were stained by Syto-9TM and dead cells (red) were stained by propidium iodide, scale bar = 100 lm. B,

Percentage of cell viability. C, The population of live and dead cells. TCP represents tissue culture plastic. (n � 3; ****p < 0.0001). (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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ing concentration of I3K to 4 mg/mL, longer neurite formation was

observed, which indicated that the concentration of I3K directly

affects the length of neurites (Fig. 6B), which is consistent with

the previous AFM images (Fig. 3). The measurement of average

maximum neurite lengths per neuronal cell revealed no significant

difference between cells grown on type I collagen (25 ± 8 lm) and

RSF/I3K 40:4 surfaces (Fig. 6B). Experiments were terminated after

6 days, due to long neurite lengths being physically impaired at

high cell density.[61] Comparison to glass and RSF surfaces, type

I collagen and RSF/I3K 40:4 surfaces had significantly higher per-

centage of cells bearing neurites (Fig. 6C). However, no significant

difference was observed between type I collagen and RSF/I3K 40:4

surfaces, suggesting that I3K at a concentration of 4 mg/mL pos-

sesses similar neuronal cell differentiation to type I collagen.

3.5. Micropatterning PC12 cells on RSF scaffolds via inkjet printing of

peptide nanofibers

The micro-patterning of complex biomaterial structures plays

an essential role in guiding cell adhesion, migration, differentiation

and proliferation.[62,63] Inkjet printing can be used as an effective

tool to micro-pattern complex structures of biomaterials onto a

vast variety of bio-substrates including protein scaffolds[64].

Therefore, it has been deployed here to print I3K (3 mg/mL) peptide

nanofibers as the letters ‘‘SHEF” onto RSF (40 mg/mL) coated sub-

strates. Cell culture studies revealed cells grew almost exclusively

along the printed I3K letters as shown in Fig. 7. The results were

consistent with those reported by Poudel et al.[11] who used pho-

tolithography to pattern collagen type I on cell-repellent surfaces

and demonstrated neural cell growth along the patterns. It was

noticed that PC12 cells prefer to grow on the edge of the letter lines

rather than their central areas. This is attributed to the so-called

‘coffee ring effect’ resulting from the inkjet printing possess, thus

resulting in more I3K nanofibers accumulating on the edge of the

letters. [65,66] It is possible to reduce this effect by the addition

of additives to alter the surface tension and spreading of the I3K

ink during the printing process, which might be deemed beneficial

in the future. In nerve tissue engineering, the alignment of cells is

important in axonal regeneration and direction [42]. Therefore, we

have shown here the micro-patterning of PC12 cells via inkjet

printing of the self-assembled I3K peptide nanofibers onto RSF sub-

strates may provide an excellent approach to enable the analysis of

axonal development in vitro.[64,67]

4. Conclusions

The surfactant-like ultrashort peptide I3K is able to self-

assemble into nanofibrillar structures with a hydrophobic isoleu-

cine tailed fibre core, and positively charged lysine residues located

outside the fibres.[46,68] The self-assembled I3K peptide nanofi-

bers have been successfully used as templates for the fabrication

of silica nanotubes.[37] In this study, I3K peptide nanofibers were

used as a cell-attractive agent to modify RSF scaffold surfaces to

encourage neuronal cell (PC12 cell) attachment and growth. Com-

monly, positively charged PLL has been used for facilitating cell

attachment and proliferation[69,70]. However, PLL can be cytotox-

ic, especially due to its high-molecular-weight.[71] Therefore, the

structure of PLL should be modified via incorporation of segments

that can reduce toxicity.[72] In addition, the I3K peptide used here,

is more cost-effective than PLL due to its short sequence. Overall,

we speculate that the positively charged I3K peptide nanofibers

could be used as an alternative to PLL for cell culture and tissue

engineering applications.

Fig. 6. A, confocal images of PC12 neuronal cells adhered onto different surfaces, including (a) Glass (control); (b) Type I collagen; (c) RSF; (d) RSF/I3K 40:3; (e) RSF/I3K 40:4

and (f) TCP (control). Neurites (red) were stained by anti-b III-tubulin, scale bar = 20 lm. B and C indicate average neurite lengths and the percentage of cells bearing neurites

in all scenarios. TCP represents tissue culture plastic. (n � 3; ****p < 0.0001). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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It was found in our study that RSF-only coated surfaces had

poor PC12 cell attachment, due to a lack of cell binding functional

groups. However, this could be counteracted by introducing I3K

peptides nanofibers onto the scaffolds during the fabrication pro-

cess. The peptide nanofibers naturally immobilise onto the RSF

scaffold surfaces via charge-charge interactions, where the RSF-

only scaffold surface is negatively charged and the I3K peptide

nanofibers are positively charged. The results showed that the

presence of I3K peptides promoted PC12 cell binding efficiency as

the positively charged lysine residues facilitate cell attachment,

which is equivalent to PLL.[39]

Two methods (spin coating and inkjet printing) were applied to

prepare scaffolds, with a series of different concentration ratios of

RSF and I3K onto glass and silicon wafer as substrates. Cells grown

on the prepared scaffolds showed variable attachment, prolifera-

tion, and morphology including the formation of neurites. Addi-

tionally, the live and dead assay demonstrated that both RSF and

I3K demonstrated negligible cytotoxicity toward PC12 neuronal

cells, indicating that both materials are promising scaffold materi-

als for neural tissue engineering. In addition, the RSF/I3K (ratio

40:4) produced scaffolds that optimally supported cell adhesion

indicating excellent biocompatibility and differentiation. This also

demonstrates that the ultra-short peptide I3K could be used as an

alternative to PLL for cell culture and tissue engineering

applications.

Inkjet printing has been shown to be an excellent micro-

patterning method for the guidance of cell attachment.[73]

The charge-charge interactions between positively charged I3K

peptide nanofibers and negatively charged RSF coated surfaces

facilitated the robustness of the scaffold system during fabrica-

tion and cell culture work. Thus, enabling excellent cell growth

along the printed patterns. This patterning method is a

strength of inkjet printing offering a promising approach for

analysing and understanding fundamental cellular functions

such as neurite development and cell–cell interaction in vitro.

[74,75]
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